

Citation for published version:
Power, J & Tanaka, M 2009, 'Axiomatics for Data Refinement in Call by Value Programming Languages',
Electronic Notes in Theoretical Computer Science, vol. 225, pp. 281-302.
https://doi.org/10.1016/j.entcs.2008.12.081

DOI:
10.1016/j.entcs.2008.12.081

Publication date:
2009

Document Version
Peer reviewed version

Link to publication

NOTICE: this is the author’s version of a work that was accepted for publication in Electronic Notes in
Theoretical Computer Science. Changes resulting from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was submitted for publication. A definitive version was
subsequently published in Electronic Notes in Theoretical Computer Science, 225, 2009, DOI
10.1016/j.entcs.2008.12.081

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161909581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.entcs.2008.12.081
https://researchportal.bath.ac.uk/en/publications/axiomatics-for-data-refinement-in-call-by-value-programming-languages(f13fa3ff-22d3-4261-9355-509ea93ff911).html

MFCSIT 2006

Axiomatics for Data Refinement in Call by

Value Programming Languages

John Power1,2

Department of Computer Science

University of Bath

Claverton Down, Bath BA2 7AY, UK

Miki Tanaka3

National Institute of Information and Communications Technology
4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan

Abstract

We give a systematic category theoretic axiomatics for modelling data refinement in call by value pro­
gramming languages. Our leading examples of call by value languages are extensions of the computational
λ-calculus, such as FPC and languages for modelling nondeterminism, and extensions of the first order
fragment of the computational λ-calculus, such as a CPS language. We give a category theoretic account
of the basic setting, then show how to model contexts, then arbitrary type and term constructors, then
signatures, and finally data refinement. This extends and clarifies Kinoshita and Power’s work on lax logical
relations for call by value languages.

Keywords: computational lambda calculus, premonoidal category, data refinement, lax logical relation.

1 Introduction

There have been two main category theoretic approaches to modelling data re­
finement. One arose from Tony Hoare’s 1972 paper on data representation [5].
Hoare [6], then Hoare and He Jifeng [7] (see [16] for an account in standard cat­
egory theoretic terms and see [17] for application of these ideas in practice), took
as fundamental the idea that data refinements compose, i.e., if M refines N , and
N refines P , then M refines P . However, that approach does not generalise easily
to higher order types as for instance in the λ-calculus, as explained in [31] (but
see [23] for a solution using predicate transformers). The other approach, which
has many sources but which has been advocated strongly by Tennent [31], has been

1 This author has been supported by EPSRC grants GR/M56333: The structure of programming languages
: syntax and semantics and GR/586372/01:A Theory of Effects for Programming Languages.
2 Email: ajp@inf.ed.ac.uk
3 Email: miki.tanaka@nict.go.jp

This paper is electronically published in

Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:ajp@inf.ed.ac.uk
mailto:miki.tanaka@nict.go.jp

Power and Tanaka

to use binary logical relations [21,19,4] to model data refinement. Binary logical
relations model data abstraction and are well suited to higher order types, but they
do not compose. So one seeks a common generalisation that both accounts easily
for higher order types and is closed under composition. That has led to the notion
of lax logical relation [24,15] and variants [14]. Here, we explain and develop the
notion of lax logical relation in the setting of call by value languages, based on but
clarifying and extending the work of [15].

For the simply typed λ-calculus generated by a signature Σ, Hermida [4] showed
that to give a logical relation is equivalent to giving a strict cartesian closed functor
from the cartesian closed category L determined by the term model for Σ, to Rel2,
the cartesian closed category for which an object is a pair of sets X and Y together
with a binary relation R from X to Y . A lax logical relation is exactly the same
except that the functor from L to Rel2, although still required to preserve finite
products strictly, equivalently, to respect contexts, need not preserve exponentials.
There is a syntactic counterpart to this [24], but the above is the most compact
definition.

For call by value languages, the situation is more complex. One must distinguish
between values and arbitrary expressions. So rather than considering a single cate­
gory L, one considers a pair of categories Lv and Le, the former for modelling values
in context and the latter for modelling arbitrary expressions in context, together
with an identity on objects functor L : Lv −→ Le that allows one to see the values
as possible expressions. The notion of cartesian closedness must be generalised cor­
respondingly, yielding the notion of closed F reyd-category [30], and the notion of
lax logical relation can and must also be generalised accordingly [15].

A leading example of a call by value language is Moggi’s computational λ­
calculus, or λc-calculus [22], for which data refinement was studied in [15]. But
there are many other call by value languages, for instance FPC [3], some CPS lan­
guages [32], and languages with nondeterminism [1]. So we should like a systematic
account of data refinement for call by value languages that includes a wide range
of such languages, and that is the topic of this paper. So this paper clarifies and
extends the work of [15], where attention was restricted to the λc-calculus.

We first describe models of call by value languages. This requires care. In Sec­
tion 2, we recall the computational λ-calculus and show how its central feature,
the distinction between values and arbitrary expressions, can be modelled in cat­
egory theoretic terms, specifically in terms of categories enriched in the cartesian
closed category [, Set], the functor category of functors from the arrow category →
to Set. An [, Set]-category consists exactly of a pair of categories A0 and A1 and→
an identity on objects functor A : A0 −→ A1.

As outlined above, the notion of context is fundamental to data refinement, so
we devote Section 3 to the category theoretic modelling of contexts in simply typed
call by value languages. We recall the notion of F reyd-category, explain why it is
of interest to us, and show how it is to be used here.

Next comes the central generalisation from the modelling of the computational
λ-calculus in [15]: we must show how to model arbitrary type and term constructors,
not just those of the λc-calculus. That requires a notion of algebraic structure, equiv­
alently finitary monad, on the category [, Set]-Cat of small [, Set]-categories.→ →

2

Power and Tanaka

Once one understands algebraic structure for ordinary categories, as used to de­
scribe Hoare’s approach to data refinement in [16], it is not difficult but requires a
little care to generalise to [, Set]-categories with algebraic structure: we give that →
generalisation in Section 4.

We begged one question above in speaking of languages generated by a signature,
and that was how to give a category theoretic formulation of the notion of signature.
That is provided by the notion of a T -sketch for a finitary monad T . Again, once one
understands that for categories, the extension to [, Set]-categories is not difficult →
but requires a little care. In doing so in Section 5, we also give a slightly better
focused definition of the notion of T -sketch than that in the literature.

Finally, we reach the modelling of data refinement. With the above extensions
or improvements of previous work, we routinely generalise the notion of lax logical
relation in [15]. In doing so, we give a version of the Basic Lemma that is a much
more direct generalisation of its usual formulation than appears in [15]. We also give
a condition, satisfied by all our leading examples, under which lax logical relations
compose; one can see immediately that lax logical relations account for higher order
structure too.

We do not address representation independence, the topic of [14], in this paper,
but the techniques of [14], based on the T -sketches in [18], extend to the setting of
this paper. We plan to make that extension, but it is not entirely clear how to do
so yet. We also do not make explicit a relationship with logic. In the case of the
simply typed λ-calculus and similar languages, that can be done using fibrations
with structure [4]; but it is not yet clear how to do that here, as not only do we
generalise from logical to lax logical relations, but also we generalise to call by value
languages, and an appropriate notion of fibration has not been developed in that
setting yet: it may well be straightforward, but it remains to be investigated.

