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Abstract. The existence of travelling heteroclinic waves for the sine-Gordon 
lattice is proved for a linear interaction of neighbouring atoms. The asymptotic 
states are chosen such that the action functional is finite. The proof relies on 
a suitable concentration-compactness argument, which can be shown to hold 
even though the associated functional has no sub-additive structure. 

1. Introduction. We consider the lattice sine-Gordon equation 

q̈k(t) = V � (qk+1(t) − qk(t)) − V � (qk(t) − qk−1(t)) − K sin (qk(t)) , k ∈ Z, (1) 

with a constant K > 0. Equation (1) describes the evolution of an infinite chain of 
atoms with elastic nearest neighbour interaction and an on-site potential, according 
to Newton’s law. The interaction potential V : R R takes as argument the discrete →
strain, which is given by the difference of the positions of the atoms qk+1(t) − qk(t). 

cIn this article, we assume that V is a quadratic function V (ε) := ε2 with c0 > 02 
and seek a solution to (1) in the form of a travelling wave by setting qk(t) = u(k−ct) 
for k ∈ Z. Then, a substitution into (1) yields immediately 

c 2 u��(τ) = c 2(u(τ + 1) − 2u(τ) + u(τ − 1)) − K sin(u(τ)). (2)0

In the setting introduced in Section 2, Equation (2) can be seen to be the Euler-
Lagrange equation of the action functional 

2 2 

J(u) := 
c

2
(u�(τ))2 − 

c

2 
0 (u(τ + 1) − u(τ))2 + K(1 + cos(u(τ))) dτ. (3) 

R 
2

(u�(τ ))2 dτ minus the potential The action functional is the kinetic energy c 
R 2 

2
0 (u(τ + 1) − u(τ))2 dτ , and on-site part, 

This specific choice of the on-site potential is made for 

cenergy, consisting of interaction part, � R 2 

R −K(1 + cos(u(τ ))) dτ .

simplicity of the presentation; however, all results in this paper can be generalised

in a straightforward way to any non-negative, 2π-periodic C1-function with zero set 
{(2k + 1)π : k ∈ N} in place of (1 + cos( )).·
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2 CARL-FRIEDRICH KREINER AND JOHANNES ZIMMER 

We are interested in heteroclinic waves (that is, waves that connect two different 
asymptotic states at ±∞) for supersonic velocities c > c0. Before stating the precise 
results, we give a brief overview of some related work. 

Bates and Zhang [2] have shown that for a large class of similar models, homo-
clinic travelling waves exist for supersonic velocities. Their existence result also 
holds for long-range interaction, but the specialisation to nearest neighbour inter­
action covers the case 

c 2 u��(τ) = c 2(u(τ + 1) − 2u(τ) + u(τ − 1)) + K sin(u(τ)). (4)0

The on-site potential energy can here be taken to be [K cos(u(τ)) − 1] dτ . Bates R 
and Zhang [2] consider homoclinic waves that have their asymptotic states in the 
maximum of the on-site potential. We study the analogous situation for heteroclinic 
waves. That is, we consider waves with asymptotic states in two different maxima of 
the on-site potential. For the choice −K(1 + cos(u(τ))) made above for the on-site 
potential, this leads to the boundary conditions 

lim u(τ) = −π and lim u(τ) = +π. (5)
τ →−∞ τ→+∞ 

The existence proof will rely on minimisation and a novel type of concentration-
compactness. The main difficulties are: Firstly, the action functional, which is to 
be minimised, is highly nonconvex due to the periodicity of the on-site potential. 
The second challenge is a lack of compactness due to the infinite domain R. We 
show in Section 4 that these difficulties can be overcome with a suitable variant of 
concentration-compactness [9]. This is not obvious, since the functional (3) is not 
subadditive. We show that a concentration-compactness result holds nevertheless. 
This argument relies on the fact that the lattice action functional (3) can be related 
to the Mortola-Modica functional [10], so that a crucial L∞-a-priori bound can 
be inferred. This connection to the Mortola-Modica functional is made explicit in 
Section 3. Concentration-compactness arguments for lattice models were introduced 
by Friesecke and Wattis [6] (see also, e.g., [1]). 

These two difficulties, namely a highly nonconvex functional and lack of com­
pactness also persist for other boundary conditions, in particular 

lim u(τ) = 0 and lim u(τ ) = 2π, (6)
τ →−∞ τ→+∞ 

that is, asymptotic states in the minima of the on-site potential (possibly to be 
understood in an averaged sense). These boundary conditions correspond to a 
moving dislocation in the Frenkel-Kontorova model [5]. The existence of periodic 
solutions and sliding solutions for the two-dimensional generalisation of the Frenkel-
Kontorova model can be shown with topological and variational methods [4]. A 
survey over some related results can be found in the book by Pankov [11]. For the 
one-dimensional Frenkel-Kontorova model, there are existence results for hetero­
clinic waves with asymptotic states (6) for the special case of a piecewise quadratic 
on-site potential in the physics literature [8]. There, it is assumed that the solution 
satisfies the sign condition of the kind 

u(τ ) < π for τ < 0 and u(τ) > π for τ > 0. (7) 

Under this assumption, the analogue of the Euler-Lagrange equation (2) for piece­
wise on-site potential simplifies to an equation with a nonlinearity that depends only 
on τ , rather than u(τ). This simplified system is then solved by Fourier methods, 
where the solution is represented as a sum of Fourier components. The difficulty 
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3 TRAVELLING WAVES FOR THE LATTICE SINE-GORDON EQUATION 

is to show that the solution satisfies the sign condition (7). Kresse and Truski­
novsky [8] observe that this condition probably does not hold for a specific interval 
of subsonic velocities. A rigorous proof that the sign condition holds in some regime 
seems, at the time of writing, only to be available for the Fermi-Pasta-Ulam chain 
with piecewise quadratic pair interaction [12]. The extension of this result to more 
general potentials is an open problem. 

