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EVOLUTION IN A HOST-PARASITE SYSTEM

N F BRITTON

Department of Mathematical Sciences
and Centre for Mathematical Biology,

University of Bath, UK
e-mail n.f.britton@bath.ac.uk

Some organisms employ multiple defence strategies against their ene-
mies, while others fail to employ a defence that seems obvious. We shall
investigate three questions for host-parasite systems.

(1) Under what circumstances does it pay for a host to employ a given
defence strategy against one of its parasites?

(2) If alternative strategies are available, how is the appropriate strat-
egy chosen?

(3) When is it appropriate to employ multiple defence strategies against
an enemy?

We shall illustrate our results in two cases of brood parasites and their
hosts. The paper by Britton et al. (2007) contains more background details
on the basic model and the analysis but the extensions to the model and
some of the results are new.

1. Introduction

1.1. General introduction

Flax (Linum usitatissimum) has twenty-six defensive genes conferring re-
sistance to flax rust (Melampsora lini), but each such gene is countered by
an attacking gene in the rust (Flor 1956). This situation may have come
about through an arms race (Dawkins and Krebs, 1979), a succession of de-
fensive gambits in the flax each countered by the rust, in a process known
as gene-for-gene coevolution.
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Passion-vines (Passifloraceae) produce toxic compounds as a general
defence against herbivores. Heliconius butterfly larvae have overcome these,
and the passion-vines employ more specialised defence strategies, such as
hooks to immobilise Heliconius larvae and structures that mimic Heliconius
eggs, against them (Gilbert 1983). This seems to be another example of an
arms race.

Swollen-thorn acacias have a mutualistic relationship with ants; they
provide shelter to the ants within their thorns, and in return the ants deter
herbivores from eating the acacia (Janzen 1966). Other acacias synthesis
toxic cyanogenic glycosides to deter herbivores, but none does both, and so
no arms race seems to have taken place in this case (Rehr et al. 1973).

Several vertically transmitted bacterial symbionts provide resistance in
pea aphids (Acyrthosiphon pisum) against the parasitoid wasp Aphidius
ervi, but are only seen at intermediate frequencies in natural populations.
Any one pea aphid very rarely harbours more than one species of bacterial
symbiont, so multiple strategies are very rarely employed (Oliver et al.
2003). Again, no arms race has occurred here.

Hedgehogs (small spiny mammals of the subfamily Erinaceinae and
the order Erinaceomorpha) have two alternative defence strategies to their
predators, to run or to roll up into a ball. These are true alternatives: it is
not possible to employ both these strategies at once.

1.2. Rare enemy effect and strategy-blocking

Co-evolutionary arms races seem to occur in some cases but not in others.
Dawkins (1982) introduced the concept of the rare-enemy effect, arguing
that because there are costs involved in any adaptation, it is not advanta-
geous to develop a defence against a rare enemy. This may explain the lack
of an arms race in some cases. In the example of brood parasites that we
shall consider later the enemy is not particularly rare, but we shall show
that when there are two possible defence strategies that may be deployed
by a host against a parasite, each of which is advantageous on its own,
an extension of the rare-enemy effect may be used to understand when a
combination of the two is advantageous. One strategy may prevent the
appearance of the other, a phenomenon we shall call strategy-blocking.

1.3. Brood parasite natural history

A general treatment of this area is given in Davies (2000). Brood-parasitic
birds lay their eggs in the nest of another bird, the host; if the parasitism
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is successful the host raises the parasite offspring to independence. Many
brood-parasitic chicks, when they hatch, eject all host eggs or chicks from
the nest, so that they are raised alone. The following questions arise.

• Is it evolutionarily advantageous for a host to defend itself against
a brood parasite?

• In particular, is it advantageous for the host to develop a strategy
for ejecting brood-parasitic eggs from its nest?

• Is it advantageous for the host to develop a strategy for ejecting or
deserting brood-parasitic chicks in its nest?

