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ABSTRACT 
 
In recent years, collaborative research between academia and industry has intensified in 

finding a successful approach to take the information from a computer generated drawings of 

products such as casting dies, and produce optimal manufacturing process plans. Core to this 

process is feature recognition. Artificial neural networks have a proven track record in pattern 

recognition and there ability to learn seems to offer an approach to aid both feature 

recognition and process planning tasks. This paper presents an up-to-date critical study of the 

implementation of artificial neural networks (ANN) applied to feature recognition and 

computer aided process planning. In providing this comprehensive survey, the authors 

consider the factors which define the function of a neural network specifically: the net 

topology, the input node characteristic, the learning rules and the output node characteristics. 

In additions the authors have considered ANN hybrid approaches to computer aided process 

planning, where the specific capabilities of ANN’s have been used to enhance the employed 

approaches. 

 
 
1. BACKGROUND 

Over the last twenty five years, computers have been employed to greater extents, to aid the 

design and manufacturing processes. All parts are designed and detailed using computer aided 

design (CAD) packages such as Pro/Engineer and the computer numerically controlled 

machines (CNC) are common place even in jobbing shops. Computer aided process planning 

(CAPP) is the core element for genuine integration of CAD and CNC. Die casting is a method 

to produce finished metal components by forcing molten metal into a suitable metal die under 

pressure. The dies investigated in this research are for cold chamber die casting and are 

normally manufactured from heat treated chromium alloy steels such as H13. Figure 1 shows 

a typical casting die, with its variety of machined features. The usual configuration of a die is 
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a cavity which is filled by the molten metal to form the external profile of the component. In 

addition a die will include features such as feed tracks, overflow feeders and holes for ejection 

pins. Quality and cost are the key factors for die casting companies, which are dependant on 

rapid interpretation of design and optimal CAPP. 

Figure 1 Twin cavity casting die for mounting plate 

 

Although computer aided manufacturing packages such as DellCam Powermill™ are 

employed to find the optimal sequence to machine each feature, the jobs of interpreting the 

die design drawings and development of the manufacturing sequence strategy are left to the 

CNC programmer on the shop floor. The programmer will be under strict time constraints, as 

well as the monitoring of other machines on the shop floor. It is likely this will not be the 

optimal sequence for the part, and it is more likely to be the easiest for him/her to program. 

This is squandering valuable production time on the machine. To improve the die design and 

manufacturing, two issues should be considered: design input extracted from a CAD model 

(e.g. a feature-based model) by feature recognition, and acquisition and representation of 

process knowledge.  

  

1.1  Feature recognition 

Zhang and Atling (1994) have defined features as “the generic shapes with which design and 

manufacturing engineers associate attributes and knowledge as useful in reasoning about a 

given product”. As one of major feature technology, feature recognition has been identified as 

the key tool to integrate design and manufacturing processes.  A variety of recognition 

methods have been forwarded to date. Such as: The logic approach (Sadaiah et al 2002), 

where a geometric feature extraction is carried out by browsing *.txt files in SolidWorks 

application protocol interface. Recognition is performed by extracting forms with the patterns 
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in a database. The limitation of this approach come from ambiguous representations and 

predefined rules needed for multiple features, making it inflexible. Also, the volume 

decomposition method (Kim, 1992), here the features are decomposed into cells (unit 

volumes). All cells that have common faces or co-planar faces are merged to get maximum 

cells and that can be removed in one singular machining operation (Sakurai and Chin, 2002). 

A limitation of this approach comes from the limited features it is applicable for. Also, the 

large number of possible cell combination per feature, produces enormous time complexity.  

These approaches are also limited by the amount of manual interaction/ processing required.  

These conventional methods have their own advantages and disadvantages, however, there 

are some common problems hindering their practical applications, such as inability to learn, 

limited range of recognition, low speed, etc. A die is constructed from various machined 

features these include: the main product cavity, overflow pockets, air release slots, core block 

slots, runner slots and a variety of holes for ejection and core pins. The features, such as 

product cavity, may have high-index surfaces. In addition most features are highly radiused 

and contain draft angles to aid component ejection. Thus feature interactions and high 

algorithmic complexity, are still the problems that need to be solved for feature recognition in 

die manufacture.  

 

1.2 Computer aided process planning 

The nature of process planning for manufacturing systems is both dynamic and complex. It 

presents a complete description of manufacturing capabilities and requirements for processing 

of product. The core components of CAPP are the selection of suitable set-up plans for 

process resources and sequencing processing operations so that corresponding objective can 

be obtained: such as the least processing cost of the part, the minimum tardiness or combined 

objective (Ding et al., 2005). Normally using a feature-based component model (usually pre-

processed by a feature recognition method) as the input, CAPP evaluates the design for its 

manufacturability and generates a viable process plan through geometric and technological 

reasoning. During these tasks, machine and cutting tools, jigs and fixtures, etc. also need to be 

considered. Research by Mamalis et al., (1994) has shown that effective CAPP can result in 

reduction of up 50% in manufacturing time. This relates to a 30% reduction in production 

costs. In the contemporary manufacturing environment this is vital to competitive enterprise 

and ability to respond rapidly to market changes (Zhou et al., 2007). The push and adaption of 

integration of CAD and CAPP based on feature recognition has recently been shown for 

injection moulding sets (Alam et al., 2003) and packing forming sets (Hicks et al., 2007). A 

large amount of work has been carried out in CAPP area, using both retrieval and generative 

methods, with varying degrees of success, but some questions still need to be answered, such 
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as automated sequencing strategy and evaluation technique for manufacturability. Die 

manufacturing process planning has its own characteristics; for instance the finishing of the 

die cavity is normally performed via pre-made electrodes on electro discharge machines 

(EDM). The area where the advancements can be made lies in the blocking of die and 

profiling, roughing of the cavity, machining of holes for core and ejector pins and the relevant 

slots and pockets relating to overflows, core block slots and feeds 

Prior work has been performed in this area, by both industry, such as CAMWORKS™, 

Esprit™ and, academia with Featurefinder (Little et al., 1998; 1999) which is based on an 

algorithm using adjacency graphs. These systems have achieved varying degrees of success 

with CAPP and feature recognition, but manufacturer of the commercial packages offered to 

date can only offer 2½ D features at present. Also, these approaches do not retain the ability 

to learn which artificial neural networks can offer.  

1.3 Paper structure 

ANN’s have a proven track record in pattern recognition (Kulkarni et al., 1998), and there 

ability to learn offers an approach to aid both feature recognition and process planning task. 

Therefore, the authors have identified ANN in offering the best potential for this research. 

With this mind a review of the ANN’s has been needed so the readers of this article can 

understand the research area in which the authors have surveyed. The motivation in producing 

this review is to investigate solutions to find the optimal process plans of die-casting dies and 

their inserts. The contribution of this paper is two-fold. Firstly, it will critically present the 

current state-of-the-art in using ANN and hybrid solutions to feature recognition and CAPP. 

And secondly, it will discover the limitations of currently applied approaches and identify the 

directions for the continuing research to produce automated, optimal process plans for the die-

casting dies. The remainder of the paper is structured as follow: section 2 introduces the 

neural network, its architecture, input requirements, output form, and the varieties of ANN 

that have previously been applied to this field. Section 3 introduces the feature input 

preparation techniques. Section 4 presents the application of ANN to CAPP.  Section 5 offer 

discussions of the current state-of-the-art and its potential when applied to die manufacture, 

and section 6 presents the concluding remarks for the paper. 

2. ARTIFICIAL NEURAL NETWORKS 

An Artificial Neural Network is a system loosely modelled on the human brain.  The origins 

of such networks can be traced back to the 1940’s when McCullock and Pitts (1943), who 

presented a mathematical model of the biological neuron. A model of an artificial neuron is 

shown in Figure 2. 
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Figure2 Model of artificial neuron 

 

The function of a neural network is to produce outputs when presented with inputs. Within a 

neural network each neuron is linked to certain of its neighbours with varying coefficients of 

connectivity these represent the strengths of these connections. Learning is accomplished by 

adjusting these strengths to cause the overall network to output appropriate results. Figure 3 

shows the configuration of a typical three layered neural network, associated with feature 

recognition. ANN’s can be regarded as an adaptive and learning technique, and has several 

advantages over other methods employed in feature recognition and CAPP. They can tolerate 

slight errors from the input during learning or problem solving. In general they are faster, 

because the process is limited to simple mathematical computations and do not use either a 

search or logical parse information. ANN’s, also retain the ability to derive rules or 

knowledge through training with examples and can allow exceptions and irregularities in the 

knowledge/ rule base. For the evaluation process of ANN for CAPP and feature recognition, 

we must consider the four key factors of functionality, the network topology, input node 

characteristics, learning (training) rules, and output node characteristics. The ANN’s 

performance is closely related with their architecture design; in most papers reviewed the 

authors have strived to find an optimal architecture in respect of function and performance. 