2. Main result. We set X := u ∈ H1 (R) : u� ∈ L2(R) and remark that X is a loc

Hilbert space when equipped with the inner product 

�u, v�X := u(0) v(0) + u�(τ) v�(τ) dτ. 
R 

Further, let us define 

M−π,π := {u ∈ X : u(−∞) = −π, u(∞) = π}. (8) 

We are now in a position to formalise the connection of Equation (2) and the action 
functional J : X R ∪ {∞} given in (3). 

Let v0 : R → [−
→

π, π] be a monotone function in C∞(R) such that v0(τ ) = −π for 
τ < −1 and v0(τ ) = π for τ > 1 and define Ψ: H1(R) → R by 

Ψ(v) := J(v0 + v). 

It is not hard to see that Ψ(v) < ∞ for all v ∈ H1(R), and that, conversely, a 
minimiser u of J on M−π,π can be written as u = v0 + v for some v ∈ H1(R) (for 
details see [7]). Furthermore, Ψ is continuously differentiable on H1(R). 

Lemma 2.1 (Euler-Lagrange equation and regularity). Suppose v ∈ H1(R) is a 
critical point of Ψ; set u := v0 + v ∈ M−π,π ⊂ X. Then u ∈ C2(R) and u is a 
solution of (2) with boundary conditions (5). 

Proof. Every critical point v ∈ H1(R) of Ψ satisfies by definition �Ψ�(v), h� = 0 for 
all h ∈ H1(R), that is, 

0 = c 2 u�(τ) h�(τ ) − c 2(u(τ + 1) − u(τ))(h(τ + 1) − h(τ )) − K sin(u(τ )) h(τ) dτ0

R 

= c 2 u�(τ) h�(τ ) + c 2 [u(τ − 1) − 2u(τ ) + u(τ + 1)] h(τ ) − K sin(u(τ ))h(τ) dτ. 0 

R 

This means that u is a weak solution of (2). Applying a classical bootstrap argu­
ment, we find that u ∈ C2(R) is a strong solution of (2). 

Lemma 2.1 shows in particular that a minimiser of the variational problem 

minimise J , as defined in (3), on M−π,π ⊂ X (9) 

is a solution to (2) with boundary conditions (5). 
We now formulate the existence result for (2), for sufficiently large supersonic 

wave speed and heteroclinic boundary conditions. 

Theorem 2.2. Let c2 > 9 c0
2 . Then there exists a minimiser u0 of J on M−π,π ⊂8 

X, that is, the variational problem (9) possesses a solution. This minimiser u0 is 
a C2-function which satisfies (2) and the asymptotic boundary condition (5). 

The proof of this Theorem will follow easily from Lemma 2.1 and the statements 
in Sections 3 and 4; it is given in Section 5. 
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4 CARL-FRIEDRICH KREINER AND JOHANNES ZIMMER 

3. A-priori bound. For more a compact notation, we introduce on X a difference 
operator A as Au(z) := u(z + 1) − u(z). Observe that for fixed T1, T2 ∈ R, T1 < T2, � T2 � �2 

� 1 � T2+s � �2 
Au(τ) dτ ≤ u�(τ ) dτ ds; (10) 

T1 0 T1+s 

this follows with Jensen’s inequality and Fubini’s theorem, � T2 � �2 
� T2 

�� τ +1 �2 � T2 
�� 1 �2 

Au(τ) dτ = u�(s) ds dτ = u�(t + τ ) dt dτ 
T1 T1 τ T1 0 � T2 

� 1 � �2 
� 1 � T2+t � �2 ≤ 

T1 0 
u�(t + τ) dt dτ = 

0 T1+t 
u�(ζ) dζ dt. � � �2 � � �2By the same argument, R Au(τ) dτ ≤ R u�(τ) dτ (see also [13]). This implies 

2 2
c −
2 

c0 (u�(τ))2 + K(1 + cos(u(τ))) dτ

R 

2c≤ J(u) ≤ 
2

(u�(τ))2 + K(1 + cos(u(τ))) dτ. 
R 

for all u ∈ X. Modica and Mortola [10] have studied a very similar functional to 
those in this inequality. We quote a relevant result on the minimal values of such 
functionals from [3, Section 6.2]. 

Lemma 3.1. For γ > 0, let Iγ (u) := γ (u�(τ))2 + K(1 + cos(u(τ))) dτ . Then 
R 

the minimum of Iγ on M−π,π is attained and � � π � 
min Iγ (u) = ϑ := 2 γK 1 + cos(ξ) dξ. (11) 

u∈M−π,π −π 

Moreover, with the same ϑ, �� T 
� 

inf inf γ (u�)2 + K(1 + cos(u)) dτ : 
u ∈ H1(−T, T ), 

= ϑ. (12) 
T>0 −T u(−T ) = −π, u(T ) = π 

As an immediate consequence we get, by evaluating the integral in (11), 

28 (c2
0) K ≤ inf J(u) ≤ 8c

√
K. (13)− c

u∈M−π,π 

This inequality and (12) will serve as basis for the L∞-a-priori bound in the next 
lemma. 

