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1. Introduction 

 

Solid core photonic band gap fibers (SC-PBGFs) are 

photonic crystal fibers [1] in which a solid core of 

refractive index nlow is surrounded by a cladding 

consisting of a periodic arrangement of inclusions 

having a refractive index (nhigh) higher than that of the 

background (nlow) (Fig.1). SC-PBGFs can be made either 

by infiltrating high-index fluids into holey fibers [2], or 

by incorporating high-index Germanium doped silica 

inclusions in a lower index silica background at the 

preform stage [3], leading after drawing to all-solid SC-

PBGFs. The light guidance for SC-PBGFs can 

equivalently be explained in terms of antiresonant 

reflecting optical waveguide (ARROW) or bandgap 

effects [4-8]. In particular, SC-PBGFs have high and low 

transmission wavelength bands, which are delimited by 

the cutoff of the high index inclusions’ modes [4,5], and 

are thus sensitive to the refractive index of the high-

index inclusions [9]. This sensitivity, in particular when 

the inclusions are high-index fluids, can be used to 

create refractive index sensors [10] or temperature 

tunable filters [9]. While the wavelength shift of 

transmission bands can be quite dramatic with refractive 

index changes, the edges of the bands aren’t very sharp, 

so that the smallest detectable refractive index changes 

aren’t necessarily competitive with other sensing 

techniques [11]. By introducing sharper features in the 

transmission spectrum of SC-PBGFs this limitation 

could be overcome, under the condition that these 

features also shift with the transmission bands of the SC-

PBGF with changes in refractive index.  

Steinvurzel et al showed that long period gratings (LPG) 

can be used for that purpose [12]. LPGs are corrugations 

of the refractive index or geometry of a fiber with a 

period much longer than the wavelength, of the order of 

hundreds of micrometers [13]. LPGs couple light 

between co-propagating modes, typically between a core 

mode and a cladding mode. When in a SC-PBGF, 

resonant wavelengths at which such coupling occur have 

a sensitivity to refractive index changes similar to that of 

the SC-PBGF’s transmission bands themselves. It had 

been predicted that this could lead to LPGs having 

extreme refractive index sensitivities when nhigh-nlow is 

small [12]. Here, we study the sensitivity to refractive 

index changes of a microbend LPG in a low index-

contrast all-solid SC-PBGF. We demonstrate a 

sensitivity of 2.1.10
4 

nm per refractive index unit 

(nm/RIU), leading to a detection limit of the order of  

3.10
-6

 RIU [11]. 

 

2. Experimental setup 

 

We use an all-solid SC-PBGF. The cladding of this fiber 

consists of a hexagonal array of high-index inclusions 

made out of 20% Germanium doped silica, in a silica 

background (Fig. 1). The fiber has a centre to centre 

distance between inclusions of Λ≃6.7μm, and rod 
diameter d≃3.2μm.  Since Ge-doped silica is 

photosensitive, the refractive index of the high index 
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regions can be tuned after fabrication by exposing the 

fiber to UV light [14]. 

Each Ge-doped inclusion has a cylindrical graded 

refractive index distribution described by  
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where r is the distance from rod’s center, α  ≈ 4.7, ΔnGI ≈ 

0.0203 and ro ≈ 1.6μm . The transmission spectrum of 

the fiber before any UV exposure is shown in Fig. 2, and 

displays the typical high- and low-transmission windows 

of bandgap fibers. In the remainder of the article we will 

concentrate on the lowest order high transmission 

window, above 1200nm. 

 
Fig. 1: Optical micrograph of the SC-PBGF used in the experiment. 

Dimensions are given in the text. 

  
Fig. 2: Transmission spectrum of the SC-PBGF  
In order to improve the photosensitivity of the Ge-doped 

inclusions, the SC-PBGF was hydrogen loaded [15,16]. 

Two experiments were carried out: In a first experiment, 

we simply demonstrated our ability to modify the 

refractive index of the Ge-doped rods through exposure 

to UV light, which was observed through the resulting 

wavelength shift in the transmission bands. For this, we 

exposed a hydrogen-loaded SC-PBGF to UV light using 

a frequency doubled continuous-wave Argon-ion laser 

(244nm, ~80mW). The laser light was focused with a 

cylindrical lens on the fiber so as to have a spot size of 

the same size as the fiber diameter. The laser spot was 

then swept a number of times over a length of 10.5cm of 

the fiber using a translation stage. Total exposure after 

each sweep was calculated using the sweep time, 

measured laser power and measured spot size. 