The assumption in this paper is that all the research reviewed has found the best network for 

the input representation strategy and application it has been applied too and so, is reviewed 

against these criteria. 

 

2.1 Types of artificial neural networks 

In general, there are three main ANN architectures have been employed by researchers in the 

process of feature recognition and computer aided process planning, these are: feed-forward, 

self organizing maps and recurrent. 
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2.1.1 Feed-forward networks.  

In this type of network, the neurons are strictly feed-forward i.e. towards output, to activate 

the neurons in the next higher layer. In such networks there are no connecting arcs feeding 

back ‘upstream’ neuron. For a typical single-layer feed forward network, its input neurons are 

fully connected to output neurons, but not vice versa.  The input neurons are not connected to 

each other and the output neurons are not connected to other output neurons. In order to 

constrain the value of each neuron on the current layer, various transfer functions are applied. 

For instances, a sigmoid function can be used to limit each neuron ranging from 0 to 1: 
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1)(                                                                                                          (1) 

The Bipolar sigmoid function is also commonly used function to make the output fall in a 

continuous range from –1 to 1. It is closely related to the hyperbolic tangent function, which 

can be described (approximated) as the following equation 2. Santochi and Dini (1996) found 

this is the best function for cutting parameters selection, in their three-layered FF network. 
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The linear or Ramp function (cf. equation 3) has also been employed 

f (x) = x                                                                                                                        (3) 

While optimizing their network, Deb et al (2006) found a linear transfer function on the input 

layer and a sigmoid function on the hidden layer best suited the recognition of machined 

features on radial parts. The general consensus from most the reviewed work states that, the 

sigmoid functions are generally desirable for the feature recognition problem. 

The three-layer FF neural network.  This topology (cf. figure 3a) has an input, a hidden and 

an output layer. Neurons on the output layers are defined from the neurons on the previous 

layer, the weights and a processing algorithm.  For example, in Chuang's system (Chuang et 

al., 1999), the lth neuron on the current layer, Nl can be calculated as: 
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,                                                                                                              (4) 

Where uk is the kth neuron on the previous layer, and wkl is the weight representing the 

strength of the relationship between the kth neuron on the previous layer and the lth 
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neuron on the current layer. 

Further, for the neuron on the output layer, the value is converted into 0 or 1 by an appropriate 

thresholding scheme.  

There have been other instances of using three-layer feed-forward neural networks, such as on 

3D feature recognition. (Jun et al., 2001), used sets of scanned points to recognise features 

associated with prismatic parts. Wong and Lam (2000) used the topology to recognize 

orthogonal and non-orthogonal machined features. Li et al (2000) employed such a network to 

investigate interacting feature. Ding and Yue (2004) recognized machined features on 

prismatic components. The core reason quoted by most authors for using this network 

architecture was its proven track record in pattern recognition and in previous feature 

recognition research. 

Figure 3 Three and four layered FF networks 
 

 
The four-layer FF neural network.  The three layered network has one hidden layer, this 

may be sufficient to estimate any continuous function, it is unlikely to be optimal in terms of 

learning time or implementation effort. If one hidden layer is employed then it may require an 

infinite number of neurons to approximate a given the function. The use of two hidden layers 

can avoid this assumption (Chester, 1990). For this reason Ozturk and Ozturk (2001) used a 

standard four layered ANN for primitive circular and rectangular feature recognition. Nezis 

and Vosniakos (1997) also used four layers, but with a different topology: an input, a hidden, 

an output, and a threshold layer which is added to the network as the training is completed (cf. 

figure 3b). The threshold layer performs the function of activating the neurons of the output 

layer by a threshold, e.g. 0.5.  All elements of the hidden and output layers are connected with 

a bias element that can be considered as an activation threshold.  Although an optimized four-

layer feed-forward networks is more versatile than an optimized three-layer feed-forward 

networks, they train more slowly due to the attenuation of errors through the non-linearities 

(Principe et al., 2000). 
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The five-layer, perceptrons quasi-neural network. Prabhakar and Henderson (1992) 

developed a five-layer, perceptrons quasi-neural network system called PRENET.  The 

system has five layers which respectively, consist of N nodes, N groups of M nodes, N nodes 

with a threshold non-linearity, M nodes corresponding to the M conditions for a feature, and 

one node, where N is the number of faces in the test part and M is the number of conditions 

required for the feature. Their four stage approach involved converting the input vectors of a 

row into single integers called codes. Searching for the integers corresponding to that feature 

definition. From this definition, finding the faces that satisfy the conditions specified for the 

feature. Then, producing the recognition result to the node in the 5th layer by an AND 

operation. 

 

2.1.2 Self organizing maps. The self-organizing map (SOM) is closely related to feed 

forward neural networks. Its topology is a single layer network where the inputs are 

connected to all output neurons. These output neurons are arranged in low dimensional grid. 

A weight vector with the same dimensionality as the input vectors is associated with every 

neuron. The main attributes of SOM and their variants are their ability for competitive 

learning and to cluster data. Two variants of SOM have been identified in feature recognition, 

Kohonen (Kohonen, 1987) and Adaptive Resonance Theorem (ART) (Carpenter and 

Grossberg, 1987) Meeran and Zullfifi (2002) used a Kohonen self-organizing feature map 

(SOFM), the structure of which is shown in Figure 4a. This is capable of recognition of non-

orthogonal interacting features. The SOFM was used to cluster the vertices of interacting 

features, by combining Boolean operations to breakdown the interacting feature to extract 

volume data for the feature. Lankalapalli et al., (1997) used an ART2 network to recognise 

nine machined features. The structure of an ART network can be seen in Figure 4b, which 

comprises bi-directional interconnections between a set of input nodes neural network. The 

use of this network gives the potential to enable decomposition and recognition of a variety of 

interacting features but the method does not suffer from combinatorial explosion. 

Figure 4 Self organizing maps 
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2.1.3 Recurrent networks.  

Recurrent networks differ from the feed forward neural network in that it has at least one 

feedback. Recurrent networks are dynamic; their 'state' is changing continuously until they 

reach an equilibrium point. They remain at the equilibrium point until the input changes and a 

new equilibrium needs to be found. The term of recurrent is also referred to feedback 

architectures, although recurrent is often used to denote feedback connections in single-layer 

organisations (Picton, 1994). Typically recurrent networks include Hopfield network, Maxnet, 

and recurrent back propagation net. 

 
Figure 5 Hopfield network 

 

Hopfield network. The Hopfield network is a single layer recurrent network that uses 

threshold process elements and an interconnect symmetric matrix as shown in Figure 5.  The 

Hopfield network has only one layer and the nodes are used for both input and output 

(Hopfield and Tank, 1985). A minimum point or attractor has been demonstrated to be 

existence in this network, which corresponds to one of the stored patterns.  The dynamics of 

the Hopfield network can be described by the state of an energy function which eventually 

gets to a minimum point.  Wang and Liu (1993) exploited the ability of a Hopfield net to 

recognize basic features on a CAD drawing. At the time of their publication this network 

offered superior processing for their approach against contemporary algorithms 

Brain-State-in-a-Box (BSB).  As a discrete-time recurrent network with a continuous state, 

the output values of a BSB, consists of interconnected neurons, which are dependant on: the 

learnt patterns, the initial values of given patterns and the recall coefficients.  The motion of a 

BSB network can be described by the following equation (Principe et al. 2000): 

))()(()1(
1
∑
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A BSB can be used as a subnet for decision feedback applications, because it amplifies the 

present input until all neurons saturate, and eventually converges to one of the corners of the 

hypercube [-1,1]n. The prime limitation of the BSB network comes from the fact that, the 

location of the attractors must be predefined as the vertices, on the aforementioned hypercube. 

MAXNET. MAXNET is a competitive network, in which only one neuron will have a non-

zero output when the competition is completed. The network consists of interconnected 

neurons and symmetric weights.  There is no training algorithm for MAXNET and the 

weights are fixed (Fausett 1994).  Its application procedure includes two steps: activation and 

initialisation of weights, and updating the activation of each unit until only one unit responds. 

