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Abstract 

11β-Hydroxysteroid dehydrogenases (11β-HSDs) are key enzymes regulating the pre-receptor 

metabolism of glucocorticoid hormones, which play essential roles in various vital physiological 

processes. The modulation of 11β-HSD type 1 activity with selective inhibitors has beneficial 

effects on various conditions including insulin resistance, dyslipidemia and obesity. Therefore, 

inhibition of tissue-specific glucocorticoid action by regulating 11β-HSD1 constitutes a 

promising treatment for metabolic and cardiovascular diseases. Here we report the discovery of a 

series of novel adamantyl carboxamides as selective inhibitors of human 11β-HSD1 in HEK-293 

cells transfected with the HSD11B1 gene. Compounds 9 and 14 show inhibitory activity against 

11β-HSD1 with IC50 values in 100 nM range. Docking studies with the potent compound 8 into 

the crystal structure of human 11β-HSD1 (1XU9) reveals how the molecule may interact with the 

enzyme and cofactor. 

 

Keywords:  Hydroxysteroid dehydrogenase; 11β-HSD1; Inhibitors; Adamantane; Diabetes; 

Obesity 

 

1. Introduction 

Glucocorticoid hormones play essential roles in various vital physiological processes, 

including regulation of carbohydrate, lipid and bone metabolism, modulation of inflammatory 

responses and stress. It has been indicated that excessive glucocorticoid action in many aspects is 

associated with insulin and leptin resistance, leading to the development of obesity, type 2 

diabetes and metabolic syndrome (Oppermann, 2006).  Glucocorticoid actions depend on both the 

binding to glucocorticoid receptors (GRs) and the pre-receptor metabolism of the ligand cortisol 

and its precursor cortisone. It is well known that the pre-receptor metabolism process is mediated 

by 11β-HSDs, which are microsomal enzymes from the short-chain dehydrogenases/reductases 
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superfamily. Currently, two different 11β-HSD isozymes (11β-HSD1 and 11β-HSD2) have been 

reported in humans (Tomlinson et al., 2004). The 11β-HSD1 isoform, highly expressed in liver 

and adipose tissue, converts cortisone to the active glucocorticoid cortisol, therefore locally 

amplifying the glucocorticoid action in specific tissues (Fig. 1). Clinical data suggest that 

inhibition of 11β-HSD1 with a non-selective inhibitor increases hepatic insulin sensitivity along 

with decreased glucose production (Walker et al., 1995).  It is also shown that the modulation of 

11β-HSD1 activity with selective inhibitors has beneficial effects on various conditions including 

insulin resistance, dyslipidemia and obesity (Hermanowski-Vosatka et al., 2005). Recently, the 

positive proof-of-concept results from a 28-day phase IIa clinical trial with the potent 11β-HSD1 

inhibitor INCB013739 were reported by Incyte. It is indicated that treatment of type 2 diabetes 

mellitus patients with INCB013739 for 28 days significantly improved hepatic and peripheral 

insulin sensitivity and reduced fasting plasma glucose, plasma low density lipoprotein- and total-

cholesterol levels (Hawkins et al, 2008).  Therefore, inhibition of tissue-specific glucocorticoid 

action by regulating 11β-HSD1 constitutes a promising treatment for metabolic and 

cardiovascular diseases (Hughes et al, 2008; Su et al., 2008).  

 

(Insert Figure 1) 

 

To discover new inhibitors of 11β-HSD1 an ongoing project in our group involves the 

structure based drug design of novel compounds and evaluation of their inhibitory activity against 

human 11β-HSD1. Our previous studies indicated that some aryl sulphonamide and aryl 

carboxamide derivative possess moderate inhibitory activity on purified human 11β-HSD1. 

Compounds 1 and 2 (Fig. 2) exhibited inhibition of human hepatic microsomal 11β-HSD1 with 

IC50 values in the low micromolar range (Su et al., 2006; Vicker et al 2007). It is important to 

have an array of structural types of 11β-HSD1 inhibitors as the physicochemical properties of the 
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compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here 

we report the discovery and the structure-activity relationships of some adamantyl carboxamide 

compounds as novel, potent and selective inhibitors of 11β-HSD1 in a HEK-293 cell line.   