Lemma 3.2. Let c2 > c2
0. A global minimiser u0 of J on M−π,π satisfies 

�u0�L∞(R) < (2k + 3)π, 

c2 
where k := max κ ∈ N0 : (2κ + 1) ≤ 

c2 2 . 
− c0 

Proof. The proof relies on the fact that (12) and (13) provide, loosely speaking, an 
estimate for the “cost” for u0 to traverse a height of 2π from one minimum of cos( )·
to the next. More precisely, we have 

J (u0) ≥ I 
2
1 (c2

0
2)(u0) := 

c2 − c0
2 � 

u0
� (τ) 

�2 + K 
� 
1 + cos (u0(τ)) 

� 
dτ. (14)−c

R 2 
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Hence, (13) and 1 + cos(u) ≥ 0 show 
2 2c − c0 2 

2 
�u�0�L2(R) ≤ J (u0) ≤ 8c

√
K. (15) 

Let T1, T2 ∈ R ∪ {±∞} with T1 < T2 be such that u0 (T1) = νπ and u0 (T2) = 
(ν + 2)π for some odd integer ν. Then the contribution of the interval [T1, T2] to 
the value I(c −c0) (u0) is, from (12),2 2 

�T2 � � 
c2 − c0

2 � �2 � �
u�0(τ ) + K 1 + cos (u0(τ)) dτ

2 
T1 �T2 � � 

≥ 
u∈H1 

inf 
[T1,T2], 

c2 −
2 

c2
0 � 

u�(τ) 
�2 + K 

� 
1 + cos(u(τ)) 

� 
dτ 

loc(T1,T2) ∩ C0


u(T1)=νπ, u(T2)=(ν+2)π T1


≥ 8 (c2 − c0
2) K. (16) 

The boundary conditions (5) imply that the height 2π needs to be covered; any 
further increase in height of 2π has to be compensated by a decrease in height of 2π 
and vice versa. Hence there is an odd number of such increases or decreases. We 
write this odd number as 2κ+1 with κ ∈ N, so that (κ+1) 2π ≤ �{u0(z) : z ∈ R}� <·
(κ +2) 2π; thus κ can be understood as a lower bound on the number of times that · 
u0 grows by full 2π in excess to the one time required by u0 ∈ M−π,π. Then (14) 
and (16) show that 

J (u0) ≥ I 1
2 (c −c0) (u0) ≥ 8(2κ + 1) (c2 − c2

0) K. 2 2 

On the other hand, J(u0) is bounded by the Modica-Mortola bound (13). Therefore, 
using (15), � 

28(2κ + 1) (c2 − c0) K ≤ J (u0) ≤ 8c
√

K (17) 

so that � � � 
c2 

κ ≤ k := max κ ∈ N0 : (2κ + 1) ≤ 
c2 − c0 

.2 

Hence (k + 1) · 2π ≤ �{u0(z) : z ∈ R}� < (k + 2) · 2π. Due to (5), (−π, π) ⊆ 
{u0(z) : z ∈ R}, so 

sup u0(τ) < (k + 2) 2π − π = (2k + 3)π; 
τ ∈R 

| | · 

note in particular that the inequality is strict. 

4. Concentration-compactness. The next step is to prove a variant of the con­
centration-compactness lemma of P.-L. Lions [9, Lemma I.1] that is adapted to our 
situation. 

The setting in this classical paper [9] (see also [6]) is as follows. The general 
problem is to minimise a functional E : U R on a Banach space U subject to a →
constraint L(u) = λ > 0. It is shown that, for fixed λ, that any minimising sequence 
is, up to a subsequence, either relatively compact, or vanishes, or splits into two 
or more parts which drift away arbitrarily distant from each other. Vanishing can 
usually be excluded quite easily. Setting 

Iλ := inf{E(u) : u ∈ U, L(u) = λ}, 
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splitting cannot occur, heuristically speaking, if and only if 

Iλ < Iα + Iλ−α for all α ∈ (0, λ). 

In comparison to the classical setting, a major difference in the present paper is that 
the constraint u(±∞) = ±π cannot be varied continuously. Hence it is impossible 
to consider the minimum value of the functional on level sets of the constraint as a 
function of a continuous parameter in the constraint. As a consequence of this, no 
meaningful analog to the above subadditivity inequality can be formulated. Instead, 
we will exclude splitting by means of the a priori bound from Lemma 3.2. 

The most important difference in contrast to other variants of the concentration-
compactness lemma is therefore in the alternative of splitting. The value of the 
functional J is split up between sequences (fn)n∈N , (gn)n∈N (whose sum is essen­
tially the original sequence (un)n∈N)—not the value of the constraint, as usual. 
On the other hand, the present lemma holds not just for minimising sequences 
(un)n∈N ⊂ M−π,π, but for all sequences for which the values of the functional 
converge. � � 

The following proof will be formulated using symmetrised differences u τ + 2
1 � � − 

u τ − 2
1 , rather than u(τ + 1) − u(τ ), in order to exploit the symmetry of the in­

tegration domains. It is clear that J , and hence the minimisation problem, remains 
1unchanged because 

� 
R 

� 
Au(τ) 

�2 dτ = 
� 

R 

� 
u 

� 
τ + 12 

� 
− u 

� 
τ − 2 

��2 dτ . 

TηT η+

1

η−

s

z

Figure 1. Domain of integration of 
� 
0

1 � η+T −1+s [u�(τ )]2 dτ ds,
η−T +s 

which is up to a multiplicative factor the first term in the definition 
of JT ( ; η) in (18).·

We introduce a truncated version of J . For parameters T > 1 and η ∈ R, set 

1 1η+T�− +s2 2
2c

[u�(τ )]2JT (u; η) := dτ ds
2 

1 1η−T + +s− 2 2

1 
2 η+�T − 1 

2η+�T −
2 � � � � ��20c τ + 1 1 

2 dτ + K 1 + cos(u(τ)) dτ (18)τ −− − uu 22 
η−T + 1

2 η−T + 1
2 

We point out that all integrals are taken over symmetric intervals around η which 
simplifies some estimates later in this proof. For use in Section 5, we mention that 
the second summand equals 

� 
η

η

−
+

T

T −1 � 
Au(τ) 

� 
dτ . 