MAXNET is suitable for situations where more information is needed than can be 

incorporated.  

Similar to feature recognition, the above ANN architectures are also widely adopted in the 

applications of CAPP, which will be further discussed in section 4.  

2.2 Input and output node characteristics 

2.2.1 Input node characteristics 

Neural networks, typically, although not necessarily, receive an n-unit vector. Each unit of the 

input vector could be a) integer value, which is given a particular integer instead of the 

original value; b) real value, which is encoded with numerical values ranging from 0 to 1; and 

c) in binary form, which is represented by only two characters (i.e. 0 and 1). The problem 

then is how to convert product model (i.e. geometry and topology) and engineering 

information (i.e. tolerances, materials and operations) to a format suitable for neural network 

input in a convenient and efficient way. There are three aspects to be resolved:  

1. Complete and precise information: It is extremely important that this representation 

describes input information completely, and does not distort any information. 

2. An identifiable format: Each piece of the input information, such as a feature 

belonging to different class, or an attribute leading to different decisions, must have a 

unique input representation without overlaps.  

3. Numerical encoding: Based on the characteristics of neural networks, the input 
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parameters need to be converted into numerical values, like the three general formats 

mentioned above: integer value, real value and binary form. The type of encoding 

relates back to the recognition technique employed. 

Various examples of this process have been: Afzal and Meeran (2006) transformed pixcelated 

*.AVI pictures of machined features into a chain of code of integers. Ding et al (2005) 

produced a vector of integers related to recognized feature, Deb et al (2001; 2006) used a 

vector of binary number for the same purpose. In order to determine feature clusters, Chen 

and LeClair (1993) represented a feature with a (6+n)-unit vector in binary form, which 

defines the six approach directions and n tool types. Park et al. (2000) defined the input values 

from 0 to 1 according to its real values, e.g. 0.5000 for a hardness unit for a real value of 225 

BHN, and 0.4366 for a cutting speed unit for a real value of 80 m/min. Park et al. (1996) used 

15 input parameters concerning seven factors, such as the feature type, ratio of feature width 

to depth, tool length, and tool material.  A class number is given for each parameter based on 

its real value, e.g. the class number is 6 if the ratio of selected tool length over standard length 

is 2.  Osakada and Yang (1991) converted the cross-sectional shape data of the product into 

standardized image data for the input.  They use 12 "colours" to represent 12 outer or inner 

geometric primitives, such as cylinder and cone.  Half of the product shapes are converted 

into a 16*16 "colour" data image.  These 256 units are regarded as the input to the neural 

network.  This representation can only be used for rotationally symmetric products. The input 

representation is crucial for the success of neural network; the conversion of input format for 

feature recognition will be further discussed at Section 3. 

2.2.2. Output node characteristics 

In the reviewed literature, five main output formats have been proposed: Output vector in 

ordered binary form, output vector with special values, one-unit output in binary form, one-

unit output in integer form and output matrix. 

Output vector in ordered binary form.  The output vector is usually applied for operation 

selection, machine or cutting tool selection. Commonly, it consists of a number of neurons, 

each with a value (i.e. 0 or 1) showing whether the corresponding item (machining operation, 

machine tool or cutting tool belongs to the process plan or not. For instance as output vector 

consists of eight neurons representing respectively drilling, reaming, boring, turning, taper 

turning, grooving, grinding and precision.  If the value of a neuron is '1', the corresponding 

operation is needed for the feature; otherwise, the value is '0', e.g. a hole requires the drilling 

operation, so the first neuron is assigned the value '1'.  The sequence of the vector represents 

the sequence of the operations, e.g. reaming is usually performed after drilling. Li et al (1994) 
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used a 4-neuron vector corresponding to the abrasive type, grade, grit size and bond, for 

grinding.  Le Tumelin et al (1995) designed a 23-neuron vector. Joo et al. (2001) used a 11-

neuron vector corresponding to Machine type, Table size(L), Table size (W), Table load 

capacity, Stokes, x,y and z, Spindle power, speed range, feed-range and minimum accuracy. 

Ahmad and Haque (2002) had 10-neurons relating to rough training, semi-finishing turning, 

finish turning, facing, taper turning, chamfering, form turning, cut-off, grinding and lapping. 

Output vector with special values.  Each neuron in the output vector has a possible value 

that the corresponding parameter may assume. Santochi and Dini (1996) developed a system 

for selecting the eight technological parameters of a cutting tool.  For example, to select a 

normal clearance angle αn, the number of output neurons is 5 which represent 4°, 5°, 6°, 7°, 8° 

respectively.  The neuron with the value ‘1’ represents the optimal value and ‘0.5’ a second 

choice. Many feature recognition systems adopt the output vector, each neuron of which 

represents a feature class, such as the work of Chen and Lee (1998), Nezis and Vosniakos 

(1997) and Ding and Yue (2004). In addition, Hwang (1991) applied six neurons output 

vector, each of which representing the class, name, confidence factor, the main-face name, the 

list of associated faces of the face found, and the total execution time.      

One-unit output in binary form.  This output format has only one unit whose value is either 

0 or 1 (Mei et al. 1995).  The output shows which surfaces should be used as manufacturing 

datum’s.  For instance, '1' means that the surface will be used for the part setups and '0' means 

that it has nothing to do with part setups. 

One-unit output in integer form.  Each discrete integer is concerned with a special class 

(Chen and LeClair 1993).  The output integer represents a cluster of features according to the 

approach directions and the tool types. 

Output matrix.  Shan et al. (1992) devised a binary incidence matrix V (n*n) in which the 

rows denote operations and the columns correspond to sequences.  The value ‘1’ indicates 

that a specified operation is performed.  Because each operation is performed only once and 

only one operation is carried out at a time, one and only one of the entries in each row and 

column should take the value of 1 whereas the rest should be set to 0. Zulkifli and Meeran's 

system (1999) is another typical example: the output is a binary matrix O=[b ij], 1≤ i ≤ 2, 1≤ j 

≤5, with b1j representing the code for the feature recognised, and b2j showing the tool 

accessibility to machine the feature, namely +x, -x, +y, -y and -z directions. 
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2.3 Network learning strategy 

The learning ability of an ANN is established by its architecture, and the method chosen for 

training. The term machine learning algorithm has been applied to ANN, since altering the 

connection weights causes the network to learn the solution to a problem. The strength of 

connection between the neurons is stored as a weight-value for the specific connection. The 

system learns new knowledge by adjusting these connection weights.   The training process is 

classified as supervised learning or unsupervised learning.  

 

2.3.1. Supervised training.  In producing this survey, the authors noted, that most ANN’s 

employed for feature recognition use supervised training with a back propagation (BP) 

algorithm (Ding and Yue, 2002, Zulkifli and Meeran, 1999, Marques et al., 2001). With BP 

algorithm, the network gives reinforcement for how it is performing on a task. The actual and 

desired outputs are compared, and the network's error is calculated as the difference between 

its output and target. Information about errors is also filtered back through the system and is 

employed to modify the connections between the layers, giving improved performance. After 

a number of iterations, the output will converge towards the target (Nezis and Vosniakos 

1997, Ding and Yue 2004 and Chen and Lee 1998). Basically, the BP algorithm consists of 

two basic steps: 

• initialisation of  weights; for example, in Gu et al.'s work (1997) all the weights were 

initially randomly set in the range 0 to 0.1; and 

• repetition of training until the error is acceptably low. For instance, Gu et al. (1997) 

mapped the selected pattern pairs to reinforce the weights until the deviation between 

the training output and the target of each sample converged to a pre-defined error goal 

(e.g. 0.05). 

Back-propagation methods have proven highly successful for applications (Ahmad and Haque 

2002, Deb et al. 2001). Currently, four major groups under BP methods are adopted:  

The Delta Rule. One of the back-propagation learning algorithms is the delta rule, which is 

based on cumulative error; known as the least mean squares.  This learning rule changes the 

connection weights, so as to minimise the mean squared error between the network output and 

the target over all training patterns. Sakakura and Inasaki (1992) chose the delta rule for both 

a feed-forward network and a BSB network.  In the three-layer feed-forward network, the 

weight connecting neuron j in the hidden layer to neuron k in the output layer is updated as 

follows: 

 13



∑=Δ
p

pjpkfkj ow δη                                                                                                         (7) 

)(')( pkpkpkpk afot −=δ ,   where                                                                                  (8) 

f() is the output function of neuron, ηf is the learning coefficient of the FF network, 

p is the learning pattern number, tpi is the learning value of neuron i for learning pattern 

p, api is the status value of neuron i for learning pattern p, and opi is the output value of 

neuron i for learning pattern p. 