 

(Insert Figure 2) 

 

2. Methods 

2.1 Synthesis of target compounds (3-14)  

Compounds 3-14 were synthesized from 1-adamantyl carbonyl chloride or 1-adamantyl acetic 

acid through an amide coupling reaction with various amines under standard conditions (Vicker 

et al., 2006). Melting points were determined using a Stanford Research Systems Optimelt and 

are uncorrected. 1H NMR spectra were recorded with a JEOL Delta 270 spectrometer and 

chemical shifts are reported in parts per million (ppm, δ) relative to tetramethylsilane (TMS) as 

an internal standard. LC/MS spectra were obtained on a Waters Micromass ZQ with Atmospheric 

Pressure Chemical Ionization (APCI). High resolution mass spectra were recorded on a Bruker 

MicroTOF with Electrospray Ionisation (ESI). HPLC analyses were performed on a Waters 

Millennium 32 instrument equipped with a Waters 996 PDA detector, using a Symmetry C18 

reverse phase column (4.6 x 150 mm) eluting with 10% H2O/MeCN.  

General method A: To a solution of 1-adamantyl carbonyl chloride (0.26 mmol) in 

dichloromethane (DCM, 5 mL) was added triethylamine (0.1 mL), followed by the corresponding 

amine (0.25 mmol). The reaction mixture was stirred at ambient temperature under nitrogen 

overnight.  Polymer supported trisamine (4.1 mmol/g, 100 mg) was added; the mixture was 

stirred at room temperature for 2 h, filtered and concentrated in vacuo to give the crude product. 

Purification by flash chromatography gave the adamantyl carboxamide.  
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General method B: To a solution of the 1-adamantane acetic acid (0.5 mmol) in DCM (8 mL) 

were added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI, 0.6 mmol), 4-

(dimethylamino) pyridine (DMAP, 10 mg) and triethylamine (0.1 mL) at room temperature. After 

stirring for 0.5 h, the corresponding amine (0.5 mmol) was added to the reaction mixture. After 

12 h the mixture was partitioned between DCM and brine and the organic layer was washed with 

brine, dried over MgSO4 and concentrated in vacuo. The crude product was purified with flash 

chromatography to give the adamantyl acetamide.  

 

(Insert Scheme 1) 

 

N-(4-Chloro-2-methyl-1,3-benzothiazol-5-yl)adamantane-1-carboxamide (3). The compound 

was prepared using general method A to give a white solid in 53% yield. mp 183.5-185.5 °C; 1H 

NMR (CDCl3) δ  1.78 (6H, m), 2.03 (6H, d, J = 3.0 Hz), 2.12 (3H, s), 2.86 (3H, s), 7.68 (1H, d, J 

= 8.9 Hz), 8.12 (1H, s) and 8.50 (1H, d, J = 8.9 Hz); LC/MS (APCI) m/z 361 (M+H)+; HRMS 

(FAB) calcd. for C19H22ClN2OS (M+H)+ 361.1141, found 361.1147; HPLC tR 3.90 min (>99%).  

N-[2-(Thiophen-2-yl)ethyl]adamantane-1-carboxamide (4). The compound was prepared 

using general method A to give a white solid in 78% yield. mp 123-126 °C; 1H NMR (CDCl3) δ  

1.69 (6H, m), 1.80 (6H, d, J = 2.8 Hz), 2.01 (3H, s), 3.01 (2H, t, J = 5.9 Hz), 3.49 (2H, q, J = 6.1 

Hz), 5.73 (1H, broad), 6.81 (1H, m), 6.95 (1H, dd, J = 5.1, 1.0 Hz) and 7.16 (1H, dd, J = 5.2, 1.2 

Hz); LC/MS (APCI) m/z 290 (M+H)+; HRMS (ESI) calcd. for C17H24NOS (M+H)+ 290.1579, 

found 290.1576; HPLC tR 2.65 min (>99%).  