The domain of integration for the first term in the definition of JT can be thought 
of as the shaded parallelogram shown in Figure 1, with the integrand being constant 
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on vertical lines. This choice is motivated by the second term because � τ +1 

Au(τ) = u�(s) ds 
τ 

shows that, roughly speaking, the second term could be interpreted as an integration 
over the same domain. This idea has already been suggested by (10). 

Lemma 4.1 (Concentration-compactness). Let c2 > c0
2 and θ ≥ inf J(u)|M−π,π , 

θ < ∞. Then every sequence (un)n∈N ⊂M−π,π with the property 

lim	 J(un) = θ (19) 
n→∞ 

possesses a subsequence, not relabelled and still denoted by (un)n∈N, which satisfies 
one of the following three alternatives: 

(i) Tightness:	 There is a sequence (ηn)n∈N ⊂ R such that, for every ε > 0, there 
exists T0 > 0 such that for all T > T0 

J(un) − JT (un; ηn) < ε for every n ∈ N. 

(ii) Vanishing: For all T > 0, 

lim sup JT (un; η) = 0. (20) 
n→∞ η∈R 

(iii) Splitting:	 There exists ε1 > 0 such that for every 0 < ε < ε1, there are 
fn, gn ∈ X such that 

|un − (fn + gn − π)| ≤ ε


J (un) − (J (fn) + J (gn)) ≤ ε, lim dist (supp (fn
� ) , supp (gn

� )) = ∞,
|	 | 
n→∞ 

lim J (fn) = α, lim J (gn) = β, 
n→∞ n→∞ 

for some 0 < α, β < θ. (π is needed in the first inequality to ensure J (fn) < ∞
and J (gn) < ∞.) 

The condition (19) is in particular satisfied if (un)n∈N is a minimising sequence 
for J . We actually need Lemma 4.1 only for that case, in which θ = inf J(u)| .M−π,π 

Proof. The proof is given in four steps. First we introduce a concentration func­
tional, discuss its properties (Step 1). The rest is concerned with the proof that 
the only alternative to cases (i) and (ii) is case (iii). Step 2 identifies the intervals 
which will become the support of fn and gn, respectively. Further estimates show 
the statements about the sequences fn (Step 3) and gn (Step 4). 
Step 1. As in Lions’ proof [9], a concentration function is introduced. Namely, given 
a sequence (un)n∈N ⊂ M−π,π with (19) and a parameter η ∈ R, define a sequence 
of functions Pn( · ; η) : (0, ∞) → R, 

1 
2 

Pn(T ; η) := JT + (un; η) (compare Figure 1) (21) 

the shift by 1
2 from the definition of JT saves some summands 1

2 in subsequent 
estimates of this proof while the form of JT is more useful in Section 5 below. 

Note that, for every fixed n ∈ N and η ∈ R, Pn is nondecreasing in T . Namely, 
for all ε > 0 and all η ∈ R, (10) and c > c0 show that the increment of the second 
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integral in (21) is bounded by the increment of the first one, 

η+�T +ε

c2
0 � � � � 

1 
��2 c2

0 2


2 
�Aun�
τ + 1 

2 dττ − =− unun (η+T − 1
2+ε)1

2 ,η+T −2 

η+T 

1 
2

1η+T −� +ε+s η+T�+ε+s�1 2
2 � �2 c2 � �2c

(τ ) dτ ds = (τ) dτ ds, (22)u�n u�n≤ 
2 2 

1
2

1
2 

0 η+T +sη+T − +s −

and the very same estimate holds on (η − T − ε, η − T ). This implies Pn(T + ε; η) ≥
Pn(T ; η) for all T, ε > 0 because 1 + cos (un) is always non-negative. 

Now we can define for each n ∈ N the concentration function 

Qn(T ) := sup Pn(T ; η). (23) 
η∈R 

As supremum of monotone and nondecreasing functions, Qn enjoys the same prop­
erties. It is clear that Qn is bounded on (0, ∞) because, for each n ∈ N, 

lim Qn(T ) = J (un) . 
T →∞ 

By assumption (19), (J (un))n∈N converges to θ and is therefore a fortiori bounded 
in R; thus the sequence (Qn)n∈N is bounded from above in L∞(0, ∞). Hence, 
by Helly’s selection theorem (see, e.g., [14, Section 17.4]), a subsequence, not 
relabelled, converges pointwise almost everywhere to a monotone nondecreasing 
function Q : (0, ∞) → R and 

l := lim Q(T ) ∈ [0, θ]. (24) 
T →∞ 

Obviously, alternative (i) in the statement occurs for l = θ, and alternative (ii), 
vanishing, occurs when l = 0. What remains is to show that 0 < l < θ corresponds 
to alternative (iii), splitting. 
Step 2. Let ε > 0. By definition of l in (24), there exists T0 ∈ R such that 
Q (T0) ≥ l − 1 ε. Since Qn(T ) Q(T ) as n → ∞ for almost every T , we may 3 → 

2assume, possibly after increasing T0, that Qn (T0) → Q(T0). Thus, Qn (T0) ≥ l− 3 ε, 
if we consider only large enough n. The definition (23) of Qn implies that we can 
find ηn ∈ R such that for all large enough n 

Pn (T0; ηn) ≥ l − ε. 