2 Modelling Call by Value Languages

Our goal in this paper is to model data refinement for call by value programming
languages. So for concreteness, we shall present a leading example of a call by value
language and outline the key features of its models.

We consider a version of the computational λ-calculus, or λc-calculus [22]. There
are several equivalent formulations of the λc-calculus. The original formulation
included a type constructor TX and associated term constructors [e] and µ(e). But
they are redundant, so we omit them.

The λc-calculus has type constructors given by

(1) X ::= B | X1 × X2 | 1 | X ⇒ Y

where B is a base type.
The terms of the λc-calculus are given by

(2) e ::= x | b | e�e | λx.e | ∗ | (e, e�) | πi(e)
where x is a variable, b is a base term of arbitrary type, ∗ is of type 1, with πi
existing for i = 1 or 2, all subject to the evident typing.

It is common to see a let constructor in descriptions of the λc-calculus, with let
x = e in e� being syntactic sugar for (λx.e�)e. It only plays a substantial role when

3

Power and Tanaka

one wants to consider a first-order fragment of the calculus [27], so, for simplicity,
we omit it here.

The λc-calculus has two predicates: existence, denoted by , and equivalence, ↓
denoted by ≡. The rules may be expressed as saying ∗ ↓, x ↓, λx.e for all e, if ↓ ↓
e ↓ then πi(e) ↓, and similarly for (e, e�). A value is a term e such that e ↓. The
rules for ≡ say ≡ is a congruence, with variables allowed to range over values; there
are also rules for the basic constructions and for unit, product and functional types.
It follows from the rules that types together with equivalence classes of terms in
context form a category, with a subcategory determined by values.

It is straightforward, using the original formulation of the λc-calculus in [22],
to spell out the inference rules required to make this formulation agree with the
original one: one just bears in mind that the models are the same, and we use
syntactic sugar as detailed above. We do not clutter our presentation by repeating
the rules of [22].

The λc-calculus represents a fragment of a call by value programming language.
In particular, it was designed to model fragments of ML, but is also a fragment of
other languages such as FPC [3] or a nondeterministic call by value language [1].
The first-order fragment is part of the CPS calculus of [32], which in turn is a typed
version of Appel’s calculus for compiling ML, as explained in [32]. For category
theoretic models, the key feature is that there are two entities, expressions and
values, so the most direct way to model the language as we have formulated it
is in terms of a pair of categories Lv and Le, together with an identity on objects
inclusion functor L : Lv −→ Le. This is subject to some generalisation of the notion
of finite product in order to model contexts and product types, further subject to
a closedness condition to model X Y , as we shall explain in later sections. ⇒

The key point for us is that the basic information, i.e., categories Lv and Le

and an identity on objects functor (its faithfulness is a distraction) L : Lv −→ Le,
amounts exactly to the data and axioms for an enriched category: let [, Set]→
denote the functor category of functors from the arrow category to Set, and con­
sider its cartesian closed structure. It is immediate from the definition of enriched
category [11] that one has

Proposition 2.1 An [, Set]-category consists of categories A0 and A1 and an→
identity on objects functor A : A0 −→ A1. An [, Set]-functor from A : A0 −→ A1→
to A� : A�

0 −→ A�
1 consists of a pair of functors F0 : A0 −→ A�

0 and F1 : A1 −→ A1
�

making the square of functors commute. An [, Set]-natural transformation from →
(F0, F1) to (G0, G1) consists of a natural transformation α : F0 ⇒ G0 with naturality
extending to A1.

By systematic use of this observation and the theory of enriched categories [11],
we can model call by value languages such as the computational λ-calculus [22],
extensions [3,1], and extensions of its first order fragment such as used to model
continuations in [32,30]. We shall proceed systematically to show how one can
model such languages, then finally show how to extend that analysis to model data
refinement.

4

Power and Tanaka

3 Modelling Contexts

Central to our modelling of both call by value languages and data refinement is the
modelling of contexts. In giving an axiomatic account of data refinement, we shall
want contexts to be respected by data refinements, while not asking for any of the
other structure to be respected. So we need to pay special attention to modelling
contexts. That is delicate for call by value languages, requiring the notion of F reyd­
category [30]. So in this section, we develop the machinery for F reyd-categories.

We must first recall the definitions of premonoidal category and strict pre­
monoidal functor, and symmetries for them, as introduced in [28] and further stud­
ied in [1,26,32,30]. A premonoidal category is a generalisation of the concept of
monoidal category: it is essentially a monoidal category except that the tensor need
only be a functor of two variables and not necessarily be bifunctorial, i.e., given
maps f : X −→ X � and g : Y −→ Y �, the evident two maps from X ⊗ Y to X � ⊗ Y �

may differ.
Given a symmetric monoidal category C such as Set, and an object S of C, one

might consider the category D with the same objects as C and with D(X, X �) =
C(S ⊗ X, S ⊗ X �), with composition induced by that of C. Such a construction may
be used to model a functional language with side-effects [22]. The category D does
not have finite products or monoidal structure, as would usually be used to model
contexts, the problem being that, although one has evident functors X ⊗ − and
−⊗ Y for arbitrary objects X and Y , they do not yield a bifunctor. So we need a
precise way to enunciate what structure D does have, allowing one to account for
contexts in it.

Definition 3.1 A binoidal category is a category K together with, for each object
X of K, functors hX : K −→ K and kX : K −→ K such that for each pair (X, Y)
of objects of K, hX Y = kY X. The joint value is denoted X ⊗ Y .

Definition 3.2 An arrow f : X −→ X � in a binoidal category K is central if for
every arrow g : Y −→ Y �, the following diagrams commute

X ⊗ Y
X ⊗ g

� X ⊗ Y � Y ⊗ X
g ⊗ X

� Y � ⊗ X

f ⊗ Y

�
X � ⊗ Y

f ⊗ Y �

�

X � ⊗ g
� X � ⊗ Y �

Y ⊗ f

�

Y � ⊗ f

�
Y ⊗ X �

g ⊗ X �
� Y � ⊗ X �

A natural transformation α : G = H : C −→ K is called central if every ⇒
component of α is central.

Definition 3.3 A premonoidal category is a binoidal category K together with an
object I of K, and central natural isomorphisms a with components (X ⊗Y)⊗Z −→
X ⊗(Y ⊗Z), l with components X −→ X ⊗I, and r with components X −→ I ⊗X,
subject to two equations: the pentagon expressing coherence of a, and the triangle
expressing coherence of l and r with respect to a (see [11] for an explicit depiction
of the diagrams).

5

Power and Tanaka

Proposition 3.4 Given a strong monad T on a symmetric monoidal category C,
the Kleisli category Kl(T) for T is a premonoidal category, with the functor J :
C −→ Kl(T) preserving premonoidal structure strictly: a monoidal category such
as C is trivially a premonoidal category.