N-(Thiophen-2-ylmethyl)adamantane-1-carboxamide (5). The compound was prepared using 

general method A to give a white solid in 87% yield. mp 155-155.5 °C; 1H NMR (CDCl3) δ  1.70 

(6H, m), 1.86 (6H, d, J = 3.0 Hz), 2.03 (3H, s), 4.60 (2H, d, J = 5.6 Hz), 5.88 (1H, broad), 6.93 
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(2H, m) and 7.21 (1H, dd, J = 3.0, 1.0 Hz); LC/MS (APCI) m/z 276 (M+H)+; HRMS (ESI) calcd. 

for C16H22NOS (M+H)+ 276.1422, found 276.1422; HPLC tR 2.52 min (>99%).  

N-Methyl-N-[2-(thiophen-2-yl)ethyl]adamantane-1-carboxamide (6). The compound was 

prepared using general method A to give a white solid in 60% yield. mp 95-99 °C; 1H NMR 

(CDCl3) δ 1.67 (6H, m), 2.00 (9H, broad), 3.02 (3H, s), 3.06-3.09 (2H, m), 3.61 (2H, t, J = 7.4 

Hz), 6.81-6.82 (1H, m), 6.92 (1H, dd, J = 3.2, 5.0 Hz), 7.13 (1H, dd, J = 1.0, 5.0 Hz); LC/MS 

(APCI) m/z 304 (M+H)+; HRMS (ESI) calcd. for C18H26NOS (M+H)+ 304.1735, found 304.1718; 

HPLC tR 3.22 min (98%).  

N-Methyl-N-(thiophen-2-ylmethyl)adamantane-1-carboxamide (7). The compound was 

prepared using general method A. Colourless thick oil was obtained in 81% yield. 1H NMR 

(CDCl3) δ  1.71 (6H, m), 2.03 (9H, s), 3.07 (3H, s), 4.73 (2H, s), 6.90-6.95 (2H, m) and 7.21 (1H, 

dd, J = 4.4, 1.7 Hz); LC/MS (APCI) m/z 290 (M+H)+; HRMS (ESI) calcd. for C17H24NOS 

(M+H)+ 290.1579, found 290.1575;HPLC tR 3.89 min (97%).  

2-Adamantan-1-yl-N-methyl-N-thiophen-2-ylmethyl-acetamide (8). The compound was 

prepared using general method B to give a in 68% yield. mp 107-109 °C; 1H NMR (CDCl3) δ  

1.62-1.77 (12H, m), 2.00 (3H, broad), 2.19 (2H, s), 3.00 (3H, s), 4.52 (2H, s), 6.95 (2H, m) and 

7.23 (1H, dd, J = 5.0, 1.3 Hz); LC/MS (APCI) m/z 304 (M+H)+; HRMS (ESI) calcd. for 

C18H26NOS (M+H)+ 304.1735, found 304.1726; HPLC tR 4.04 min (>99 %).  

N-Methyl-N-(thiophen-3-ylmethyl)adamantane-1-carboxamide (9). The compound was 

prepared using general method A to give a colourless oil in 86% yield. 1H NMR (CDCl3) δ  1.70 

(6H, s), 2.03 (9H, s), 3.00 (3H, s), 4.63 (2H, s), 6.95 (1H, dd, J = 4.9, 1.2 Hz), 7.05 (1H, dd, J = 

3.0, 1.2 Hz) and 7.27 (1H, dd, J = 4.9, 3.0 Hz); LC/MS (APCI) m/z 290 (M+H)+; HRMS (ESI) 

calcd. for C17H23NOS (M+H)+ 290.1579, found 290.1566; HPLC tR 6.87 min (>99 %).  

2-(Adamantan-1-yl)-N-methyl-N-(thiophen-3-ylmethyl)acetamide (10). The compound was 

prepared using general method B to give a white solid in 49% yield. mp 69-71 °C; 1H NMR 
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(CDCl3) signals from rotamers in 2:1 ratio δ 1.55-1.75 (12H, m), 1.95 (3H, broad), 2.16 (2H, s), 

2.95 (3H, s), 4.57 (2H, s), 7.02 (1H, m), 7.11 (1H, m) and 7.26 (1H, m); δ  1.55-1.75 (12H, m), 

1.95 (3H, broad), 2.19 (2H, s), 2.92 (3H, s), 4.54 (2H, s), 6.91 (1H, m), 7.02 (1H, m) and 7.33 

(1H, m); LC/MS (APCI) m/z 304 (M+H)+; HRMS (ESI) calcd. for C18H26NOS (M+H)+ 304.1735, 

found 304.1718; HPLC tR 2.90 min (>99 %).  