We can also find a sequence (Tn)n∈N with Tn → ∞ as n → ∞ (and in particular 
Tn � T0 for all n ∈ N) such that Qn (Tn) ≤ l + ε; this follows from the facts that 
Qn(T ) → Q(T ) as n → ∞ for almost every T , and that Q(T ) → l as T → ∞, 
see (24). Since Qn has been defined as supremum over Pn in (23), the sequence 
(Tn)n∈N satisfies Pn (Tn; ηn) ≤ l + ε. As Pn is monotone and nondecreasing in T for 
each n ∈ N, 

|Pn (T ; ηn) − l| ≤ ε for all T ∈ [T0, Tn] . (25) 

Now we are going to analyse the behaviour of un(τ) for |τ − ηn| ∈ [T0, Tn]; the 
goal is to show that there exist k± ∈ Z such that n � � � � � ��un(τ) − 2kn 

+ + 1 π� ≤ δ(ε) for τ ∈ ηn + T0 + 12 , ηn + Tn − 12 and � � � � � ��un(τ) − 2kn
− + 1 π� ≤ δ(ε) for τ ∈ ηn − Tn + 1 , ηn − T0 − 1 (26)2 2 
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T T

s

1

2

_1

2

0 n

_

z
−

Figure 2. Domains of integration of the first term (parallelogram) 
and the second term (dashed rectangle) in (27) and of the integral 
in the following line (shaded rectangle). To prevent a complicated 
labelling of axes, the situation has been sketched for ηn = 0. 

Starting with (25) and considering first only the interval [ηn + T0, ηn + Tn], we find, 
first arguing as for the derivation of the inequality in (22) and then shrinking the 
domain of integration in the second step (compare Figure 2), 

2ε ≥ Pn (Tn; ηn) − Pn (T0; ηn) 

+Tn ηn+Tn 
1

ηn +s2
2 2 �2 ≥ −

2 
cc 0 u�n(τ ) dτ ds + K 1 + cos un(τ ) dτ 

1
2 � 

ηn+T0 +s ηn +T0−

1 
+Tn−ηn 2 

2 2 �2− c
2 

c 0 u�n(τ) 1 + cos(un(τ )) dτ (27)+ K≥ 

1
ηn+T0 + 2 

and, for any T �, T �� ∈ R with T0 + 1 ≤ T � < T �� ≤ Tn − 1 , by shrinking the domain 2 2 
of integration again, 

ηn+T �� 
2 2 �2 ≥ −

2 
cc 0 u�n(τ) 1 + cos(un(τ )) dτ, + K 

ηn +T � 

and using the trivial estimate x2 + y2 ≥ 2xy and the change of variables ξ = un(τ), 

ηn+T �� 

c2 − c0
2 

2 

un(ηn+T ��) 

≥ 2 |u� (τ )| · K(1 + cos(un(τ ))) dτn

ηn+T � 

.1 + cos(ξ) dξ= 2K (c2 − c0
2) 

un (ηn+T �) 

1
2 

This shows that |un (ηn + T �) − un (ηn + T ��)| ≤ δ1, where δ1 = δ1(ε) is given by 
the relation 

δ
π+ 

2ε
1 + cos(x) dx = . 

2K (c2 − c2
0) 

δ1π− 2 
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+ T0 + 12 , ηn + Tn − 2
1To see that this interval un(τ ) : τ ∈

is near an element of {(2k + 1)π : k ∈ Z}, observe that (27) implies also 
of length ≤ δ1ηn 

2ε ≥ K (Tn − T0 − 1) · min 1 + cos (un(τ)) . 
τ ∈[ηn +T0+

1 
2 ,ηn+Tn− 1 

2 ] 

2εSuppose this minimum is attained at τ0,n. Then K(Tn−T0−1) ≥ 1 + cos (un (τ0,n)). 
� T0, there exists a k+ such that As we may assume ε � 1 and Tn n 

2ε 
K (Tn − T0 − 1) 

− 1(τ0,n) − 2kn 
+ + 1 =: δ2π ≤ π − arccosun 

Hence, with δ = δ(ε) = δ1 + δ2, 

π + T0 + 1 , ηn + Tn − 1 
2(τ ) − 2kn 

+ + 1 for all ≤ δ τ ∈ ηnun ,2 

and δ 0 for ε 0. To establish (26), it suffices to observe that the same argument → →
yields kn

− with the corresponding property 

+ 1 1 
2(τ) − 2kn

− + 1 ≤ δ for all π τ ∈ ηn − Tn , ηn − T0 −un .2 

Step 3. Define ⎧ ⎪⎨ ⎪⎩ 

(2k− + 1) π for τ < −T0 − 2,n 

fn(τ ) := (28)un (ηn + τ ) for τ ∈ [−T0 − 1, T0 + 1] , 
(2kn 

+ + 1) π for τ > T0 + 2 

and interpolate linearly on [−T0 − 2, −T0 − 1] and [T0 + 1, T0 + 2]. In analogy to 
Pn, we introduce, replacing un by fn in (21), P�n : (0, ∞) → R by 

1 
T +s 

�


�Pn

+ K 1 + cos (fn(τ)) dτ. (29) 
−T 

For |τ | > T0 + 5 , each of the integrands vanishes because fn is on {τ ∈ R : |τ | >2 
T0 + 2} by definition constant and equal to an odd multiple of π. Therefore 

�T2
2 �2 c0

2 ��2c
τ + 1 1 

2(T ) := (τ) dτ ds − dτfn
� fn − fn τ −

2 2 2 

1 
2
−T +s −T− �T 

Pn Pn

The goal is now to show that, up to a subsequence, J (fn) α ∈ (0, θ) for n →∞. 
To do so, we are going to estimate, with l from (24), 