Moggi’s work on monads as notions of computation [22] provides a leading source
of examples of premonoidal categories. Moggi showed that Kleisli categories for
strong monads on cartesian closed categories provide a sound and complete class
of models for the λc-calculus [22]. More specifically, one can take C = Set or
the category of ω-cpo’s, both of which are cartesian closed; and one can take a
strong monad on them, such as a lifting monad or ones for modelling side-effects,
exceptions, continuations, etcetera. More specifically again, the paper [27] shows
how every countable Lawvere theory gives rise to a canonical premonoidal category,
including all the examples just cited.

More generally, Kleisli categories for premonoidal dyads [29] also provide a good
class of examples of premonoidal categories, including a more natural class of models
for side-effects.

Having defined the notion of premonoidal category, we need a subsidiary defi­
nition, that of the centre of a premonoidal category K, which is defined to be the
subcategory of K consisting of all the objects of K and the central morphisms. This
notion was fundamental to Thielecke’s account of values for continuations in [32]
but is of somewhat less importance here.

Given a strong monad on a symmetric monoidal category, the base category C
need not be the centre of Kl(T). But, modulo the condition that J : C −→ Kl(T)
be faithful, or equivalently, the mono requirement [22,28], i.e., the condition that
the unit of the adjunction be pointwise monomorphic, it must be a subcategory of
the centre.

The functors hX and kX preserve central maps. So we have

Proposition 3.5 The centre of a premonoidal category is a monoidal category.

Thus we can deduce the coherence theorem for premonoidal categories.

Theorem 3.6 Every diagram built from the structural natural transformations in
the definition of a premonoidal category commutes.

Proof. Since the centre of a premonoidal category is a monoidal category and all
the structural maps are central, the result follows immediately from coherence for
a monoidal category as in Kelly’s refinement [10] of Mac Lane’s proof. �

All of the premonoidal categories of primary interest to us are symmetric in some
reasonable sense, and we require that symmetry for a soundness proof for models
of the λc-calculus, so we make precise the notion of a symmetry for a premonoidal
category.

Definition 3.7 A symmetry for a premonoidal category is a central natural isomor­

phism with components c : X ⊗ Y −→ Y ⊗ X, satisfying the two conditions c2 = 1
and equality of the evident two maps from (X ⊗Y)⊗Z to Z ⊗(X ⊗Y). A symmetric
premonoidal category is a premonoidal category together with a symmetry.

6

Power and Tanaka

Finally, we need another supplementary definition. The key notion for us here
is that of F reyd-category, but we need both the notions of premonoidal category
and strict symmmetric premonoidal functor in order to define it.

Definition 3.8 A strict premonoidal functor is a functor that preserves all the
structure and sends central maps to central maps.

One may similarly generalise the definition of strict symmetric monoidal functor
to strict symmetric premonoidal functor.

We are finally in a position to define the notion of F reyd-category, which is the
central definition of this section.

Definition 3.9 A F reyd-category consists of a category A0 with finite products,
a symmetric premonoidal category A1, and an identity on objects strict symmetric
premonoidal functor A : A0 −→ A1. A strict F reyd-functor consists of a pair of
functors that preserve all the F reyd-structure strictly.

Given a category C with finite products and a strong monad T on it, Kl(T)
is a F reyd-category. A functor strictly preserving the strong monad and the finite
products yields a strict F reyd-functor, but the converse is not true.

It is immediate from the definition that a F reyd-category is a [, Set]-category→
with extra structure. In the next section, we shall make precise the notion of
[, Set]-category with algebraic structure and shall see that a F ryed-category can →
be seen as such. But first we develop the notion of F reyd-category a little more in
its own terms.

Note that a strict F reyd-functor from A : A0 −→ A1 to A� : A�
0 −→ A�

1 need
not send every central map of A1 to a central map of A�

1: centrality is a property of
a map in a premonoidal category, not a piece of structure; so we have not explicitly
asked it to be preserved. The key reason for defining F reyd-categories as they
have been defined was precisely to avoid preservation of arbitrary central maps by
F reyd-functors. Maps in A0, which are necessarily central in A1, are sent to maps
in A�

0, therefore to central maps in A�
1, but we specifically do not require that an

arbitrary central map be sent to a central map.

Definition 3.10 A F reyd-category A : A0 −→ A1 is closed if for every object X,
the functor A(X ⊗−) : A0 −→ A1 has a right adjoint. A strict closed F reyd-functor
is a F reyd-functor that preserves all the closed structure strictly.

Observe that if A is closed, then by taking X to be the unit I, it follows that
the functor A : A0 −→ A1 has a right adjoint, and so A1 is the Kleisli category for
a monad on A0. We sometimes write A1 for the F reyd-category as the rest of the
structure may be implicit: often, it is given by the centre of A1 and the inclusion.

Given a category C with finite products and a strong monad T on C, one says
Kleisli exponentials exist if, for each object X of C, the functor J(X ×−) : C −→
Kl(T) has a right adjoint. A variant of one of the main theorems of [26] is

Theorem 3.11 To give a closed F reyd-category is to give a category C with finite
products together with a strong monad T on C together with assigned Kleisli ex­
ponentials. To give a strict closed F reyd-functor is to give a strict map of strong
monads that strictly preserves Kleisli exponentials.

7

Power and Tanaka

It follows from Moggi’s result, but may also be proved directly, that closed
F reyd-categories provide a sound and complete class of models for the λc-calculus.
It is routine to define the notion of a model of the λc-calculus in a closed F reyd­
category: types are modelled by objects of A0, equivalently A1; product and expo­
nential types are modelled by the premonoidal and closed structures respectively;
for pairing, one makes a systematic choice in modelling (e, e�), whether one operates
from left to right or conversely. Left to right seems generally favoured [22,30,32].

4 Modelling Type and Term Constructors

In a call by value programming language, one has contexts as we have studied in
the previous section, but one also has an arbitrary collection of type and term con­
structors, and these are subject to equations. For instance, both the λc-calculus
and FPC have exponential types, FPC has coproduct types, and a language for
nondeterminism has a term constructor ∨ to model a nondeterministic operator [1].
So we seek a general category theoretic account of modelling type and term con­
structors. The notion of algebraic structure, or equivalently finitary monad, on the
category [, Set]-Cat provides such a unified structure for us. →

Algebraic structure for [, Set]-categories generalises universal algebra, i.e., the →
study of sets with algebraic structure [13,2]. It has long been known that every
category of algebras for a one-sorted signature, subject to equations, is equivalent
to the category of algebras for a finitary monad on the category of sets [20]; the
term “finitary” is a size condition: a definition is not essential to this paper, so we
shall not define it. So our definition of algebraic structure for [, Set]-categories is →
characterised by extending that theorem from sets to [, Set]-categories. An article →
explaining that result in far greater generality is [13], and a version for categories
with structure appears in [25]; but for work exactly at this level of generality, see [26].

In ordinary universal algebra, an algebra is a set X together with a family of
basic operations σ : Xn X, subject to equations between derived operations. →
In order to define algebraic structure on [, Set]-categories, one must of course→
replace the set X by a [, Set]-category A. One also replaces the finite number n→
by a finitely presentable [, Set]-category c.→

The definition of finitely presentable [, Set]-category provides the definitive →
generalisation of the notion of finite set for the standard category theoretic treat­
ment of universal algebra in this setting [13]. But the definition is complex, all
finite [, Set]-categories are finitely presentable, and finite [, Set]-categories are → →
the only finitely presentable [, Set]-categories we need. So we omit the definition →
here, referring the interested reader to [12].