5-(Adamantan-1-ylcarbonyl)-4H,5H,6H,7H-thieno[3,2-c]pyridine (11). The compound was 

prepared using general method A to give a white solid in 33% yield. mp 141-143 °C; 1H NMR 

(CDCl3) δ  1.72 (6H, s), 2.02 (9H, s), 2.88 (2H, t, J = 4.6 Hz), 3.94 (2H, t, J = 4.5 Hz), 4.69 (2H, 

s), 6.79 (1H, d, J = 5.2 Hz) and 7.11 (1H, d, J = 5.2 Hz); LC/MS (APCI) m/z 302 (M+H)+; HRMS 

(ESI) calcd. for C18H24NOS (M+H)+ 302.1579, found 302.1573; HPLC tR 3.24 min (>99 %).  

N-(Furan-2-ylmethyl)-N-methyladamantane-1-carboxamide (12). The compound was 

prepared using general method A to give a white solid in 95% yield. mp 53.5-54.5 °C; 1H NMR 

(CDCl3) δ  1.70 (6H, s), 2.02 (9H, s), 3.06 (3H, s), 4.59 (2H, s), 6.19 (1H, dd, J = 3.2, 0.7 Hz), 

6.31 (1H, dd, J = 3.2, 1.7 Hz) and 7.33 (1H, dd, J = 1.7, 0.7 Hz); LC/MS (APCI) m/z 274 (M+H)+; 

HRMS (ESI) calcd. for C17H24NO2 (M+H)+ 274.1807, found 274.1794; HPLC tR 6.14 min (>99 

%).  

N-[(1-Methyl-1H-pyrrol-2-yl)methyl]adamantane-1-carboxamide (13). The compound was 

prepared using general method A to give a white solid in 76% yield. mp xxx; 1H NMR (CDCl3) δ  

1.58-1.75 (6H, m), 1.83 (6H, d, J = 2.8 Hz), 2.02 (3H, broad), 3.53 (3H, s), 4.42 (2H, d, J = 5.2 

Hz), 5.60 (1H, broad), 6.05 (2H, d, J = 2.2 Hz) and 6.65 (1H, t, J = 2.2 Hz); LC/MS (APCI) m/z 

271 (M-H)+; HRMS (ESI) calcd. for C17H24N2NaO (M+Na)+ 295.1786, found 295.1768; HPLC tR 

2.67 min (>99%).  

N-Methyl-N-[(1-methyl-1H-pyrrol-2-yl)methyl]adamantane-1-carboxamide (14 XDS04112, 

STX2133). The compound was prepared using general method A to give a white solid in 87% 

yield. mp 104-105.5 °C; 1H NMR (CDCl3) δ  1.76 (6H, s), 2.02 (9H, s), 3.02 (3H, s), 3.50 (3H, s), 
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4.61 (2H, s), 6.03 (2H, d, J = 2.3 Hz) and 6.58 (1H, t, J = 2.2 Hz); LC/MS (APCI) m/z 287 

(M+H)+; HRMS (ESI) calcd. for C18H27N2O (M+H)+ 287.2123, found 287.2108; HPLC tR 6.58 

min (>99 %).  

 
2.2. 11β-HSD1 Scintillation Proximity Assay (SPA) Protocol: Human Cell Based Assay 

Untransfected HEK-293 cells lack endogenous 11β-HSD1 activity and this cell line has been 

shown to be a suitable system for evaluating 11β-HSD1 activity after being transfected with the 

plasmid for expression of 11β-HSD1 or 11β-HSD2 (Schweizer et al., 2003).  The high-

throughput cell-based assays were conducted on the human 11β-HSD1 transfected HEK-293 cell 

line with an SPA (Vicker et al., 2006). The activity of 11β-HSD1 is measured in whole HEK-293 

cells stably transfected with the HSD11B1 gene using modified literature protocols (Schweizer et 

al., 2003). Cells are incubated in 96-well microplates in the presence of tritiated substrate. 