For the BSB network, the modified value of the weight which interconnects neuron m and 

neuron n is calculated as the following: 

∑ −=Δ
p

pnpnnmpmbmn ttwtw )(η ,   where                                             (9) 

ηb is the learning coefficient of BSB network, and tji is the learning value of neuron i for 

learning pattern j. 

The principle drawback of this method is its sensitivity to the result of initialization of the 

synaptic weights, and the slowness of the convergence rate (Johannet et al., 2007). To 

overcome this, the Levemberg-Marquart approach is normally employed.  

Levemberg-Marquardt Approximation. A back-propagation algorithm using the 

approximation of Levemberg-Marquardt is also used in some applications (Santochi and Dini, 

1996).  This algorithm allows a better performance in terms of training time. However, it may 

require a very large storage space for some complex situations. The matrix of the connection 

weights is updated through the following equation: 

eJUJJw TT 1)( −+= μ ,   where                                                                    (10) 

J is the Jacobian matrix of derivatives of the errors to each weight wi,j, μ is a scalar, 

U is the unit matrix, and e is the error vector of the network. 

Conjugate Gradient Algorithm. Conjugate gradient algorithms make a search along 

conjugate directions, which produces generally faster convergence than in the steepest 

directions. In general, weights are updated by an optimal distance (learning rate, αk) along the 

current search direction  

W(k+1)= W(k) +αkdk.        (11) 
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dk is the steepest descent direction, which is chosen as a linear function of the current 

gradient (gk) and the previous search direction (dk-1) 

Batch Training. Either the delta rule or the Levemberg-Marquardt approximation is used as 

the on-line learning rule.  The batch training is an off-line training process.  Rather than adjust 

the weights after each pattern presentation, batch training accumulates the errors over the 

whole training set, and adjusts each weight according to the accumulated errors.  It can 

generally be expressed as follows (Principe et al., 2000): 

 

∑=Δ
p

inoutji Hw δη ,   where                                                                                      (12) 

the subscripts in and out refer to the net input and output signals associated with a given 

unit, and i and j refer to the connection from unit i to unit j. 

The form of δ varies depending on the type of layer to which the formula applies.  In some 

cases it is advantageous because of its smoothing effect on the correction terms and increasing 

of convergence to a local minimum. Because of this effect Devireddy and Ghosh (1999) 

trained a system with a batch training back-propagation algorithm. 

2.3.2 Unsupervised learning algorithm.  

With an unsupervised learning algorithm, the training set only contains input samples; no 

desired or sample outputs are available.  The neural network must construct an internal model 

that captures regularities in input training patterns, instead of measuring its predictive 

performance for a given input.  Hence this method is also called self-organisation. With self 

organizing maps (SOM), as used by Meeran and Zulkifli (2002), the training process is to 

associate different parts of the SOM lattice to respond similarly to certain input patterns. The 

weights of the neurons are initialized either to small random values or sampled evenly from 

the subspace spanned by the two largest principal component eigenvectors. The latter 

alternative speeds up the training significantly because the initial weights already give good 

approximation of SOM weights. When a training sample is given to the network, the 

Euclidean distance to all weight vectors is computed. The neuron with weight vector most 

similar to the input is called the Best-Matching-Unit (BMU). This can also be termed as the 

‘winning node’ (Picton, 1994). The weights of the BMU and neurons close to it in the SOM 

lattice are adjusted towards the input vector. The magnitude of the change decreases with time 

and is smaller for neurons physically far away from the BMU. The update formula for a 

neuron with weight vector Wv(t) is: 
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))()()((),()()1( tWvtDttvtWvtWv −Θ+=+ α                                                       (13) 

 

where α(t) is a monotonically decreasing learning coefficient and D(t) is the input vector. The 

neighborhood function Θ(v,t) depends on the lattice distance between the BMU and neuron v. 

In the simplest form it is one for all neurons close enough to BMU and zero for others, but a 

Gaussian function is a common choice, too. Regardless of the functional form, the 

neighborhood function shrinks with time. At the beginning, when the neighborhood is broad, 

the self-organizing takes place on the global scale. When the neighborhood has shrunk to just 

a couple of neurons, the weights are converging to local estimates.  

In CAPP applications, a logical AND/OR operation-based unsupervised learning approach is 

used.  Chen and LeClair (1993) clustered features based on the approach direction and tool 

type and then generated a process plan using an Episodal Associative Memory (EAM) 

approach.  The AND operation was applied to solve multiple approach directions for some 

features.  If the digit is 1 for the corresponding approach direction, the update weight for the 

cluster j is 

abij(s+1)=axi
(p) AND abij(s)=axi

(p) abij(s),   where                                                           (14) 

axi
(p) is the approach direction sub-pattern, <+x,+y,+z,-x,-y,-z>, of pattern p. 

In the meantime, the OR rule is used to update the weight so that the probability of common 

tools can be increased.  If the digit is 1 for the corresponding tool, then bij (s+1) is modified 

according the following equation (Chen and LeClair, 1993): 

tbij(s+1)=txi
(p) OR lbij(s)=f(lxi

(p)+ lbij(s)),   where                                                          (15) 

txi
(p) is the tool sub-pattern, and f(η)=1 if η/1, else f(η)=0. 

2.4 Software environments employed 

Friendly user-interface is another issue that needs to be considered for CAD/ CAM system to 

be taken up in an industrial environment. In reviewing the published research it can be seen 

that a variety of specialized neural network toolkits and software packages have been 

employed. 

2.4.1 Specialize or dedicated software: 

• Mathworks, Matlab has a dedicated toolkit for neural network, this tool was used by 

Ding et al. (2005), Ahmad and Haque (2002), Wong and Lam (2000), Chakraborty 

and Basu (2006); 
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• Tragan-neural networks was employed by Ozturk and Ozturk (2001) and Ozturk and 

Ozturk (2004) in their research in feature recognition; 

• Neuframe4 was employed by Deb et al. (2001; 2006); 

• Neuralware was used by Korosec and Kopac (2006). 

2.4.2 Standard programming software: 

• Jun et al. (2001) developed there own environment using C++ and Open GL 

languages for geometric feature recognition. What is not evident from the hybrid 

approaches is how the ANN and other intelligent agents have been integrated. Using 

each tool individually, does not offer a sensible option for a tool being developed for 

a production environment; 

• Joo et al. (2001) implemented their neural network algorithm in the C programming 

language. 

What cannot be ascertained from the literature survey, is why the researchers have selected 

these software options? It can only be assume that for ease researchers have used the 

specialized software whereas the standard programming software offer the user more 

flexibility i.e. the need to develop or adapt the algorithm. 

3. FEATURE INPUT PREPARATION 

In the production of solid models there are two representations: Boundary representations (B-

rep) Braid (1974), and Constructive Solid Geometry (CSG) (Mäntylä, 1988).  B-rep stores a 

solid model with low level entitles such as vertices and faces, where CSG stores a ‘tree’ of 

low level primitive volumes, with respective Boolean details used to construct the solid 

model. CSG is limited due to the non-uniqueness of the CSG tree, because of this, B-rep is 

deemed more useful for the applications presented in this paper (Allada and Anand, 1996). 