One must also generalise functions from [, Set]-Cat(c, A) into the set of objects →
of A to allow functions from [, Set]-Cat(c, A) into the sets of arrows of A0 and→
A1. These are subject to equations between derived operations. It follows that the
models of all of the languages we have mentioned, i.e., extensions of the λc-calculus
or its first-order fragment by various type and term constructors, the category of
small such [, Set]-categories with structure and functors that strictly preserve the →
structure is equivalent to the category of algebras, T –Alg, for a finitary monad T
on [, Set]-Cat.→

8

�

�

�

Power and Tanaka

In order to include all of our examples, specifically those involving higher order
structure either explicitly as in the λc-calculus or implicitly as in the CPS-calculus,
one needs an unenriched version of algebraic structure on the category [, Set]-Cat:→
so at the base level, we need to consider categories enriched in [, Set], but at what →
one might call the meta-level, we then need to consider unenriched structure on
[, Set]-Cat.→

In calculating the details, it is easier to study the basic examples such as F reyd­
categories using 2-categories. Any Cat-enriched algebraic structure on [, Set]­→
Cat qua 2-category trivially yields unenriched algebraic structure on [, Set]-Cat →
qua ordinary category. So, perhaps counter-intuitively, there are more ordinary
algebraic structures on [, Set]-Cat than there are 2-categorical algebraic structures →
on [, Set]-Cat. As the basic examples are 2-categorical and are expressible more →
simply in those terms, we shall give the details of this section in 2-categorical terms,
with the remark that all the following extends without fuss to unenriched algebraic
structure.

Let C denote the 2-category [, Set]-Cat, let Cf be the full sub-2-category of →
finitely presentable [, Set]-categories (we need only note that these include the →
finite such), and let ob Cf denote the set of objects of that category, i.e., the set
of finitely presentable [, Set]-categories. The following is a completely routine →
variant of the work of [25], which in turn is a special case of [13] (see also [26]).

Definition 4.1 A signature on C is a 2-functor S: ob Cf −→ C, regarding ob Cf as
a discrete 2-category.

For each c ∈ ob Cf , S(c) is called the [, Set]-category of basic operations of arity →
c. Using S, we construct Sω : Cf −→ C as follows: set

S0 = J, the inclusion of Cf in C

Sn+1 = J + C(d, Sn(−)) × S(d),
d∈ob Cf

and define

σ0 : S0 −→ S1 to be inj : J −→ J + d∈ob Cf
C(d, S0(−)) × S(d)

σn = J + d∈ob Cf
C(d, σn−1(−)) × S(d) : Sn −→ Sn+1

Sω = colimn<ωSn.

The colimit exists because C is cocomplete, and it is a colimit in a functor category
with base C. In many cases of interest, each σn is a monomorphism, so Sω is the
union of { Sn }n<ω. For each c, we call Sω(c) the [, Set]-category of derived c-ary→
operations.

A signature is typically accompanied by equations between derived operations.
So we say

Definition 4.2 The equations of an algebraic theory with signature S are given by
a 2-functor E : ob Cf −→ C together with 2-natural transformations τ1, τ2 : E −→
Sω(K(−)), where K : ob Cf −→ Cf is the inclusion.

Definition 4.3 Algebraic structure on C consists of a signature S, together with
equations (E, τ1, τ2). We generally denote algebraic structure by (S, E), suppressing

9

� � �

�

Power and Tanaka

τ1 and τ2.

We now define the algebras for a given algebraic structure.

Definition 4.4 Given a signature S, an S-algebra consists of a small [, Set]­→
category A together with a [, Set]- functor νc : C(c, A) −→ C(S(c), A) for each →
c.

So, an S-algebra consists of a carrier A and an interpretation of the basic operations
of the signature. This interpretation extends canonically to the derived operations,
giving an Sω(K(−))-algebra, as follows:

ν0 : C(c, A) −→ C(S0(c), A) is the identity;

to give νn+1 : C(c, A) −→ C(Sn+1(c), A), using the fact that C(−, A) sends colimits
to limits, is to give a [, Set]-functor C(c, A) −→ C(c, A), which we will make the →
identity, and for each d in ob Cf , a [, Set]-functor→

C(c, A) −→ C(C(d, Sn(c)), C(S(d), A)),

or equivalently, C(c, A) × C(d, Sn(c)) −→ C(S(d), A), which is given inductively by

νn × id comp ν
C(c, A) × C(d, Sn(c)) � C(Sn(c), A) × C(d, Sn(c)) � C(d, A) � C(S(d), A)

Definition 4.5 Given algebraic structure (S, E), an (S, E)-algebra is an S-algebra
that satisfies the equations, i.e., an S-algebra (A, ν) such that both legs of

C(c, A)
νω� C(Sω(Kc), A)

C(τ1c, A)�� C(E(c), A)
C(τ2c, A)

agree.

Given (S, E)-algebras (A, ν) and (B, δ), we define the homcategory
(S, E)–Alg((A, ν), (B, δ)) to be the equaliser in of

{ C(c, −) }c∈ obCf �
�

C(A, B) C(C(c, A), C(c, B))
c

(3) C(C(c, A), δc){ C(S(c), −) }c∈ obCf c

� C(νc, C(S(c), B))c �
�

C(C(S(c), A), C(S(c), B)) C(C(c, A), C(S(c), B)).
c c

This agrees with our usual universal algebraic understanding of the notion of ho­
momorphism of algebras, internalising it to C. (S, E)–Alg can then be made
into a category in which composition is induced by that in C. An arrow in
(S, E)–Alg is a [, Set]-functor F : A −→ B such that for all finitely presentable c,→
Fνc(−) = δc(F −) : C(c, A) −→ C(S(c), B), i.e., a [, Set]-functor that commutes →
with all basic c-ary operations for all c.

A special case of the main result of [13] says

Theorem 4.6 An [, Set]-category is equivalent to (S, E)–Alg for algebraic struc­→
ture (S, E) on [, Set]-Cat if and only if there is a finitary 2-monad T on [, Set]­→ →
Cat such that the 2-category is equivalent to T –Alg.

10

� �

Power and Tanaka

Example 4.7 Let 2 denote the discrete [, Set]-category on two objects; let → →0

denote the [, Set]-category for which both A0 and A1 are given by the arrow →
category and A is the identity functor; let Cone denote the [, Set]-category for →
which both A0 and A1 are given by two objects together with a cone over them,
with A being the identity functor; and let Comp denote the [, Set]-category with →
A0 and A1 both given by a pair of objects, a pair of cones over them, and an
intermediary map from one vertex to the other, commuting with the projections,
again with A being the identity functor. Define S : ob Cf −→ C by S(2) = Cone,
S(Cone) = Comp, and for all other c, S(c) is the empty [, Set]-category. →

An S-algebra is a small [, Set]-category A together with a functor φ :→
C(2, A) −→ C(Cone, A) and a functor ψ : C(Cone, A) −→ C(Comp, A). The
functor φ is to take a pair of objects to its limiting cone, and the functor ψ is to
take a cone to itself, the limiting cone, and the unique comparison map. So we add
equations as follows: we may add equations factoring through S1(2) and S1(Cone)
respectively so that φ(x) : Cone −→ A restricts along the inclusion 2 −→ Cone to
x, and so that ψ sends a cone σ : Y −→ x to a commutative diagram of the form

σ
Y � x

φ(
x)

�

γ
σ

�

X .