The archetypal Old-World brood parasite is the Eurasian cuckoo (Cucu-
lus canorus), which parasitises several host species. Reed warblers (Acro-
cephalus scirpaceus) often recognise cuckoo eggs and reject them. In re-
sponse to this, cuckoos lay eggs that mimic those of the reed warbler. On
the other hand reed warblers never recognise cuckoo chicks, and will raise
them as their own. The first stage of an arms race has taken place, but not
the second. Dunnocks (Prunella modularis) do not even recognise cuckoo
eggs, which are quite unlike dunnock eggs. Not even the first stage of the
arms race has occurred. In Australia, superb fairy-wrens (Malurus cya-
neus) fail to recognise the eggs of their brood parasites, Horsfield’s bronze-
cuckoo (Chrysococcyx basalis), but do sometimes desert their nest once the
bronze-cuckoo chick has ejected all their offsring. They and reed warblers
use alternative rejection strategies. There is no known example of a host
species that rejects both the eggs and the chicks of its brood parasite. A
very simple explanation of this fact could be that in no case has sufficient
evolutionary time passed for both rejection behaviours to evolve. In this
paper we shall ask whether a deeper reason exists.

2. Modelling

2.1. Monomorphic populations

Our model is based on the archetypal Nicholson–Bailey (1935) model for a
host-parasitoid system in discrete time:

P ′ = c(1− f(P ))H, H ′ = RHf(P ),

where P and H are the numbers in the parasitoid and host populations, R
is the basic reproductive ratio of the host population, f(P ) is the fraction
of hosts that escape parasitism, c is the mean number of parasitoids from
each parasitised host that survive to breed, and there is no survival between
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generations. An acknowledged problem with this model is a lack of self-
limitation, with consequent unlimited oscillatory growth of the populations,
and we shall introduce self-limitation into the host population only, for
simplicity. To adapt the model for brood parasites we also require survival
between seasons. The equations become

P ′ = (1− µ)P + c(1− f(P ))H,

H ′ = HΨ(H)(1− ν +Rf(P )).

where Ψ is the self-limitation function, e.g. Ψ(H) = 1/(1 + H/k), and µ

and ν are the annual probabilities of death of parasites and hosts in the
absence of density-dependent effects. Note that the host steady state H∗ in
the absence of parasitism is given by H∗ = k(R−ν), an increasing function
of k, which may therefore be thought of as the richness of the environment.

Defence is not taken into account in the models above. Let a fraction
1− g of parasitised hosts successfully defend themselves against parasitism
(and hence produce hosts in the next season), leaving a fraction g that fail
to do so (and hence produce parasites in the next season). Let this defence
be cost-free. The equations become

P ′ = (1− µ)P + cg(1− f(P ))H,

H ′ = HΨ(H) (1− ν +Rf(P ) +R(1− g)(1− f(P )) .

Defence costs are of two kinds. Parasite-independent costs are incurred
whether or not the parasite is present. It costs to have an immune system,
whether or not it is ever used to fight off a disease. If a host defends
against brood parasites by ejecting eggs that it believes to be parasitic, it
will occasionally make a false-positive identification error and eject one of
its own eggs, even if no parasite is present. Parasite-dependent costs are
only incurred when the parasite is present. One example is the cost of
fighting off a microparasitic disease. In the brood parasite case, a strategy
of rejecting the parasitic chick is costly if that chick has time to eject host
brood before it is rejected.

Incorporating the cost of defence into the model for brood parasites, the
equations become

P ′ = (1− µ)P + cg(1− f(P ))H,

H ′ = Ψ(H)Hw(P ),

where the relative fitness function w is given by

w(P ) = 1− ν +Rθf(P ) + (1− g)Rφ(1− f(P )).
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Here φ and θ are pay-offs relative to non-defending hosts with and
without parasitism, taking into account parasite-dependent and parasite-
independent costs.