Manufacturing feature recognition is a complicated process, for which entire information in a 

solid model including both geometric and topologic information needs to be input. However a 

set of integer values is the normal representation that is offered to the neural network. This 

raises the problem of how to convert a solid model to a format suitable for neural network 

input in a convenient and efficient way. Basically, there are three characteristics for a 

satisfactory input representation (Yue and Ding, 2001): 

• the solid model information (e.g. faces, edges and vertices) for feature recognition; 

• a format identifiable by the input layer; and 

• an unique input representation without overlaps. 
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The CAD representations are presented in two forms, either 2D drawing/ pictures in first or 

third projections such as Afzal and Meeran (2006). Or, in 3D orthogonal views such as 

Marquez et al (1999) and Chakraborty and Basu (2006). With 3D orthogonal views, face, 

edge, and vertex values are derived, because of this, the orientation of these models is 

immaterial (Ding et al, 2005). Orientation can be can issue these values are not derived in the 

process as shown by Wang and Liu(1993), resulting in wrong feature classification. While 

investigating the published literature, the input representation can be broadly classified into 

the following types: 

2D feature representation.  The standard representation of parts on computer generated 

drawings, are in the wire-frame profiles. These can be subdivided into connected loops of 

edges.  Peters (1992) proposed an ordered triplet (Ci, Ai, Li) to represent each edge of a 

connected loop, where Ci, Ai and Li are the curvature, interior angle and arc length of the ith 

element respectively.  An encoded feature vector of the triplet (Ci, Ai, Li) for a given profile is 

used as the input.  Chen and Lee (1998) produced an encoded feature vector, in which the 

representation of each edge is 7-tuple in the form: (Li Ai Ci Ji OLi OAi OCi) where Ci, Ai 

and Li are the curvature, interior angle and arc length of the ith element respectively, Ji is the 

intersection type between the line segment and its subsequent line segment, and OLi, OAi and 

OCi are the ordinal values assigned to Li, Ai, Ci respectively. The ordinal values are assigned 

to the parameter in order to capture the magnitudes. The input layer has thirty-five neurons 

corresponding to five edges, seven neurons representing each edge. The number of neurons in 

the layer will need to be increased as the number of edges increases. 

Graph matching method. Graph matching method organises a B-rep model of a part into a 

stereotypical sub-graphs structure where the nodes represent faces, edges or vertices and the 

arcs represent the relationships of any two entities.  Joshi and Chang (1988), De Floriani and 

Bruzzone (1989), Lentz and Sowerby (1993) have pursued this method.  The graph-based 

recognition approach has an advantage over the others due to the graph nature of B-rep-based 

solid model (Lam and Wong, 2000).  It is effective, but suffers from two significant 

drawbacks: the large computational expenditure of dealing with complex components, and the 

deficiency of dealing with interacting features. 

 

Face adjacency matrix code.  A face adjacency matrix is a 2D array of integer vectors 

converted from a solid model.  Each integer vector represents a face and its relationship to 

another face, i.e. adjacency or common edge.  The length of an integer vector depends on the 

number of parameters considered for the recognition of a feature.  In Prabhakar and 
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Henderson's work (1992), the vector has eight integers indicating characteristics such as edge 

type, face type, face angle type, number of loops, etc.  This method is limited to features 

defined by a primary face and a set of secondary faces.  It cannot differentiate between 

features with the same topology but different dimensions of compound faces. 

Face score vector The concept of face score was originally presented by Hwang and 

Henderson (1992) and employed by Lankalapalli et al. (1997) where the face score is defined 

as Fs = f(Fg , Eg, Vg, At), given that  Fg , Eg, Vg  are the information about the face , edges 

and vertices, and At gives the adjacency among the faces, edges and vertices (cf. table 1). A 

modified faced vector value assignment was proposed by Marquez et al. (2001) who 

highlighted the differences between concavity and convexity of face and edges. The edge 

scores for all surfaces the vertex score (V) can be calculated from the following equation.  

∑
=

=
m

i
iEV

1

                                                                                                              (16)  

Table 1 Assignment of value to obtain face values Value of face type 
 

  EDGE Scores  

Convex edge +0.5 

Concave edge -0.5 

Face geometry scores Fgs  

Planar surface  0.0 

Convex surface +2.0 

Concave surface -2.0 

Spline surface  0.0 

 
By adding the average value of vertex scores in the face and face geometrical value (Fgs), the 

face score (Fs) can be calculated using the following equation. 

gs

n

j

j
s F

n
V

F += ∑
−1

                                                                                                (17) 

The face score approach was also employed by Ozturk and Ozturk (2001) where the features 

are defined as input vectors in terms of vertices, edges and faces and presented to neural 

 19



network as follows: 

θ−= ∑ ij FtwijtFeature )()(                                                                              (18) 

Where Fi is the boundary representation based face score, t is the number of training patterns 

and θ is the threshold. The core limitation of this approach comes from the fact that this 

representation can recognise a very limited number of compound features, and there is no 

one-to-one correspondence between feature patterns and features. 

Attributed adjacency matrix.  An attributed adjacency matrix (Nezis and Vosniakos1997) 

describes the geometry and topology of a feature pattern is converted from the attributed 

adjacency graph (AAG) (Joshi and Chang, 1988), these are used to produce adjacency 

matrices (AM).  In Nezis and Vosniakos' research (1997), the AM is a 2D, square, binary 

matrix with two triangular areas: an upper and a lower which are the convex and concave 

spaces respectively.  AM[i, j] and AM[j, i] indicates the connection between the ith and jth 

faces of the object.  One of them belongs to the concave space and the other to the convex 

space.  The representation vector is formed by firstly breaking the AAG into sub-graphs 

which are converted into AM using a heuristic method. Then each matrix is converting into a 

representation vector (RV) by interrogating a set of 12 questions about the AM layout and the 

number of faces in the sub-graph; and a binary vector is formed combining the 12 positive 

answers and the other 8 elements corresponding to the number of external faces linked to the 

sub-graph. Major limitations to this method come from the fact it can recognize planar and 

simple curved faces, but not features related to secondary feature faces, such as dove-tail 

slots. And, although simple interacting features can be recognized, the system does not 

consider interacting features that share a common bottom face. 

F-adjacency matrix and V-adjacency matrix. To solve the problems of AAG noted above, 

an input representation with two matrices is proposed by Ding and Yue, (2004).  The input 

scheme is based on the topological and geometrical information of a feature as a spatial 

virtual entity (SVE), which is an equivalent to the volume removed from the initial material 

stock in order to obtain the final boundary of the feature. 

a) F-adjacency matrix: is defined as IF =[aij]i× j, where 1<=i<=5 and 1<=j<=5. The 

middle elements of IF, i.e. aii, show the type of the ith face, (given in Table 2 ).  Other 

elements of IF (i.e. aij, where i≠j) indicate the connection between the ith and jth faces 

of the object.  A numerical value between 0 and 9, as shown in Figure 6,  is allocated 

according to the relationship between the two faces.  The layout presentation of IF is 

symmetrical so that the input format consists of 15 nodes, a11, a12, …, a15, a22, a23, …, 

a25, …, a55. All of these faces are sequenced, firstly, according to their types and 
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relationships with adjacent faces. An example of F-adjacency matrix is given in 

Figure 7. 

Table 2 Value of face type 

Face type Value Face type Value 
Cylindrical face 1 Semi-spherical face 5 

Part-cylindrical face 2 Planar face 6 
Conical face 3 Linear-group 7 

Part-conical face 4 Circular-group 8 
 

 

 
Figure 6 Values of relationship between two faces 

 

 

 
 

Figure 7 An example of F-adjacency Matrix 

 

b) V-adjacency matrix: is defined as IV =[bij]6x6, IV showing the relationships between 

VF faces in the SVE. Where VF refers to a face that forms the boundary of its SVE, 

but does not physically constitutes the basic shape of the feature. Each row and 

column of IV represents 6 directions:+x, -x, +y, -y, +z, -z. The middle element, bii, 

shows whether there is a VF in the corresponding direction.  If in the ith direction 

(e.g. +x ), the given SVE exists a VF face, then bii = 1; if not, bii = 0.  Other elements, 

bij (i≠j), describe whether the two VFs, corresponding to direction i and direction j, 

are connected or not (i.e. 1 or 0). Similarly, the symmetric characteristic of V-
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adjacency matrix is used to simplify the input.  A vector consisting of 21 codes is 

input to the neural network, that is, b11, b12, …, b16, b22, b23, …, b26, …, b66. Figure 8 

shows an example of V-adjacency Matrix.  

To avoid a big size of matrix, if the number of faces that physically constitute features is 

larger than 5, two rules for simplification are given to generate, linear group and circular 

group. 

 
Figure 8 An example of V-adjacency Matrix 

 

2D input patterns of 3D feature volume.  Zulkifli and Meeran (1999) presented an input 

matrix based on a cross-sectional method.  The B-rep solid model is searched through cross-

sectional layers and converted into 2D feature patterns, which are then translated into a matrix 

appropriate to the network.  Four input matrices correspond to four feature classes: simple 

primitive, circular, slanting, and non-orthogonal primitive features.  There are several 

disadvantages, e.g. simple primitive features are limited to four rectangular vertices, and 

features with non-orthogonal faces in the z direction cannot be dealt with.  