Finally, we add an equation factoring through S2(2) so that, for each x : 2 −→ A,
we have γφ(x) = idX .

Putting this together, let E(2) be the [, Set]-category for which both A0 and→
A1 are given by Cone+ →0 with A being the identity, let E(Cone) have both A0

and A1 be given by Cone + Cone with A being the identity, and let E(c) be the
empty [, Set]-category for all other c, and define τ1 and τ2 to force the equations →
as described above: on most components, the τ ’s factor through S1(c), but for one
of them, we need to factor through S2(c).

It then follows that for any x : 2 −→ A, φ(x) is a limiting cone: given any
cone σ : Y −→ x, the diagram ψ(σ) provides a comparison map; and given any
comparison map f : Y −→ X, functoriality of ψ applied to the arrow

Y
σ

� x

f idx

� x
φ(x)

X

in C(Cone, A) shows that

11

� �

Power and Tanaka

Y
γσ � X

f idX

X � X
γφ(x) = idX

commutes, so f = γσ.
An (S, E)-algebra is precisely a small category A0 with assigned binary products,

together with an identity on objects functor A : A0 −→ A1. An (S, E)-algebra
map is a [, Set]-functor that sends assigned binary products to assigned binary →
products.

Observe in the above that all of the finitely presentable [, Set]-categories we →
considered have A0 = A1 with A being the identity functor. That is no coincidence.
In fact, one can use the above observation to prove

Theorem 4.8 Let T be any finitary monad on Cat. Then there exists a finitary
monad T � on [, Set]-Cat for which a T �-algebra consists of a T -algebra (A0, a)→
together with an identity on objects functor A : A0 −→ A1.

This result allows us to extend known examples of categories with algebraic
structure to give [, Set]-categories with algebraic structure, providing our only →
concern is with structure on A0.

Some examples of categories with algebraic structure that routinely extend the
above example are small categories with finite products, small categories with finite
coproducts, small monoidal categories and small symmetric monoidal categories. As
mentioned above, we can account for exponentials if we drop the enrichment in Cat.
Another example of algebraic structure (S, E) is that for which an (S, E)-algebra
is a small category together with a monad on it. The construction is not difficult.
For instance, for an endofunctor, one puts S(c) = 1 if c = 1 and makes it empty
otherwise, with no equations.

This gives us part of the structure of a F reyd-category and extensions, such as
finite coproducts as in the models of FPC. However, all the structure exemplified
so far has been structure on A0, so we need to consider non-trivial structure on A1.

Theorem 4.9 There is algebraic structure on [, Set]-Cat for which an algebra is →
a small premonoidal category A1 together with a monoidal A0 and an identity on
objects strict premonoidal functor A : A0 −→ A1.

Proof. Extending the notation of Example 4.7, let denote the [, Set]-category→ →
with two objects, with one arrow from the first to the second in A1, and with A0

discrete. Recall that we let →0 denote the [, Set]-category with two objects and →
an arrow from one to the other in both A0 and A1. Let 1 denote the discrete
[, Set]-category with one object. →

Let A : A0 −→ A1 be an arbitrary small [→, Set]-category. Then the cat­
egory [, Set]-Cat(1, A) is isomorphic to A0. Also, an object of the category →

12

Power and Tanaka

[, Set]-Cat(, A) is an arrow of A1, and an arrow is a pair of arrows in A0 that→ →
together with the domain and codomain, form a commutative square in A1. The
category [, Set]-Cat(→0, A) maps faithfully into [, Set]-Cat(, A) and is given → → →
by the arrows of A0.

So if we put

• S(1+ →) =→,

• S(+1) = , and → →
• S(c) = 0 for all other c,

then an S-algebra would consist of a [, Set]-category A : A0 −→ A1, together →
with the data for functors hX : A1 −→ A1 and kX : A1 −→ A1 for each object
X, with corresponding data for each map in A0, subject to naturality conditions
that will force each map in A0 to be central. One can extend S by operations and
equations to force the above data to give A1 the structure of a binoidal category:
one needs to ensure that the object functions of the two functors are well defined and
agree as required by the binoidal definition, and that composition and identities are
preserved. So, for instance one puts E(2) = 1 and defines τ1 and τ2 to force hX (Y) =
kY (X); similarly for composition and identities for hX and kX ; one must extend
the signature S and add further equations to give the structural isomorphisms of a
premonoidal category, but these are given along the lines of Example 4.7, extending
the algebraic structure for monoidal categories. In doing so, the image of A0 is forced
to lie in the centre of A1. Then one can routinely add operations and equations to
give the coherent structural isomorphisms a, l, and r, making A1 premonoidal. �

Combining the constructions of Example 4.7 and Theorem 4.9, we have

Corollary 4.10 There is algebraic structure on [, Set]-Cat for which an algebra →
is a small F reyd-category.

We have expressed the technical details of this section almost entirely in terms
of 2-categories and algebraic structure with respect to 2-categories. Closed F reyd­
categories are not included in that, just as cartesian closed categories are not given
by algebraic structure on Cat seen as a 2-category [13]: the reason is that closed
structure is contravariant, whereas Cat-enrichment requires covariance, as in all
the above examples. But, just as cartesian closed categories are given by algebraic
structure on Cat as an ordinary category [13,25], closed F reyd-categories are given
by algebraic structure on [, Set]-Cat seen as an ordinary category, cf [26], a proof →
given by a routine, albeit careful extension of the proof for closedness of a cartesian
category. Summarising, we have

Corollary 4.11 There is algebraic structure on [, Set]-Cat, seen as an ordinary →
category, for which an algebra is a small closed F reyd-category.

These results suggest one consider [, Set]-categories with algebraic structure →
as a way to provide semantics of call by value languages. One may use the results of
enriched category theory to do so. For instance, [, Set] is a [, Set]-category, and → →
plays a similar role to that of Set in ordinary category theory, so one can speak of
presheaves, free cocompletions, etcetera. Moreover, [, Set]-Cat is a locally finitely →

13

Power and Tanaka

presentable 2-category, so one has access to the theory of 2-monads, in particular to
the treatment of functors that preserve structure only up to coherent isomorphism.
In particular, for the purposes of this paper, for any monad T on [, Set]-Cat and→
for any [, Set]-category A, one has a free T -algebra on A. As the models of our →
various languages are to be taken in T -algebras, this fact allows us to give a category
theoretic account of the language generated by a signature. We develop that in the
next section.