2.2. Dimorphic populations

It is straightforward to generalise the model to two parasite and two host
types. The equations become

P ′0 = (1− µ0)P0 + c00g00f̄00(P0, P1)H0 + c01g01f̄01(P0, P1)H1,

P ′1 = (1− µ1)P1 + c10g10f̄10(P0, P1)H0 + c11g11f̄11(P0, P1)H1,

and

H ′0 = Ψ0(H0, H1)H0w0(P0, P1),

H ′1 = Ψ1(H0, H1)H1w1(P0, P1),

where wi(P0, P1) is the relative fitness of type i, and

wi(P0, P1) = 1− νi +Rθifi(P0, P1)

+ (1− g0i)Rφ0if̄0i(P0, P1) + (1− g1i)Rφ1if̄1i(P0, P1).

Here

f̄ji(P0, P1) = P {Hi is parasitised by Pj} ,

fi(P0, P1) = P {Hi is not parasitised by P0 or P1} ,

so

fi(P0, P1) = 1− f̄0i(P0, P1)− f̄1i(P0, P1).

The simplest model generalises f(P ) = e−aP in Nicholson–Bailey:

f̄ji(P0, P1) =
Pj

P0 + P1
(1− exp(−a(P0 + P1)))

fi(P0, P1) = exp(−a(P0 + P1)).

The costs of counter-attack may be encoded in the cij parameters.
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2.3. Some extensions of the model

2.3.1. Continuous trait values

In some cases strategies are better described by continuous variables, e.g. to
quantify how much resource is devoted to defence (for hosts) or attack (for
parasites). Let the parasite trait value be x ∈ [0, 1], and the host trait value
y ∈ [0, 1]. Let P (x) and H(y) be densities of parasite and host populations
in terms of their trait values. With some simplifications, this leads to the
following system of integro-difference equations:

P (x)′ = (1− µ)P (x) + c
1− f(‖P‖)
‖P‖

P (x)
∫ 1

0

g(x, y)H(y)dy,

where ‖P‖ =
∫ 1

0
P (x)dx, f(‖P‖) = exp(−a‖P‖) (in the simplest model),

with

H(y)′ = Ψ(y,H)H(y)w(y, P ),

and

w(y, P ) = 1− ν +Rθ(y)f(‖P‖)

+Rφ(y)
1− f(‖P‖)
‖P‖

∫ 1

0

(1− g(x, y))P (x)dx;

w(y, P ) is the relative fitness of host y in an environment of parasites P .
Much of the bifurcation analysis that we describe later can be extended

to this system, but we shall not do this here.

2.3.2. Inclusion of mutation

Let an offspring of a parasite of type ξ be of type x with probability density
M(x, ξ), where

∫ 1

0
M(x, ξ)dx = 1, M typically positive and symmetric, and

similarly for host mutation. Define P̂ , offspring in the absence of mutation,
by

P̂ (x) = c
1− f(‖P‖)
‖P‖

P (x)
∫ 1

0

g(x, y)H(y)dy,

With mutation, the equation becomes

P (x)′ = (1− µ)P (x) +
∫ 1

0

M(x, ξ)P̂ (ξ)dξ.
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Similarly for host mutation, with kernel N(y, η):

Ĥ(y) = Rθ(y)f(‖P‖)H(y)

+Rφ(y)
1− f(‖P‖)
‖P‖

H(y)
∫ 1

0

(1− g(x, y))P (x)dx,

H(y)′ = Ψ(y,H)
(

(1− ν)H(y) +
∫ 1

0

N(y, η)Ĥ(η)dη
)
.

We again have a system of integro-difference equations, but now with double
integrals. Again, many results may be extended to this case, but we shall
not do this here.