 

Partitioned view-contours of a given object.  The given object is represented by nine 

partitioned view-contours from +x, -x, +y, -y, +z, -z, x, y and z respectively.  The vector is 

built in three steps. 

• A graph with a representative ring code is defined from a partitioned view-contour in 

which the nodes represent the regions and the arcs represent the adjacency relations 

among the regions; the representative ring code is a cyclic string of digits formed for 

each region based on both the graph and a two-layer octal coding system; 
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• Based on the weighting value computed with the representative ring code, the graphs 

are converted to a reference tree in which each node is associated with 6+m values 

using heuristics from several experiments, assuming each graph node has at most 

m+1 adjacent nodes; 

• The vector is then generated with the first 6+m elements for the tree root and the next 

6+m elements for the second tree node ranked, and so on. 

 

This method has shown only to be suitable for block-shaped objects with rectangular view-

contour boundaries. Feature classes were defined as: slot, step, pocket, protrusion, blind-slot, 

corner-pocket, through hole and blind hole, as shown in Chuang (1999).  

Simplified skeleton.  A simplified skeleton is a tree structure with line segments (Wu and Jen 

1996) represented by an input vector that is formed in the following process: 

• a standard tree structure in which each parent branch has the same number of 

descendants is predefined; 

• a simplified skeleton with several standard trees is represented; 

• six attributes of a branch in the standard tree to describe each real link (non-null 

assignment branch) and the spatial relationships among them are defined; and 

• the standard tree is converted into a vector in which each element corresponds to a 

branch; there can be several standard trees for a simplified skeleton. 

Although this representation can be used to classify 3-D prismatic parts, a disadvantage 

comes from the fact that only the contour information of the part is considered.  

 

 

A summary of the achievements of previous feature recognition research is presented in table 

3. 

Table 3 Capabilities of ANN-based feature recognition systems  
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Authors Limits to features recognised 

Afzal and Meeran 
(2006) 

2-D features: rectangle, slot, trapezoid, parallelogram, V-slot and triangle 

Chakraborty and 
Basu (2007) 

Slots, Circular and semicircular pockets 

Chuang (1999) 3-D block-shaped components 

Chen and Lee 
(1998) 

2-D features: rectangle, slot, trapezoid, parallelogram, V-slot and triangle 

Ding and Yue 
(2004) 

3-D Prismatic parts 

Lankalapalli et al 
(1997) 

Simple primitive features  such as blocks, step, slot, blind slot, hole and pocket 

Jun et al (2001) Simple primitive features  such as blocks, step, slot, blind slot, hole and pocket 

Marquez et al 
(1999) 

Features such as slot, blind slot, step, pocket and hole which only have planar 
faces 

Marquez et al 
(2001) 

Features such as slot, blind slot, step, pocket and hole which only have planar 
faces 

Meeran  and 
Zulkifli (2002) 

1. Simple primitive features defined by four rectangular vertices, such as step, 
slot, blind slot and pocket 

2. Circular features 
3. V slanting features, such as tapered pockets, wedges and V-slots 
4. Non-orthogonal faces in the x and y directions 

Nezis and 
Vosniakos (1997) 

1. Features such as slot, blind slot, step, pocket and hole which only have 
planar faces 

2. Simple curved faces 

Ozturk and Ozturk 
(2001) 

1. Simple primitive features defined by four rectangular vertices, such as step, 
slot, blind slot and pocket 

2. Circular features 

Wong and Lam 
(2000) 

Primitive machined features 

Zulkifli and 
Meeran (1999) 

1. Simple primitive features defined by four rectangular vertices 
2. Circular features 
3. Non-orthogonal faces in the x and y directions 

 
 

4. ANN CAPP INTEGRATION  

Computer aided process planning belongs to a group of constrained optimization problems 

that are NP-hard. These constraints are defined as hard and soft (Matthews et al., 2006). 
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Where the hard constraints are concerned with manufacturing precedence’s i.e. The hole 

must be drilled before it is reamed, and, at a higher level, soft constraints can impose 

restrictions on performance criteria, tardiness, cost etc. A variety of numerical techniques 

have been employed to propose solutions to such problems, ANN are one such technique. 

Research using ANN’s for CAPP aligns itself very closely to another NP hard problem, that 

of scheduling. A recent study by Akyol and Bayhan (2008) on ANN’s and production 

scheduling, will give the readers a good comparison to a related topic. ANNs also offer an 

encouraging approach to CAPP due to their learning ability. This section details the ANN 

techniques used in CAPP. 

Gu et al. (1997) employed a three-layer feed-forward network with a 5-neuron hidden layer 

for manufacturing evaluation. Santochi and Dini (1996) proved in their experiment that a 

three-layer feed-forward network with a suitable number of neurons for each layer is the best 

architecture for selecting technological parameters for a cutting tool using the hyperbolic 

tangent sigmoid function. Park et al. (1996) developed a four-layer neural network to modify 

cutting condition based on several tests. Their network has a 15-neuron input layer, two 15-

neuron hidden layers and a single-neuron output layer. A common factor that links 

approaches is the inputs nodes are the features attributes and the number of nodes relates to 

the number of features attributes the respective approach offers. The output layers relates to 

the number of feasible machining operations. Le Tumelin et al. (1995) proposed a 5-layer 

feed-forward network to determine appropriate sequence of operations for machining holes. 

It was shown by Hopfield and Tank (1985) that if an energy function can represent the 

optimization problem, then a Hopfield network that relates to this energy function can be used 

to minimize this function and provide a near optimal solution. Chang and Angkasith (2001), 

Yan and Qiao (2004) and Zhao et al. (2002) employed a Hopfield network for operational 

sequence planning of prismatic parts and EDM sequencing respectively. Supposing the 

number of operations is n, the network is then composed of n2 neurons, each identified by 

double subscripts: the operation and the sequence to be executed.   
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A, B, C, D and F are constants, vij is the output of neuron in position (i, j) of the matrix, 

and tki is tool travelling time form the position i to k. 

The change in energy ΔEij due to a change in the state of neuron is: 

ijij
l k

klijklij vIvwE Δ+=Δ ∑ ∑ ][ , , where Iij is a bias weight. The weight         (22)   

connecting neurons kl and ij can be found as the following: wij,kl = -Aδki(1-δlj)-Bδlj(1-

δki)-C-Dpkiφlj(1-δki)-Ftkiδlj+1,    where 
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The Hopfield network provides one of the strongest links between information processing and 

dynamics. However, spurious memories limit its capacity to store patterns. Another issue 

using ANN for such problem is the energy function generally can only define the hard 

constraints of any CAPP problem. 

BSB and MAXNET are typically used in multi-type architectures. Sakakura and Inasaki 

(1992) used a BSB with a three-layer feed-forward network in a CAPP system. The numbers 

of neurons assigned for the dressing depth of cut, dressing feed and surface roughness are: 

‘5’, ‘5’ and ‘9’ respectively. The initial values are given by a feed-forward network run at the 

same time. The BSB repeats, performing a calculation until the output value of each neuron 

converges to a certain value. Knapp and Wang (1992) utilized a co-operating architecture 

combining a three-layer feed-forward network and a MAXNET, where the MAXNET is used 

to force a decision between the competing operation alternatives. Yahia et al. (2002) proposed 

an approach, which is composed of two related feed forward with a parallel structure (cf. 

figure 9). NN1 is capable to select machining operations and NN2 is capable to select 

machining tools to be used. The limitation of these networks is that the location of the 

attractors must be predefined as the vertices of the hypercube. Not always practical for the 

applications in this paper. 
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Figure 9 Hybrid topology 

 

Table 4. Realization of ANN-based CAPP systems 

Author(s) ANN type Functions Process 

Ahmed and Haque (2002) 3-Layer FF network Operation selection 
and operation 
sequencing 

Surface machining of 
cylindrical 
components 

Ben Yahia et al (2002) Twin  Operation 
sequencing 

Machining operations 
for prismatic 
components with 
regular machining 
features 

Chambers and Mount-
Campbell (2002) 

3-Layer FF network Buffer size selection 
for operation 
sequencing 

Batch manufacturing 
operations 

Chang and Angkaisth 
(2001) 

Hopfield Operation 
sequencing 

Machining operations 
for prismatic 
components with 
regular machining 
features 