5 Modelling Signatures

There are two different notions of signature in this paper. We introduced one such
notion, consistently with the relevant literature, in Section 4. The other, consistent
with a different body of literature, is given by basic types and expressions for a
call by value programming language in the spirit of Section 2. In this section, we
characterise the notions of signature in the latter sense, language generated by a
signature, and model, in category theoretic terms. The key notions for this are
those of T -sketch S, the theory Th(S) of a sketch, and a model of a T -sketch, for a
given finitary monad T on [, Set]-Cat.→

A programming language may be freely generated by a signature, i.e., basic data
types and basic expressions. For a recent account and use of the idea, see [14]. For
a category theoretic formulation of the notion of signature, we give, for any finitary
monad T on [, Set]-Cat, a notion of a T -sketch S, which we identify with the →
notion of signature Σ. We then prove that each T -sketch S generates a free model
ι : S −→ Th(S). The free model Th(S) represents the programming language
generated by the signature Σ.

We first need a supplementary definition. Although it is the first definition in
this section, it is not to be taken as being of central importance, just as the notion
of binoidal category is supplementary to the notion of premonoidal category.

Just as in the previous section, the leading examples are more easily seen in
terms of 2-monads rather than ordinary monads: recall that 2-monads on [, Set]­→
Cat have underlying ordinary monads, so enrichment amounts to a restriction, but
one that includes our leading examples. So, for convenience, we express ourselves
in terms of 2-monads: the description of the examples in terms of ordinary monads
is routine but tedious.

Definition 5.1 Given a finitary 2-monad T on [, Set]-Cat, a family D of diagram →
types is a small family of 4-tuples (ci, di, ji : ci → di, ki : di → Tci), where ci and di
are finitely presentable [, Set]-categories, and ji and ki are both [, Set]-functors,→ →
subject to the condition that the following diagram commutes:

ki
di � T ci

η c i

�
�

j
i

ci

14

� �

Power and Tanaka

We generally suppress ji and ki, leaving them implicit in ci and di, just as one
often refers to a category in terms of its set of the objects, with the rest of the data
implicit. So we speak of (ci, di).

Example 5.2 Let T be the 2-monad for small [, Set]-categories A : A0 −→ A1→
for which A0 has finite products. With the notation of Ex. 4.7, let D consist of
one pair (2, Cone), with j the (ordered) inclusion of 2 into the base of the cone,
and k the inclusion of Cone into T (2) yielding that part of T (2) that gives the
product cone over the two base objects. That it satisfies the condition on a family
of diagram types amounts to the assertion that k sends Cone to the product cone
of the two objects given by 2.

If one began directly with algebraic structure (S, E) rather than a finitary 2­
monad T , it would be natural to give a mildly stronger definition of family of
diagram types: one would demand that the [, Set]-functors k : di −→ Tci have →
codomain Sωci, then rewrite the condition so that the top [, Set]-functor is re­→
placed by the composite of ki : di −→ Sωci with the universal map t : Sω −→ T(S,E)

evaluated at ci. Thus a family of diagram types for algebraic structure would im­

mediately give rise to a family of diagram types for the induced 2-monad, but they
would not a priori be equivalent. We only need the latter concept here, so shall
not formalise the former. However, all constructions we make here are immediately
expressible directly in terms of algebraic structure (S, E).

Now assume we are given a finitary 2-monad T .

Definition 5.3 A T -sketch S consists of a small [, Set]-category X, a family of →
diagram types D, and a D-indexed family of [→, Set]-functors φi : di −→ X. A
model of (X, φi) in a T -algebra (A, a) is a [, Set]-functor f : X −→ A such that →
the following diagrams commute:

di
ki � Tci

a T (fφiji)φi ·

X � A
f

If one began with algebraic structure (S, E), then this definition of model would
be expressible directly in terms of (S, E): the algebra (A, a) would be replaced by
(A, ν), and in the condition, the expression a T (fφj) would be replaced by ν(fφj),·
with the codomain of k replaced by Sωc as above.

Definition 5.4 Given a T -sketch S, the category Mod(S, (A, a)) is defined to be
the limit in Cat of the diagram with vertex [, Set]-Cat(X, A) and for each φi, two →
maps from [, Set]-Cat(X, A) to [, Set]-Cat(di, A), the first given by composition → →
with φi, the second given by first precomposing with φiji, then applying a T (), ·
then precomposing with ki : di −→ Tci.

The main result of [18] yields

15

Power and Tanaka

Theorem 5.5 Let T be a finitary 2-monad on [, Set]-Cat. Then for any T -sketch→
S, there is a model ι : S −→ Th(S) of S such that composition with ι induces an
isomorphism of categories from T –Alg(Th(S), (A, a)) to Mod(S, (A, a)).

We have expressed this result in terms of [, Set]-functors that strictly preserve →
structure, but it is fairly routine, by mild adaptation of the results of [2], to extend
it to [, Set]-functors preserving structure in the usual sense, i.e., to T –Algp.→

Example 5.6 Consider Example 5.2. In it, T is the 2-monad for small [, Set]­→
categories A for which A0 has finite products, and D has one element, giving one
cone. Let S be an arbitrary T -sketch with family of diagram types given by the
singleton D, i.e., a small [, Set]-category X together with a pair of objects of →
X. By Theorem 5.5, S freely generates a [, Set]-category A for which A0 has→
finite products, in particular having a product of the specified pair of objects of X.
Theorem 5.5 tells us that there an isomorphism of categories between the category
of models of S in any T -algebra (B, b) and the category of [, Set]-functors from →
A to B that strictly preserve the finite products of A0.

If we extend to arbitrary monads rather than 2-monads, the notion of T -sketch
allows one to speak of the free closed F reyd-category generated by a signature as
in Corollary 4.11 and the discussion preceding it. So, for instance, if one starts
with the λc-calculus and some basic types and terms such as those for the natural
numbers, we would let T be the monad on [, Set]-Cat for small closed F reyd­→
categories, and let S be the sketch determined by the given basic types and terms.
Then Th(S) would be the free closed F reyd-category determined by the base types
and terms, hence the free model for the λc-calculus with those types and terms.
See [14] for examples of sketches for monads on Cat and their use for modelling
signatures in call by name programming languages, and see [18] for more detail of
this idea.

6 Modelling Data Refinement

In this section, we finally model data refinement, extending the analysis of [15].
We assume we have a call by value language with models given by algebraic struc­
ture, equivalently a finitary monad T , on [, Set]-Cat, and that T extends F reyd­→
structure, which is used to model contexts. Examples are given by extensions of
the λc-calculus such as FPC [3] and call by value languages with nondetermin­

ism [1], and extensions of the first order fragment of the λc-calculus such as CPS-
languages [32].

For concreteness, we shall consider Set-based models: our results here do not
strictly require that, as all our results generalise by use of sconing [4,19,24]. As
outlined in Section 3, a good source of examples of semantic models for call by value
languages is given by taking a monad M on Set and considering the Kleisli category
of the monad. Every monad on Set has a unique strength, and Kleisli exponentials
always exist. So if we denote the Kleisli category by SetM , then SetM is a F reyd­
category (leaving Set and the canonical functor J : Set −→ SetM implicit by the
convention we mentioned in Section 3); in fact, it is a closed F reyd-category. We
assume that SetM has T -structure. That is true for example for FPC as Set has

16

Power and Tanaka

finite coproducts, and it is true for languages with nondeterminism [1] by choice of
M as given by a powerdomain.