3. Analysis

We return to the essentially ecological model for two parasite types and
two host types, with some simplifications,

P ′i = (1− µ)Pi + cgi0f̄i0(P0, P1)H0 + cgi1f̄i1(P0, P1)H1,

H ′i = Ψ(H)Hiwi(P0, P1),

with H = H0 +H1 (host types ecologically identical), and with

wi(P0, P1) = 1− ν +Rθifi(P0, P1)

+ (1− g0i)Rφ0if̄0i(P0, P1) + (1− g1i)Rφ1if̄1i(P0, P1).

For the results in this article, all we need is to consider invasion eigenvalues.
As an example, consider whether a mutant H1 employing strategy 1 will
invade a steady state (P ∗0 , 0, H

∗
0 , 0) consisting of hosts and parasites all

employing strategy 0. Linearising about this steady state, H1 will invade if

λ = Ψ(H∗0 )w1(P ∗0 ) > Ψ(H∗0 )w0(P ∗0 ) = 1,

or w1(P ∗0 ) > w0(P ∗0 ). Very simply, the fittest host wins. If the growth of
two types is only limited by a common parasite P , then they are in apparent
competition: the one that can survive a higher parasite population survives,
and drives the other to extinction (Holt, 1977). At first sight it seems that
we shall never see host populations mixed for defensive strategy. However,
we shall see later that this is not the case, and our model does not preclude
co-existence of two host types.
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4. Results

4.1. Alternative strategies

Let host and parasite strategies 0 and 1 be true alternatives, i.e. it is not
physically possible to employ both 0 and 1. Let parasite strategy 0 be the
counter-attacking strategy to host strategy 0, and parasite strategy 1 the
counter-attacking strategy to host strategy 1. Let host strategy 1 be the
defence to parasite strategy 0, and host strategy 0 the defence to parasite
strategy 1.

We might expect strategies to cycle:
H0 high =⇒ P0 high =⇒ H1 high =⇒ P1 high.
Numerical results show that this is indeed the case.

Figure 1. Cycling strategies. Depending on the parameters of the system it either tends
to a periodically cycling solution (left panels) or to a singular solution that switches
between the points at the corners of the frequency diagram (right panels).
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4.2. Arms races

Let H0 and P0 be resident naive (no defence, no counter-attack) host and
parasite types, and assume that a mutation occurs that produces a de-
fending host type H1. If the benefits of the defence outweigh the costs
of deploying it, then (in the absence of stochastic extinction) we expect
this mutation to invade the resident steady state and go to fixation. In
mathematical terms, the mutant type H1 invades the naive steady state
(P ∗0 , 0, H

∗
0 , 0) and goes to fixation, resulting in a steady state (P ∗0 , 0, 0, H

∗
1 ).

Now assume that a mutation occurs in the parasite population, leading
to a mutant counter-attacking parasite P ∗1 . If the benefits of the counter-
attack outweigh its costs, the mutant parasite type will invade the steady
state and go to fixation, resulting in a steady state (0, P ∗1 , 0, H

∗
1 ). Mathe-

matically, invasion eigenvalues may be calculated which determine whether
the invasions occur. With cost-free defence and counter-attack, invasion of
both types occurs. The process may be repeated indefinitely, leading to a
gene-for-gene arms race such as the one that seems to have occurred for
flax and flax rust.

Figure 2. A stage in an arms race: a naive host type is replaced by a defending one,

and the parasite counter-attacks.

4.3. Bifurcation diagrams with costly defence

If defence is costly, things are more complicated. Typical fitness functions
are as shown in figure 3 (if the defence has a cost even in the absence of
parasitism).

A bifurcation analysis may be carried out with richness of the environ-
ment k as the bifurcation parameter. This may be done rigorously, but here
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Figure 3. Typical fitness curves for a naive and a defending host, as functions of the

parasitism pressure (population) P . Since the defence has a cost in the absence of

parasitism, the naive host is fitter for low values of P .

we give an algorithm for constructing the qualitative features of the bifur-
cation diagram, as the richness of the environment k increases from zero,
when there is a single parasite type and two host types, one that employs
a defence against the parasite and one that does not, as in figure 3. The
extension to more than two host types is straightforward. Note that as k
increases then H∗ increases and so P ∗ increases, so the idea is to construct
the bifurcation diagram from the host fitness diagram. Note also, however,
that H∗ and P ∗ are not in general strictly increasing with k.