Chen et al (2005) ART1 Operation 
sequencing 

Generic process 
planning 

Deb et al (2002) 3-Layer FF network Operation 
sequencing 

Machining operations 
for rotational axis-
symmetric 
components 

Deb et al (2006) 3Layer FF network Operation 
sequencing 

Machining operations 
for rotational axis-
symmetric 
components 

Devireddy and Ghosh 
(1999) 

3-Layer FF network Operation selection 
and operation 
sequencing 

Machining operations 
for rotational 
components 
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Devireddy and Ghosh 
(2002) 

3-Layer FF network Operation selection 
and operation 
sequencing 

Machining operations 
for rotational 
components 

Gu et al (1997) 3-Layer FF network Operation 
sequencing 

Machining operations 
for prismatic 
components with 
regular machining 
features 

Joo et al (2001) Multi layered  
FF network 

Operation 
sequencing 

Machining operations 

Korosec et al (2005) 3-Layer FF network Tool path strategy 
and sequencing 

Machining operations 

Korosec and Kopac (2006) Bespoke SOM 
algorithm  

Tool path strategy 
and sequencing 

Machining operations 

Ming and Mak (2000a) Kohonen SOM Set-up planning Machining operations 

Park et al  (1996) 4-layer FF network Generation of 
modified cutting 
conditions 

Milling and turning 
for sheet metal 

Park et al (2000) Fuzzy ARTMAP 
network 

Generation of cutting 
conditions 

Milling operations 

Yan and Qiao (2004) Hopfield Operation 
sequencing 

General machining 
operations 

Zhao et al (2002) Hopfield  Operation 
sequencing 

Electro discharge 
machining 

Zhong et al (2004) Back-propagation Operational  
sequencing 

Marine pipe 
machining 

 

The CAPP approaches noted above employed ANN’s to identify machine, parameters or 

condition for manufacture. Although they aim to aid the investigation for an optimal setup 

and manufacture, they do not optimize the actual operation and the networks identified are 

limited for this purpose. Later research has investigated the use of ANN for the constrained 

optimization problem. Table 4 presents the achievements of ANN-based approaches to CAPP.  

4.2 Hybrid approaches to CAPP using ANN 

ANN techniques used to solve constrained optimization problems have major limitations, 

specifically:   

• Lack of systematic investigation of the framework and methodology of CAPP.  Most 

of solutions are designed for specific activities (e.g. tool parameters selection, cutting 

condition generation) and specific applications (e.g. cold forging, grinding 

operations), which cannot be used in different industrial environments; 

• Low efficiency and quality of process planning.  For a process planning system based 

on the machined surface, with the number of machined surface increasing, the 
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efficiency and quality of reasoning can not guarantee, especially for a complex 

component; and 

• Limited previous research has considered prismatic components.  It is mainly due to 

the complex geometrical representation of the 3D prismatic components and the 

intricate nature of cutting mechanism in milling.  It is difficult for a CAPP system to 

plan a solution for all possible components. 

To overcome some of these drawbacks, researchers have considered the integration of other 

‘intelligent’ techniques. This section presents some of these.  

Expert and ANN.  Expert systems employ explicit rules, such as manufacturing and 

production rules. However, CAPP is not only concerned with explicit judgements but also 

implicit judgements. For example, how does a system run when it cannot guarantee all 

manufacturing rules are satisfied at the same time?  On the contrary, neural networks are an 

implicit reference method, which is formed through a training process with a set of examples.  

Therefore, the incorporation of expert system and neural network techniques in a CAPP 

system can benefit from the advantages of both and make the system more flexible and 

adaptive. Ming et al. (1999) proposed a hybrid intelligent inference model combining an 

expert system and a neural network for CAPP consisting of inference functions, global 

inference control strategy, hybrid control manager, cooperative communication processor, 

hybrid process knowledge base, and CAPP inference methods.  The hybrid control manager is 

first executed to judge the initial condition, and to select the appropriate control strategy (by 

the expert system or neural network) or other functions (through the calculation function or 

optimisation function).  Other examples of this kind of hybrid approach include the systems 

proposed by Kandel and Langholz (1992) and Medsker and Liebowitz (1994). 

Fuzzy logic ANN hybrids There is often uncertainty or intangible factors in CAPP, 

especially during manufacturing evaluation, such as geometrical complexity and 

manufacturability.  Fuzzy set theory may be employed as a solution to uncertainty.  Another 

consideration comes from the fact that new manufacturing methods and technological 

developments may influence process planning, (e.g. new machine tools purchased).  Thus, 

adaptability is needed for CAPP.  Based on the above requirements, it is useful to incorporate 

fuzzy logic techniques to perform certain CAPP tasks. Chang and Chang (2000) developed an 

artificial intelligent CAPP system integrating neural network, fuzzy logic and expert system 

techniques. Their system consists of a back-propagation neural network for evaluating the 

manufacturability of important features of the component. A fuzzy logical back-propagation 

neural network (FL-BPN) for evaluating the suitability of the existing plans stored in the 

database. The FL-BPN has five layers: the input layer, membership function layer which 
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fuzzifies the crisp input values, AND layer where each neuron represents the premise part of a 

rule and is connected with an ‘AND’ operator, OR layer where each neuron represents the 

conclusion part of a rule and is connected with an ‘OR’ operator, and defuzzification layer 

which defuzzifies the final evaluating result functional modules for process planning using an 

expert system, such as manufacturing process selection, machine selection, cell selection, 

fixture selection, part setup determination, cutting tool selection, machining parameters 

calculation, and final operations sequencing.  

Amatitik and Engin Killic (2007) presented an intelligent process planning system using 

STEP features (ST-FeatCAPP) for prismatic parts. The contribution of this work was its 

ability to negate complex feature recognition and knowledge acquisition problems highlighted 

in section 3. They employed three three-layer FF network for machine operation, cutting tool 

section and feature selection, and a fuzzy logic to select machining parameters. Their 

approach maps a STEP AP224 XML data file, and produces the corresponding machining 

operations to generate the process plan and corresponding STEP-NC in XML format. 

 

Genetic algorithm ANN hybrids. A limitation of ANN’s is their tendency to become 

trapped in local minima. To solve this, ANN have been combined with Genetic algorithms 

(GAs), an algorithm with proven success in solving global problems. GA’s are combinatorial 

algorithms for search technique in solving optimisation problems based on the mechanics of 

the survival of the fittest, which have been developed from analogies of the works of Charles 

Darwin and his theories of natural selection and preservation of favoured race in the life 

struggle. Generally, a GA starts with some valid solutions generated randomly, then makes a 

random change to them and accepts the ones whose fitness functions reduced, and the 

process is repeated until no changes for fitness function reduction can be made. The 

disadvantages of using such evolutionary techniques are: evolution training can be slow for 

complex process plans and such techniques are computationally expensive. 

When problems have multi-objectives, such as minimum tardiness, minimal tool changes and 

best working practice, it becomes difficult to assign the correct weights to the GA’s fitness 

function. To assist in this problem, Ding et al. (2005) used a GA to find optimal sequence 

plans for machining, and applied ANN to allocate relative weights for different evaluation 

factors of variant components for process sequencing.  

The hybrid approach is also employed for the pre-task of CAPP, such as feature recognition. 

Orturk and Ozturk (2004) employed a hybrid approach of ANN and Genetic algorithm. The 

GA is used to find the optimal combination of inputs to be presented to the ANN, thus 

reducing computational time via the requirement of less neurons in the network. Zhang et al., 
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(2006) used a micro GA, in combination with an ANN to obtain the optimal variables for 

sequence design of cold extruded parts. Hybrid CAPP combines the advantages of neural 

network and other techniques, e.g. expert systems, fuzzy logic and genetic algorithm 

(c.f. table 5), and therefore make CAPP more effectively and more adaptively.  

Table 5.  Hybrid ANN approaches to CAPP 

Authors System 
architecture 

Function Function of hybrid 
system 

Amatitik and Killic 
(2007) 

Rule-based, fuzzy 
logic and FF ANN 

Process planning, 
including, machine 
selection and cutting 
parameters 

ANN for machine tool 
selection, recognition of 
STEP AP224 XML files 
(requires no complex 
feature recognition) The 
output is a STEP NC file. 
 

Chang and Chang 
(2000) 

Expert system, FL-
BPN 

Process planning, 
including process, 
machine selection. Part 
setup determination, 
cutting tool selection and 
machine parameters 

ANN for evaluation 
manufacturing ability of 
important features of 
components. 
FL-BPN for evaluating the 
suitability of the existing 
plans. 
 