Enzyme activity is determined by measuring the amount of tritiated product by SPA. Assay plates 

contain internal high and low controls to allow calculation of percentage inhibition. Each well of 

a 96-well culture plate is seeded with HEK293/HSD11B1 cells in 100 µL medium. When the 

cells are 80% confluent the medium is removed from each well. Then 100 µL fresh, serum-free 

medium containing 3H-cortisone and test compound in 1% DMSO is added to each well, 

including control wells. High control wells do not contain compound, while low controls do not 

contain cells. The plate is incubated at 37 ºC for the required time period, after which, 50 µL of 

media is removed from each well and transferred to a microplate containing 100 µL of a pre-

incubated mixture of anti-cortisol antibody and SPA bead (Fig.3). The mixture is incubated with 

gentle shaking until equilibrium is reached, before transferring to a scintillation counter to 

establish the enzyme activity in each sample. 

 

(Insert Figure 3) 
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3. Molecular Modelling 

The crystal structure of one subunit of human 11β-HSD1 (IXU9) from the Protein Data Bank was 

used in docking studies with the cofactor NADP+ present (Hosfield et al., 2005; Berman et al., 

2000).  The docking studies of compound 8 were performed with GOLD, version 3.1.1. Fifteen 

docks were performed and the GOLDscore fitness function was used to rank the docked 

conformations. The top three highest ranked docks were virtually identical with the top scored 

dock. A similar study was also performed with the substrate; the docked conformations are 

depicted in figure 4 below. The key residues involved in catalysis, Ser170 and Tyr183 in the 

active site, together with the cofactor are shown. It can be seen that the substrate and inhibitor 

dock in similar positions with the 11-keto carbonyl of cortisone and the carbonyl of the 

carboxamide in close proximity to the hydroxyl of Tyr183 and the pro (S) hydrogen of the co-

factor which is transferred during the substrate reduction. The distance between the oxygen of 

Tyr183 and the 11-keto carbonyl of cortisone and the carboxamide carbonyl are ~ 2.8 Ǻ and 2.3 

Ǻ respectively. The adamantyl moiety is buried deep in the binding pocket forming favourable 

hydrophobic interactions with the side chains of Thr124, Ala223 and Ile121, whereas the 

thiophenyl ring stays close to the opening of the pocket, and interacts with the side chain of 

Leu126, Tyr177 and Val180. Clearly the inhibitor fits very well into the substrate pocket of the 

active site. 

 

(Insert Figure 4a and 4b) 

 

4. Results and Discussion 

       Our previous studies indicated that some aryl sulphonamide and aryl carboxamide 

derivatives possess moderate inhibitory activity on purified human 11β-HSD1. Compounds 1 and 

2 (Fig. 2) exhibited inhibition of human hepatic microsomal 11β-HSD1 with IC50 values in the 
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low micromolar range (Su et al., 2006; Vicker et al 2007). However, these compounds showed 

only < 50% inhibition at 10 μM concentration when tested in HEK-293 cells transfected with 

human 11β-HSD1. The highly hydrophobic adamantyl carboxamide moiety was used to replace 

the aryl carboxamide or sulphonamide group in these molecules which led to a slightly increased 

activity. Compound 3 exhibited inhibitory activity on the HEK-293 cell line with an IC50 value of 

5280 nM, which provided a springboard for further optimisation. The replacement of the 

substituted benzothiazole ring in 3 with a 2-thiophenyl group attached to a flexible two-carbon 

tether gave 4 with an IC50 value of 679 nM, an 8-fold increase of activity. Further modification of 

4 with the linker reduced by one methylene unit or N-methylation generated compound 5 or 6 

with 1.5-fold improvement of activity. The combination of these modifications gave 7 with an 