→ 

Pn 

(T ) = P�nT0 + 5 
2 (∞) = J (fn) for all T > T0 + 5 . (30)2 =

P�n (Tn) − l (Tn) − Pn (Tn; ηn) − [Pn (Tn; ηn) − l]= 

in terms of ε. 
P�n 

We know already 

(Tn) − Pn (Tn; ηn) 
(Tn ) − l ≤ ε from (25), so we are left 

Pn T0 + 2
1 

; ηn

. Note that Pn T0 + 12 

|Pn |
with because, by ; ηn =
definition, fn(τ ) = un (ηn + τ) for all |τ | ≤ T0 + 1. Thus the triangle inequality 
yields 

Pn (Tn; ηn) − P�n (Tn) ≤ Pn(Tn; ηn) − Pn(T0 + 12 ; ηn) + P�n (Tn) .T0 + 1 
2 − P�n 

(31) 
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It follows from (25) that the first term on the right-hand side of (31) can be esti­
mated as �Pn (Tn; ηn) − Pn T0 + 12 ; ηn 

� ≤ 2ε. (32) 

As for the second term on the right-hand side of (31), observe that the domains of 
integration in P�n T0 + 12 and P�n (Tn) overlap so that, with In := −Tn, −T0 − 2

1
� � ∪ 
T0 + 12 , Tn , 

1

2
� � 2
� � � � c � �2 �P�n − P�nT0 + 1 

2 (Tn) (τ) dτ dsfn
�

2 
1
2


1
2


1

2


1
2


2
c≤ 
2 

1
 (−Tn+s,−T0−
∪(T0+

1
2


1

2


− 2


+s,Tn+s) 

1


1
1


−
 (−Tn +s)+s,−T0−
+s,Tn+s)∪(T0+

− 
c

2 
0
2 � 

fn 
� 
τ + 2

1 
� 
− fn 

� 
τ − 2

1 
� �2 dτ + K 

� 
1 + cos (fn(τ)) 

� 
dτ 

In In 

� �2(τ )
 dτ ds + K 1 + cos (fn(τ)) dτ (33)fn
�

+s) In 

because 
� 
fn 

� 
τ + 12 

� 
− fn 

� 
τ − 2 

��2 ≥ 0. We estimate the terms first on the intervals 
which lie in R+, and start with the first summand of (33). 

Using f �(τ) = 0 for τ > T0 + 2, we obtain 

T0�+
22
5+s 

c2 � �2 c2 � �2 
T�n+s 

fn
� (τ ) dτ ds = fn

� (τ ) dτ ds
2 2


2

1 1 1 1T0 + T0 ++s − +s− 2 2 2 2

2

(the domain of integration is here the largest parallelogram shown in Figure 3) and, 
splitting the integral at z = T0 + 1 and employing fn

� = u�n (ηn + ) on (T0, T0 + 1) ·
(this is used on the left half of the shaded parallelogram in Figure 3) and fn

� = 0 on 
(T0 + 2, T0 + 3) (thus no contribution comes from the rightmost triangle in Figure 3) ⎡ ⎤

1 
T�0+1 T�0+2 

2
 � �2 �2⎢ ⎥c
(ηn + τ ) dτ ds + fn

� (τ) dτu�n⎣ ⎦= 
2


1
2 T0+

1
2+s T0+1−

and, extending the first integral to the whole shaded parallelogram of Figure 3, 
while evaluating the second integral, in which |f �| ≤ δ a.e. due to (26), 

1 3ηn +T�0+ +s2 2
2
 � �2c

δ21
c2 

(τ) dτ ds +u�n≤ · ·
2
 2 
− 1

2 ηn+T0+
1
2+s � � � � �� 

2
 T0 + 3 ; ηn − Pn T0 + 1 
2 2and, bounding the remaining integral by ; ηnPn−c2

0 
2c

by (21) and (22), 

≤ 
c2 

c

− 

2 

c0
2 

� 
Pn 

� 
T0 + 2

3 ; ηn 
� 
− Pn 

� 
T0 + 2

1 ; ηn 
�� 

+ 2
1 · c 2 · δ2 
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0

k π+

s
z

0

n

T +

f’=

u

δ

0 1 2

nu =fn n

fn

Figure 3. Illustration of the deduction of (34). The equality un = 
fn is to be understood modulo a translation in the argument of the 
two functions as described in the text. 

and finally, using the monotonicity of Pn and (25), 

2 2ε δ2c
2ε + 1 c 2 δ2 = c 2 

2 (34)+≤ 
c2 

.· · ·2 − c2 
0 2c2− c0 

We continue estimating the right-hand side of (33) on T0 + 12 , Tn and find for the 
remaining third integral, from (26), 

= K 
�Tn T�0+2 

3 
2 K (1 − cos(δ)) .1 + cos (fn(τ )) dτ 1 + cos (fn(τ)) dτ ≤K 

1 1 
2 

(35) 
T0 + T0+2 

The very same estimates hold for the interval −Tn, −T0 − 1 . Thus when combin­2 
ing (33), (34) and (35), we obtain 

P�n (Tn) − P�n T0 + 1 
2 ≤ c 2 4ε 

+ δ2 + 3K(1 − cos δ). (36)2 
0c2 − c

Therefore, using P�n(Tn) = J(fn) (from (30)) and inserting (32) and (36) into (31), 
we obtain 

= Pn (Tn (Tn)) − P�n|Pn (Tn; ηn) − J (fn)| ; ηn

4ε ≤ 2ε + c 2 + δ2 + 3K(1 − cos δ) =: ε,� (37) 
c2 − c2

0 

hence, with (25), 

|J(fn) − l| ≤ |J (fn) − Pn (Tn; ηn)| + |Pn (Tn; ηn) − l| ≤ ε�+ ε. 