• As k increases from zero then so does the steady state host popu-
lation size H∗, but for low values of k it is not sufficient to support
the parasite. The fittest host type employs the naive (no-defence)
strategy, and this is the type that persists.

• A bifurcation point occurs (at about k = 25 in figure 4) beyond
which the parasite population is supported by the host, and both
populations strictly increase with k. The fittest host type still em-
ploys the naive strategy.

• As k increases further, H∗ and P ∗ increase until we reach a new
bifurcation point (at around k = 50 in figure 4) where the naive and
the defending host are equally fit. Beyond this point either (i) P ∗
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remains constant while the naive host is gradually replaced by the
defending host (as in figure 4), or (ii) the naive host is immediately
replaced by the defending host. The first of these alternatives is
typical for brood-parasite systems.

• Once the naive host has been replaced by the defending host, the
parasite population resumes its increase as the defending host pop-
ulation increases.

• Note that as k → ∞ we tend to the point on the fitness diagram
where host fitness drops to 1; however rich the environment it is not
possible to progress beyond this point.

Figure 4. Bifurcation diagram for the fitness curves of figure 3, with bifurcation param-

eter k. Note the gradual replacement of naive host by defending host while the parasite
population remains constant (so that each host type has equal fitness), between about

k = 50 and k = 100.

We can therefore describe the bifurcation diagrams for the parameters of
our brood-parasite systems. For reed-warbler–cuckoo parameters the fitness
diagram is as in figure 5, we expect no defence at low cuckoo densities, egg-
rejection at high cuckoo densities, or a mixture of the two, but no other
defence strategies. However rich the environment is, the cuckoo chick can
never be other than a rare enemy, not worth defending against.

For fairy-wren parameters the fitness diagram is as in figure 6, and we
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Figure 5. The figure is in terms of excess lifetime production v rather than fitness w;

these are related by v = (w − 1)/ν, so we cannot progress beyond v = 0. The only host
types we shall see are therefore naive or egg-rejectors, or a mixture of the two. Note that

chick-rejection and all-rejection, although they are advantageous compared to the naive

strategy at some parasitism rates, are blocked by the egg-rejection strategy.

Figure 6. Again we cannot progress beyond v = 0. Therefore, for these parameters, the

only host types we shall see are naive or chick-rejectors, or a mixture of the two. Note
that here egg-rejection and all-rejection, although they are advantageous compared to

the naive strategy at some parasitism rates, are blocked by the chick-rejection strategy.

expect no defence at low cuckoo densities, chick-rejection at high cuckoo
densities, or a mixture of the two, but no other defence strategies. However
rich the environment is, the cuckoo egg can never be other than a rare
enemy, not worth defending against.
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The essential difference between the two sets of parameters that leads to
this difference in outcome is the high fitness of fairy-wren chick rejectors at
low P . This results from the much higher probability that fairy-wrens can
raise a successful brood in the same season after deserting a nest, because of
the longer Australian breeding season and the shorter fairy-wren hatching
time.

5. Conclusions

• If defence is cost-free, even rare enemies are worth defending against,
and an arms race should be expected.

• If defence has parasite-independent costs, then we expect no defence
against rare parasites, and defence against common parasites, with
a mixture of defensive strategies at intermediate levels.

• One strategy may prevent another otherwise advantageous strategy
from appearing, a phenomenon known as strategy-blocking.

• If host basic reproductive ratio is small, then however rich the envi-
ronment there will never be enough parasites to make costly defence
worthwhile.

• There is no fundamental reason for hosts not to reject both eggs
and chicks, despite this never having been observed in nature. We
might expect this to happen for high R/ν and high k.

References
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