We further assume we are given a signature (= T -sketch) Σ for a call by value
language. Extending our convention for the λc-calculus [15], and following Hoare’s
convention in his modelling of data refinement [6,16], we identify the language gen­
erated by Σ with Th(Σ), so for the purposes of this section, we denote Th(Σ) by
L : Lv −→ Le, the idea being that Lv denotes our category of values, and Le denotes
the category of arbitrary expressions.

Definition 6.1 A model N of L in SetM is a map of T -algebras from L to SetM .

We need to model relations between two models N and P of L. So, in principle,
we need to send a type σ, i.e., an object of L, to a relation Rσ from Nσ to Pσ.
We then need to add conditions to the effect that the structure of both Lv and Le

is respected. To put this in category theoretic terms, we first denote by Rel2 the
category for which an object consists of a triple (X, R, Y) where X and Y are sets
and R is a binary relation from X to Y , and where a map (f, g) : (X, R, Y) −→
(X �, R�, Y �) consists of functions f : X −→ X � and g : Y −→ Y � that respect the
relations. The category Rel2 has finite products, and that they are preserved by
the two projections to Set.

Proposition 6.2 Given a monad M on Set, the following data forms a F reyd­
category Rel2M together with a pair of strict F reyd-functors from Rel2M to SetM :

•	 the category Rel2

•	 the category Rel2M with the same objects as Rel2 but with an arrow from (X, R, Y)
to (X �, R�, Y �) given by maps f : X −→ MX � and g : Y −→ MY � such that there
exists a map h : R −→ MR� commuting with the projections, with the evident
composition

•	 the canonical functor J : Rel2 −→ Rel2M taking an object of Rel2 to itself and
taking an arrow (f, g) to its composite with the X �- and Y �-components of the
unit of M .

•	 the projections δ0, δ1 : Rel2M −→ SetM .

The functor J : Rel2 −→ Rel2M has a right adjoint and so Rel2M is the Kleisli
category for a monad on Rel2, but we do not use that fact. Observe that we make
no mention of T -structure beyond that for F reyd-structure for modelling contexts.

We do not assume that M preserves jointly monic pairs as it does not hold for
our nondeterminism example: a powerdomain is a construct for modelling nondeter­
minism, a slightly simplified version of one being the endofunctor on Set that sends
a set X to its set of finite subsets, Pf (X), with the operation of the endofunctor on
maps given by taking the image of each finite subset. A jointly monic pair in Set
amounts to a pair of sets (X, Y) together with a subset R of X × Y . Our point here
is that the set of finite subsets Pf (R) of R need not be exhibited by the functor
Pf as a subset of Pf (X) × Pf (Y), as for instance can be seen by taking X and Y
both to be two element sets with R their product. For notational simplicity, we
abbreviate Rel2M by RelM where the context is clear.

One could define a logical relation for L as a functor from L to RelM that strictly

17

� �

Power and Tanaka

preserves all the T -structure and commutes with the projections, providing RelM

has and the projections preserve T -structure. But that is not our immediate concern
here as logical relations need not compose, and we want composition in order to
model data refinement. So we now define lax logical relations. The central idea is
preservation of that structure required to model contexts, i.e., F reyd-structure.

Definition 6.3 A binary lax logical relation from N to P is a strict F reyd-functor
R : L −→ RelM such that (δ0, δ1)R = (N, P).

Our definition restricts to the notion of lax logical relation, or equivalently pre­
logical relation, in [15], [24], and [8] if M is the identity.

It is not automatically the case that a pointwise composite of binary lax logical
relations is again a binary lax logical relation. That requires an extra condition
on the monad M on Set. The central point is that we must consider when the
composite of two binary relations extends from Rel2 to Rel2M ; the condition we
need is that M weakly preserves pullbacks, i.e., that if

W
h

� X

k k�

Y � Z
h�

is a pullback, then the diagram

MW
Mh

� MX

Mk Mk�

� �
MY � MZ

Mh�

satisfies the existence part of the definition of pullback. This condition is the central
condition used to analyse functional bisimulation in [9] with several of the same
examples. Examples of such monads are powerdomains, S (S × −) for a set ⇒
S, as used for modelling side-effects, and similarly for monads used for modelling
partiality, or exceptions, or combinations of the above. It does not seem to hold of
the monad (− ⇒ R) R as has been used to model continuations; but that does ⇒
not concern us greatly, as data refinement for continuations seems likely to follow a
different paradigm to that adopted here anyway.

Theorem 6.4 Let M be a monad on Set that weakly preserves pullbacks. Then for
any lax logical relations R : L −→ RelM and S : L −→ RelM such that δ1R = δ0S,
the pointwise composite of relations yields a lax logical relation R S.◦

The proof of Theorem 6.4 is given by routine checking that the pointwise com­

posite satisfies the conditions required to be a lax logical relation. At one critical

18

Power and Tanaka

point in the proof, one uses the fact that strong epimorphisms in Set are retracts.
Unfortunately, the fact that a strong epimorphism is a retract seems unavoidable,
contrary to a remark in [15]. moreover, we cannot see any alternative that does not
require the condition but retains the same spirit as we have here. So this result ap­
pears not to extend to arbitrary toposes for example. But there seems no difficulty in
routinely extending the result to categories given by sconing [4,19,24]. There would
be more difficulty if we demanded that a lax logical relation preserve not merely
F reyd-structure but also the monad, as one would need a condition such as M
preserving strong epimorphisms, contradicting examples such as M = S ⇒ (S ×−).

We now give a generalised Basic Lemma for lax logical relations.

Theorem 6.5 (The Basic Lemma) To give a lax logical relation from N to P is to
give for each type σ of L, a relation

(4)	 Rσ ⊆ Nσ × Pσ

such that

(i)	 for every expression in context, Γ � e : σ, if xRΓ y, then N(Γ � e : σ)x is
related to P (Γ � e : σ)y by the relation generated by MRσ, and

(ii)	 if the expression e is a value, then if xRΓ y, one has the stronger result that
N(Γ � e : σ)xRσ P (Γ � e : σ)y

where xRΓ y is an abbreviation for xi Rσi yi for all i when σ1, , σn is the sequence · · ·
of types given by Γ.

Proof. For the forward direction, suppose Γ has sequence of types σ1, , σn. Since· · ·
R preserves F reyd-structure, xRΓ y implies xRσ1×···×σn y. The expression Γ � e : σ
is a map in L from σ1, , σn to σ, so R sends it to the unique map from Rσ1×···×σn· · ·
to Rσ that lifts (N(Γ � e : σ), P (Γ � e : σ)). The first part of the result is now
immediate as N and P strictly preserve F reyd-structure. The second part is similar.

For the converse, first taking Γ to be a singleton, the two conditions say that
the family Rσ extends, necessarily uniquely, to give graph morphisms from Le

to RelM and from Lv to Rel2. the former restricting to the latter, such that
(δ0, δ1)R = (N, P). Such a pair of graph morphisms trivially forms a [, Set]­→
functor as compositions and identities are preserved trivially. Taking Γ � e : σ
to be ∅ � ∗ : 1, where ∗ is the unique element of type 1, the second condition
yields ∗ R1 ∗, so R preserves the unit of the F reyd-structure. Taking Γ � e : σ
to be a : σ0, b : σ1 � (a, b) : σ0 × σ1 yields that if x0 Rσ0 y0 and x1 Rσ1 y1, then
(x0, x1) R(σ0×σ1) (y0, y1). And taking Γ � e : σ to be a : σ0 ×σ1 � πia : σi for i = 0, 1
gives the converse. So R strictly preserves F reyd-structure. �

Finally, we shall consider an example to see how this all works in practice.