Now choose ε0 > 0 such that 

l + 2 (ε�+ ε) < θ and l − 2 (ε�+ ε) > 0 for all ε < ε0; (38) 

this is possible because δ = δ(ε) 0 for ε 0 while c, c0 and K are constants, → →
and 0 < l < θ by assumption. We will from now on assume that ε < ε0. 
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With this choice, we find that there exists a subsequence (not relabelled) of 
(fn)n∈N for which the limit of J (fn) for n →∞ exists, and 

lim J(fn) = α, 
n→∞ 

for some α ∈ R with |l − α| ≤ ε� and, by choice of ε0, 0 < α < θ. 
Step 4. Introduce now, with k± as in (26), ⎧ ⎪un(ηn + τ) − 2k−π for τ < −Tn + 1,⎨ n 

gn(τ ) := ⎪π for τ ∈ [−Tn + 2, Tn − 2], (39) ⎩ 
un(ηn + τ) − 2k+π for τ > Tn − 1,n 

and interpolate linearly on [−Tn + 1, −Tn + 2] and [Tn − 2, Tn − 1]. Clearly 

dist (supp (fn
� ) , supp (gn

� )) ≥ (Tn − T0 − 4) →∞ 

for n →∞. By definition of fn and gn, 

un (ηn + τ ) = fn(τ) + gn(τ ) − π for |τ | ∈ [0, T0 + 1] ∪ [Tn − 1, ∞), 

and for ±τ ∈ [T0 + 1, Tn − 1] we have fn(τ ) + gn(τ) − π = (2k± + 1) π, while (26) 
shows |un − (2k± + 1) π| ≤ 2ε. 

We are now going to estimate |J(un) − J(fn) − J(gn)|. The last statement to be 
shown, J(gn) → β ∈ (0, θ) for n → ∞, will then be an easy consequence of it. By 
the triangle inequality, (25) and (37), 

|J (un) − J (fn) − J (gn)| ≤ |J (un) − J (gn) − Pn (Tn − 1; ηn)|
+ |Pn (Tn − 1; ηn) − Pn (Tn; ηn)|
+ |Pn (Tn; ηn) − J (fn)| 

≤ |J (un) − J (gn) − Pn (Tn − 1; ηn)| + 2ε + ε.� (40) 

In a very similar manner to (33)–(36) (see also [7]), it is possible to show in 
analogy to (37) that 

4ε |J (un) − P (T0; ηn) − J (gn)| ≤ c 2 

c2 − c0
2 + δ2 + 3K(1 − cos δ) = ε�− 2ε, (41) 

with ε� as in (37). This inequality implies together with (40) 

|J (un) − J (fn) − J (gn)| ≤ ε�− 2ε + 2ε + ε�= 2ε,�
thus for sufficiently large n 

|J (gn) − (θ − α)| ≤ 2ε�+ ε, 

and switching to a subsequence if necessary, we find that the limit 

lim J(gn) =: β 

exists, and that 0 < β < θ, by choice of ε0 in (38). This finishes the proof. 

5. Proof of the main result. We prove the existence of a heteroclinic wave by 
ruling out two of the three cases in the concentration-compactness Lemma 4.1, 
namely vanishing (possibility (ii)) and splitting (possibility (iii)). 

Lemma 5.1 (No vanishing). Let c2 > c2
0 and (un)n∈N ⊂ M−π,π be a minimising 

sequence for J . Then (un)n∈N does not vanish. 
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Proof. The argument is by contradiction. Suppose that (20) holds. Fix T � 1, 
ε > 0 and let N ∈ N be such that for all un with n > N �� η+T � η+T −12 2�2 �2c c0 

2
u�n(τ) dτ − Aun(τ) dτsup 

2η∈R η−T η−T � η+T 

η−T 

ε 
K [1 + cos (un(τ))] dτ ≤+ . 

T 

Observe that for supersonic waves the quantity on the left-hand side is always non­
negative since the first term dominates the second one by (10), and the on-site 
potential 1 + cos(ξ) ≥ 0 non-negative for every ξ ∈ R. In particular, 

c2 − c0
2 

2 c2
2 c0

2 
2 ε 

2 
�u��L2 (−T,T ) ≤ 

2 
�u��L2(−T,T ) − 

2 
�Au�L2(−T,T −1) ≤ 

T 

holds, hence �u��L2(−T,T ) ≤ 4ε . We claim that this implies 
T (c2 −c2

0) 

8ε |u(T ) − u(−T )| ≤ 
c2 − c0

2 =: ε1. (42) 

To see this, consider the auxiliary variational problem 

Maximise v(2T ), subject to v(0) = 0, �v��L2 (0,2T ) = α (43) 

on H1(0, 2T ). Since 

|v(2T )| = 
� 2T 

0 
v�(s) ds ≤ �v��L1(0,2T ) ≤ 

√
2T �v��L2(0,2T ) , 

where equality holds only for v� = const., we conclude that the maximum must 
αs α

√
2Tbe attained by the linear functions v(s) = ± √

2T 
, which yields v(2T ) = as 

maximum. 
Since J is invariant under the transformation τ �→ τ + τ0 for arbitrary τ0 ∈ R, 

we may assume without loss of generality that un(0) = 0 for all n ∈ N. It follows � T 

K [1 + cos(u(τ ))] dτ ≥ K (1 + cos (ε1)) 2T. · 
−T 

This, however, is a contradiction to � η+T 

sup K [1 + cos(u(τ ))] dτ < ε 
η∈R η−T 

for ε small enough. 

Lemma 5.2 (No splitting). Let (un)n∈N ⊂ M−π,π be a minimising sequence 
for J . Then, for every c with c2 > 9

8 c0
2 , (un)n∈N does not split in the sense of 

Lemma 4.1 (iii). 