In a second experiment, a new piece of hydrogenated 

SC-PBGF was placed between a stainless steel threaded 

rod and an aluminium frame, and butt-coupled to a 

supercontinuum source and an optical spectrum analyzer 

(Fig. 3). The threaded rod creates a 5cm long microbend 

LPG with 0.7 mm periodicity. The SC-PBGF was then 

exposed to UV using the same method as in the first 

experiment, but with sweeps covering the length of the 

LPG only. 

 

 

 

 
Fig. 3: Schematic of the experimental setup. Bottom left, detail of the threaded 
rod applied to the SC-PBGF to generate the microbend LPG. 

 

3. Results 

 

Figure 4 shows the results for our first experiment, in 

which we measure the evolution of the edge of the 

lowest order transmission window with total UV 

exposure, without an LPG. Each sweep lasts 23 min, 

with an estimated deposited energy of  ~55 J/cm
2
 per 

sweep. A shift of ~119 nm is obtained for a total UV 

energy of ~500 J/cm
2
 after 9 sweeps. The shift in 

bandgap is due to the UV-induced refractive index 

change in SC-PBGF, and is consistent with previous 

results [14], demonstrating our setup can successfully 

tune the refractive index of the Ge-doped rods. 

 
Fig. 4: Shift of transmission bands of the SC-PBGF after successive exposures 

to UV light.  
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Once our ability to tune bandgaps of the SC-PBGF was 

demonstrated, we proceeded to our second experiment.  

Figure 5 shows the transmission spectrum of the SC-

PBGF with the microbend LPG, before any UV 

exposure and after successive sweeps of ~41 min 

duration, each corresponding to an energy of 

approximately 75 J/cm
2
 per sweep. The dip in 

transmission due to the LPG shifts in wavelength with 

successive sweeps, at a rate comparable to that of the 

edge of the band. However, the feature of the LPG is 

much sharper, allowing greater precision in detecting 

shifts. A shift of 53 nm has been obtained after a total 

UV energy of 300 J/cm
2
. We also note that the depth of 

the resonance dip decreases, which we attribute to 

imperfections in the uniformity of the UV exposure, 

mostly as a result of the difficulty to maintain the fiber at 

the same position in the UV beam during sweeps.  

  

 
Fig. 5: Shift of the resonance of our microbend SC-PBGF LPG with succesive 

UV exposures. 
 

4. Sensitivity 
 

High-transmission bands of SC-PBGFs are delimited by 

the cutoffs of high index inclusions [9]. Approximating 

the graded index profile by a step index rod, the lowest 

band is delimited by the cutoff of the lowest order rod 

modes, having normalized frequency given by  

   
2   √  

    
 

 
≃ 2.    

Where nh=nsilica(1+ΔnGI) and nl=nsilica. To first order, a 

change δλ of the wavelength of the edge of the band thus 

corresponds to a change δn in nh given by 

 

 n ≃
  
    

 

   
    

  

With δλ=53nm, we obtain δn≃ .  2 , or alternatively a 

sensitivity of 2.1⋅10
4
nm/RUI. Considering that the LPG 

resonance dip has a 3-dB width of 8.8nm, the detectable 

change of refractive index assuming a signal to noise 

ratio of 60dB would be 3.10
-6 

[11]. This is comparable to 

the best published fiber based refractive index sensing 

devices, and can be improved in particular by designing 

the LPG to have narrower resonances. Our results 

represent an order of magnitude improvement in 

sensitivity compared to previous studies of LPGs in SC-

PBGFs [12], due to the use of smaller index-contrast 

high-index inclusions.  

 

5. Conclusions 

 

We have realized a tunable LPG in an SC-PBGF, and 

have demonstrated its resonant wavelength is extremely 

sensitive to changes in refractive index of the high-index 

inclusions. Such an LPG could be used as a UV 

adjustable notch filter as-is. In such a case uniform 

exposure to maintain the depth and width of the LPG 

notch will be primordial. The most promising 

application remains however in sensing. We have 

demonstrated that our setup allows in principle to detect 

changes in refractive index of 3⋅10
-6

. If the all-solid fiber 

is replaced by a fluid filled SC-PBGF, ultra sensitive 

fluid refractive index sensors can be achieved. The small 

detectable change results from the combination of the 

large sensitivity of the bandgaps with the narrow feature 

of the long period grating. 
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