IC50 of 229 nM, a further 3-fold increase of potency over 4. Introducing a methylene unit between 

the adamantyl moiety and the carbonyl group gave 8 with no improvement in activity over 7. The 

cyclised compound 11 with limited flexibility in the linker lost activity by 2-fold in comparison 

with 7. On the other hand, replacing the 2-thiophenyl group in 7 with a 3-thiophenyl group 

resulted in compound 9 with an IC50 of 125 nM, an increase of activity by 2-fold; whereas its 

analogue 10 with an extra methylene unit between the adamantyl and carbonyl group only 

showed an IC50 of 350 nM. The substitution of the 2-thiophenyl group in 7 with a furanyl group 

retained the activity at the same level; whereas the substitution with N-methylpyrrole gave the 

most potent compound 14 in the series with an IC50 of 113 nM. The effect of N-methylation of 

the carboxamide group is significant when comparing 14 with 13, improving the potency by 15-

fold. The most potent inhibitor 14 is ~50 fold more active than the initial lead compound 3. These 

novel inhibitors are also selective over 11β-HSD2. Compounds 5 and 7 exhibited moderate 

metabolic stability on human liver microsomes. Furthermore, they do not inhibit the key CYP’s 

1A2, 3A4BQ, 2D6, 2C9, 2C19 and have IC50 values of ~ 10 µM for the inhibition of CYP 
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3A4BFC. Compound 5 was also tested on apical to basolateral transport across CaCo2 (TC7) 

monolayers; the result showed a high Papp rank indicating good permeability. 

 

(Insert Table 1) 

 

5. Conclusions  

      Here we report the discovery of adamantyl carboxamide derivatives as novel potent selective 

inhibitors of human 11β-HSD1. The target compounds were synthesised through an amide 

formation reaction and their ability to inhibit human 11β-HSD1 was evaluated on a HEK-293 cell 

line stably transfected with the HSD11B1 gene. The SAR studies indicate that an adamantyl 

carboxamide linking to an aromatic system, such as thiophene, furan or N-methyl pyrrole through 

a methylene unit can lead to potent novel selective inhibitors of 11β-HSD1. N-Methylation of the 

carboxamide group significantly improves inhibitory activity. Potent compounds 9 and 14 inhibit 

human 11β-HSD1 with the IC50 values in 100 nM range, a 50-fold increase over the initial lead 

compound. Docking studies with compound 8 into the crystal structure of human 11β-HSD1 

reveal how the molecule may interact with the enzyme and cofactor. Compounds 7 and 14 show 

properties as candidates worthy of further preclinical investigation. In addition to being selective 

over human 11β-HSD2, compounds 7 and 14 are inactive on human 17β-hydroxysteroid 

dehydrogenase type 1.  Furthermore, they are also potent on murine 11β-HSD1 and are currently 

under in vivo evaluation in a C57BL/C mouse model. 
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      Figure 1.  Interconversion of cortisone - cortisol  

 

 

 

 

 

 

 

 

 

           Figure 2.  Structures of inhibitors of human 11β-HSD1  
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                 Figure 3.  11β-HSD1 Scintillation Proximity Assay (SPA) assay principle 
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Figure 4a.  Compound 8 in magenta docked into 1XU9 in the presence of NADP+. The protein 

surface is colour mapped to show a gradient from amino acid residues that are electron donors in 

brown, through to hydrophobic areas in green and electron acceptors in blue.  
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Figure 4b.  Cortisone in magenta docked into 1XU9 in the presence of NADP+. The protein 

surface is colour mapped to show a gradient from amino acid residues that are electron donors in 

brown, through to hydrophobic areas in green and electron acceptors in blue.  
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               Scheme 1: Synthesis of 1-adamantyl carboxamide or acetamide derivatives 

              Reagents and Conditions:  a)  X=Cl,  R1R2NH, Et3N/DCM;   

                                                         b)  X=OH,  R1R2NH, EDCI, DMAP, Et3N/DCM 
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                      Table 1. Inhibition of Human 11β-HSD1 in HEK-293 Cells 

Cpd R1 R2 n IC50 (nM)  

3 

 

H 0 5280 

4 
 

H 0 679 

5 
 

H 0 403 

6 
 

CH3 0 448 

7 
 

CH3 0 229 

8 
 

CH3 1 308 

9 
 

CH3 0 125 

10 
 

CH3 1 350 

11 
 

0 435 

12 
 

CH3 0 249 

13 

 

H 0 1700 

14 

 

CH3 0 113 

                    * indicating the point of attachment. 

                   

 19