Proof. The condition c2 > 9
8 c

2
0 ensures that 

c2
c
−
2 

c2
0 

< 3, thus k ∈ {0, 1} in the 

statement of Lemma 3.2, so any minimiser u0 of J |M−π,π satisfies �u0�L∞(R) < 3π. 
By the same arguments as in the proof of Lemma 3.2, the same L∞(R)-bound 



� � � 

� 

����� � � 
����� 

����� 
����� 

15 TRAVELLING WAVES FOR THE LATTICE SINE-GORDON EQUATION 

applies to the members of a minimising sequence (possibly after dropping finitely 
many of them); indeed, if J(un) − inf J |M−π,π < δ then, in analogy to (17), 

2− c0)K ≤ J(un) ≤ 8c
√

K + δ, 8(2κ + 1) (c2 

2 8
√

c2K+δ 
8
√

(c
so if < 3, as guaranteed by assumption, then < 3 for δ smallc

2 2 2
0
2)Kc −c0 −c

enough.

Suppose now, for a contradiction, that (un)
n∈N splits. Let ε > 0 and choose, as 

+ gn − π) < ε. Thenin the proof of Lemma 4.1 (iii), fn, gn such that |un − (fn 

the L∞-bound �un�L∞(R) < 3π shows k± ∈ {−1, 0}, see Equation (
|

26). For given n 

kn 
+, and kn

−, we can immediately determine the values of fn(∞) − fn(−∞) respec­
tively gn(∞) − gn(−∞) from (28) respectively (39); recall the boundary conditions 
un(∞) − un(−∞) = 2π. This straightforward calculation yields 

fn(∞) − fn(−∞) = 0, gn(∞) − gn(−∞) = 2π (if kn 
+ = kn

− ∈ {−1, 0}), 
or fn(∞) − fn(−∞) = 2π, gn(∞) − gn(−∞) = 0 (if kn 

+ = 0, kn
− = −1), 

or fn(∞) − fn(−∞) = −2π, gn(∞) − gn(−∞) = 4π (if kn 
+ = −1, kn

− = 0). 

Thus, let f̃  
n be defined by f̃  

n(τ) := fn(−τ). Then for each n ∈ N one of the three 
functions fn, gn and f̃  

n belongs to M−π,π. Let this function be denoted by ũn. As 
both 

lim J(fn) < inf J(u) and lim J(gn) < inf J(u), 
n→∞ u∈M−π,π n→∞ u∈M−π,π 

by Lemma 4.1 (iii), there exists a subsequence of (ũn)n∈N, not relabelled, such that 

lim J(ũn) < inf J(u) = lim J (un) , 
n→∞ u∈M−π,π n→∞ 

a contradiction to the fact that (un)n∈N is a minimising sequence in M−π,π . 

Now we are in a position to prove the main theorem 2.2. 

Proof. The Modica-Mortola bound (13) implies that J is bounded from below on 
X. Let (un)n∈N be a minimising sequence in M−π,π. We know from Lemma 4.1 
that (un)n∈N has to concentrate, or vanish, or split. Lemma 5.1 rules out vanishing, 
and Lemma 5.2 rules out splitting for c > 8

9 c0
2 . Thus (un)n∈N must concentrate. 

Hence, for fixed ε > 0, it is possible to choose a sequence (ηn)n∈N ⊂ R and T0 > 0 
such that 

|J (un) − JT0 (un; ηn)| < ε. 

We write wn(τ) := un (ηn + τ). The sequence (wn)n∈N is bounded in X, since 
2 J (un) and w(0) < 3π by (15) and Lemma 3.2. As2 2�wn

� �L2(R) = �u�n�L2 (R) ≤ 
c −c0 

| |
X is a Hilbert space, there exists a subsequence, not relabelled, which converges 
weakly. On the interval [−T0, T0], the weak convergence of (wn)n∈N implies strong 
convergence in L2 (−T0, T0) and C0 [−T0, T0] to some limit u. Hence for all n > N , 
N sufficiently large, � T0 −1 

−T0 

(Awn(τ))2 − (Au(τ))2 dτ < ε 

and � T0 

−T0 

[cos (wn(τ)) − cos u(τ)] dτ < ε. 
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As the weak convergence implies �u�� 2 ≤ lim infn∈N �w� 2 we L2(−T0,T0) n�L2(−T0,T0)
, 

may conclude JT0 (u) ≤ lim infn∈N JT0 (wn; 0). 
We now extend the domain of u inductively to R. Take any monotone sequence 

Tk →∞ with k ∈ N0 and assume that u has already been defined as uniform limit 
of (wn)n∈N on the interval [−Tk, Tk]. As (wn)n∈N is still bounded in X we can again 
choose a subsequence, not relabelled, which converges uniformly in C0 [−Tk+1, Tk+1] 
to some limit ũ, which, by construction, coincides with u on [−Tk, Tk]. 

It follows that this function u on R satisfies the boundary conditions (5) and, 
with a constant C = C (c, c0, K), 

J(u) = lim JT (u; 0) ≤ lim lim inf JT (wn; 0)

T →∞ T →∞ n→∞


≤ lim lim J (wn) + Cε = lim J (un) + Cε; 
T →∞ n→∞ n→∞ 

in particular u� ∈ L2(R), thus u ∈ M−π,π. As ε was arbitrary, the previous inequal­
ity shows 

J(u) ≤ lim inf J (un) . 
n→∞ 

This means that u is a minimiser of J on M−π,π, and the theorem follows from the 
fact that (2) is the Euler-Lagrange equation of J (in the sense of Lemma 2.1). 
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