Example 6.6 Consider the computational λ-calculus LStack generated by the data
for a stack. We have base types Stack and Nat, and we have base terms including
pop and push. The intended semantics of the unCurrying of pop is a partial function
from N(Stack) to N(Stack), with N(Stack) being the usual set of stacks. The
partiality of the intended semantics for pop is the reason we use the λc-calculus here
rather than the ordinary λ-calculus. Let N be the intended semantics for stacks in
Set⊥, where ⊥ is the usual lifting monad on Set. The functor ⊥ preserves pullbacks,

19

Power and Tanaka

so our composability result holds. Let P be a model of LStack in Set⊥ generated
by modelling stacks in terms of trees, so P (Stack) is the set of non-empty finite
trees. Define a logical relation from N to P by defining it on base types as the
identity on Nat and on Stack, by the usual relationship between stacks and trees.
This respects base terms, so it automatically lifts to higher types. We might further
define a model Q of LStack in Set⊥ by modelling stacks by lists of natural numbers.
We then have a logical relation S from P to Q generated by the identity on Nat and
on Stack, by relating finite trees with lists. Now taking the pointwise composite
R S, we have a lax logical relation from N to Q.◦

References

[1] Anderson,	 S. O., and A. J. Power, A representable approach to finite nondeterminism,
Theoretical Computer Science 177 (1997), 3–25.

[2] Blackwell, R., G. M.	 Kelly, and A. J. Power, Two-dimensional monad theory, J. Pure Appl.
Algebra 59 (1989), 1–41.

[3] Fiore, M., and G. D. Plotkin, An axiomatisation of computationally adequate domain-theoretic
models of FPC, “Proc LICS 1994,” IEEE Press, 1994, 92–102.

[4] Hermida,	 C. A., “Fibrations, Logical Predicates and Indeterminates,” Ph.D. thesis, The
University of Edinburgh, 1993, available as CST–103–93, also as ECS–LFCS–93–277.

[5] Hoare, C. A. R., Proof of correctness of data representations, Acta Informatica 1 (1972) 271–281.

[6] Hoare, C. A. R., “Data refinement in a categorical setting,” unpublished manuscript, 1987.

[7] Hoare, C. A. R., and H.	Jifeng, “Data refinement in a categorical setting,” Oxford University
Technical Mongraph PRG-90,1990.

[8] Honsell, F., and D. T. Sannella, Pre-logical relations, “Computer Science Logic 1999,” Lecture
Notes in Computer Science 1683 (1999), 546–561.

[9] Johnstone, P. T., A. J. Power, T. Tsujishita, H. Watanabe, and J. Worrell, An Axiomatics for
Categories of Transition Systems as Coalgebras, “ Proc LICS 1998,” IEEE Press, 1998, 207–213.

[10] Kelly,	 G. M., On Mac Lane’s conditions for coherence of natural associativities,
commutativities, etc., J. Algebra 1 (1964), 397–402.

[11] Kelly, G. M., “Basic concepts of enriched category theory,” Cambridge University Press, 1982.

[12] Kelly, G. M., Structures defined by finite limits in the enriched context I, Cahiers de Topologie
and Geometrie Differentielle 23 (1982), 3–41.

[13] Kelly, G. M., and A. J. Power,	Adjunctions whose counits are coequalizers, and presentations
of finitary enriched monads, J. Pure Appl. Algebra 89 (1993), 163–179.

[14] Kinoshita, Y., P.	 O’Hearn, A. J. Power, M. Takeyama, and R. D. Tennent, An Axiomatic
Approach to Binary Logical Relations with Applications to Data Refinement, “Proc TACS
1997,” Lecture Notes in Computer Science 1281 (1997), 191–212.

[15] Kinoshita, Y.,	 and A. J. Power, Data refinement for Call-by-value programming languages,
“Computer Science Logic 1999,” Lecture Notes in Computer Science 1683 (1999), 562–576.

[16] Kinoshita, Y., and A. J. Power, Data refinement and algebraic structure, Acta Informatica 36
(2000), 693–719.

[17] Kinoshita, Y., and A. J. Power, A general completeness result in refinement, “Recent Trends in
Algebraic Development Techniques,” Lecture Notes in Computer Science 1827 (2000), 201–218.

[18] Kinoshita, Y., A. J. Power, and M. Takeyama,	 Sketches, J. Pure Appl. Algebra 143 (1999),
275–291.

[19] Ma, Q., and J. C. Reynolds, Types, abstraction and parametric polymorphism 2, “Mathematical
Foundations of Computer Science 1991,” Lecture Notes in Computer Science 598 (1991), 1–40.

20

Power and Tanaka

[20] Mac Lane, S., “Categories for the working mathematician,” Graduate Texts in Mathematics 5,
Springer, 1971.

[21] Mitchell, J., “Foundations for programming languages,” Foundations of Computing Series, MIT
Press, 1996.

[22] Moggi, E., Computational Lambda-calculus and Monads, “Proc LICS 1989,” IEEE Press (1989),
14–23.

[23] Naumann, D. A., Data refinement, call by value, and higher order programs, Formal Aspects of
Computing 7 (1995), 752–762.

[24] Plotkin, G. D., A. J. Power, D. T. Sannella, and R. D. Tennent,	Lax logical relations, “Proc
ICALP 2000,” Lecture Notes in Computer Science 1853 (2000), 85–102.

[25] Power, A. J., Categories with algebraic structure, “Computer Science Logic 1997,” Lecture Notes
in Computer Science 1414 (1998), 389–405.

[26] Power,	 A. J., Premonoidal categories as categories with algebraic structure, Theoretical
Computer Science 278 (2002), 303–321.

[27] Power, A. J.,	 Generic models for computational effects, Theoretical Computer Science 364
(2006) 254–269.

[28] Power, A. J., and E. P.	Robinson, Premonoidal categories and notions of computation, Math.
Structures in Computer Science 7 (1997), 453–468.

[29] Power,	 A. J., and E. P. Robinson, Modularity and Dyads, Electronic Notes in Theoretical
Computer Science 20 (1999) 1–14.

[30] Power, A. J., and H. Thielecke, Environments, Continuation Semantics and Indexed Categories,
“Proc TACS 1997,” Lecture Notes in Computer Science 1281 (1997), 391–414

[31] Tennent, R.D.,	 Correctness of data representations in ALGOL-like languages, “A Classical
Mind, Essays in Honour of C.A.R. Hoare,” Prentice-Hall, 1994, 405–417.

[32] Thielecke, H.,	 Continuations semantics and self-adjointness, Electronic Notes in Theoretical
Computer Science 6 (1997).

21

	Introduction
	Modelling Call by Value Languages
	Modelling Contexts
	Modelling Type and Term Constructors
	Modelling Signatures
	Modelling Data Refinement
	References