Ding et al (2005) GA, ANN  
Machining operations for 
components with regular 
machining feature 

ANN used to adapt the 
relative weights for the 
evaluating factors for 
process sequence 

Kandel and 
Langholz (1992) Expert system, ANN Process planning 

Appropriate manufacturing 
strategy selection 
 

Ming and Mak 
(1999) Expert system, ANN Process planning 

Judging the initial condition 
and selecting the 
appropriate control strategy. 
 

Ming and Mak 
(2000b)  ANN and GA Optimal process planning 

ANN for feature 
recognition and GA for 
optimization 

Medsker and 
Liebowitz(1994) Expert system, ANN 

Process planning 
 
 

Appropriate manufacturing 
strategy selection 
 

Orturk and Ozturk 
(2004) GA, ANN 

Machining feature 
recognition for machined 
components 

Reduced computational 
time in recognition 
 
 

Zhang et al (2006) GA, ANN  

Optimal selection of 
feasible forming 
sequences of cold 
extrusion parts 

To obtain optimal variables 
corresponding to the 
optimal target 
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5. DISCUSSION 

When readdressing the objective of this work, i.e. optimal automated process plans for die-

casting dies the initial factor noticed is the lack of research into this specific area when it 

comes to the feature recognition. The following discusses the findings of this review. 

 
5.1 Feature recognition 
 
The recognition of features to be machined using ANN can be broadly divided into two 

sections: the feature input representation and the network architecture.  

 

While reviewing previous research, it has been shown that the core advantages of using ANN 

for feature recognition lies in the fact, they have the ability to learn. They can recognize and 

classify features; this negates the need to define all elements of feature when addressing new 

parts: 

 Its efficient knowledge acquisition capability owing to its ability to implicitly derive the 

rules from sample machining cases presented to the neural network; 

 Its capability to generalize beyond the original machining cases to which it is exposed 

during the training and face intermediate situations with reasonably good accuracy with 

respect to those proposed during the training; and 

 High processing speed once the neural network is trained. 

The most widely used network architectures are, the three and four layered FF networks. The 

most common stated reason for this was their proven track record in pattern recognition and 

in previous feature recognition research. Although the three is most popular, four layered is 

preferred in the situation when single hidden layer is unlikely to be optimal in terms of 

learning time or implementation effort. 

A disadvantage of ANN’s-based approaches which has lead previous researchers to 

investigate non ANN recognition solutions (Babic et al., 2008), comes form the fact that the 

recognition process is perceived as not transparent. This has lead to ANN approaches being 

called “black box processes”, where an input is forwarded and an output response received 

without the ability to observe processing. An active area of research, aims to cure this issue 

(Johannet et al., 2007; Oussar and Dreyfus, 2001). The search for a ‘transparent’, or even 

‘grey’ boxes has the potential to show users the available knowledge as the network 

functions. To promote this, the main technique is that of rule extraction.  Here algorithms are 

employed which mimic the behaviour of the ANN, but allow a comprehensible description of 

the recognition process. A comprehensive review of such algorithms can be found in 
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Huysmans et al (2006) and Jacobsson (2005). Although the issues of related to knowledge 

extraction in ANNs has been raised. It must also be stated that in the author’s opinion such 

techniques are not particularly suited to this particular problem, and the emphasis such be 

placed on the feature input presentation. 

Another disadvantage of ANN approaches comes from the need for pre and post processing of 

data, which can add considerable time to the overall process. As presented in section three 

many of the techniques employed for pre-process of the input data are limited to primitive 

machined features, rendering them unsuitable for complex die manufacturing processes. The 

approach by Ding and Yue (2004), has potential as it offers recognition of 3D features that 

interact, also, some researchers have investigated the process of non-standard feature 

recognition such b-spline curves and surfaces and ellipses (Öztürk and Öztürk., 2001; 2004) 

which are more applicable to die cavity construction. The latest research has intended to use 

standard features (i.e. STEP AP224) and standard markup language (i.e. XML), such as 

Amaitik and Engin Killic (2007) who employed STEP AP244 XML data files of the features 

in their process planning research. However, previous research (Ding, 2003) into this area 

found there are still some limitations of feature definition and classification in AP224, 

including the definition of machining features is not precise (e.g. STEP defines machining 

features as a volume of removal material while protrusion features, which are not removed 

volumes, are included); the classification is incomplete and does not include all primitive 

machining features. Once the standard has been improved to cover all features, this approach 

will negate the need for complex feature recognition.  

5.2 Computer Aided Process Planning 

The key issue to identify optimal process plan, is optimizing process sequencing. Although 

for the die manufacturing process, research that is limited to primitive features can be 

disregarded from this point forward. In reviewing the published research it can be seen that 

the use of ANN techniques can improve the performance of CAPP systems, such as operation 

selection, generation of cutting conditions. These allow empirical rules to be learnt through 

typical examples. Faster processing makes systems more effective, especially in parallel 

environments (Ding and Yue, 2004). Although some work has been performed in process 

sequencing, the results on general application are constrained as the limitations of neural 

network structure and representation. The only effective constrained optimization of process 

plans has been performed using the Hopfield network. As noted in section 1, die machining 

has its own characteristics; the finishing of the die cavity is normally performed via pre-made 

electrodes on electro discharge machines (EDM). The area where the advancements to be 
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made lie in the blocking and profiling of the die/ insert, roughing of the cavity, machining of 

holes for core and ejector pins and the relevant slots and pockets relating to overflows, core 

block slots and feeds. Thus ANN-based CAPP has the potential to be used for die 

manufacture, although no previous work has been performed specifically for die work. 

Furthermore, using the learning and recognition strength of ANN in combination with expert 

systems, and the proven strengths of evolutionary algorithms such as genetic algorithm seem 

to offer a more robust solution for the manufacturing environment. From the reviewed 

literature it can be seen that the main advantages of ANN-based hybrid approach are:  

• It enables a CAPP system to have self-learning ability; 

• It overcomes the problem of approaches which solely rely on ANN, specifically 

getting trapped in local minima; 

• It enhances the adaptability and consistency of a CAPP system, this is a must in a 

dynamic manufacturing environment; 

• It provides suitable tools to deal with uncertainty problems and utilise expert 

experiences.  Thus, the intelligent functions in CAPP are formed efficiently. 

 

6. CONCLUSIONS AND FUTURE DIRECTIONS 

This paper has provided an extensive literature review on the application of ANN’s to the 

problem of feature recognition and process planning of casting dies. Putting the reviewed 

limitations aside, ANN approaches still offer considerable potential in the recognition of 

features of die-casting dies. As a constrained optimization tool for CAPP, their effectiveness 

is limited to Hopfield networks and its variants. Although, dedicated optimization algorithms 

in combination with ANN (hybrid approaches) offer the some of the best solutions to the 

overall problem when considering, cutting and machine tool parameter investigation and 

optimal sequence planning. 

In this review it has been shown that the mode of initial representation is expanding, not only 

including drawings, such as Afzal and Meeran (2006). Also, with the current global trend in 

collaborative and distributed, design and manufacturing, there has been a large volume of 

research in lightweight representations as the means of information transfer (Fuh et al., 2005, 

Li et al., 2004 and Ding et al 2007). Most lightweight representations, such as U3D (ECMA-

363, 2007), do not use either B-rep or CSG. Instead, they employ facet representations to 

reduce the file size, but do so at the cost of losing the geometry identifiers within the CAD 
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models. It is the next step to investigate the feature recognition abilities of established 

techniques on these kinds of representations.  

 

7. ACKNOWLEDGMENTS 

The work reported in this paper has been supported by a number of grants for Engineering 

and Physical Sciences Research Council (EPSRC), involving a large number of industrial 

collaborators. In particular, current research is being undertaken as part of the EPSRC 

Innovative Manufacturing Research Centre at the University of Bath (reference 

GR/R67507/01). The authors gratefully express their thanks for the advice and support of all 

concerned. 

 

8. REFERENCES 

Ahmad, N and Haque, A (2002) artificial neural network based process selection for 
cylindrical surface machining. Proceedings of the International conference on 
manufacturing  ICM2002, August 2002, Dhaka, Bangledesh. 321-326. 

Afzal, M. T and Meeran,S (2006) Recognizing features from orthographical images using 
neural networks: a framework for CADCAM and AVI integration. International journal of 
Production Research. 44(22), 4959-4986. 

Akyol, D. E and Bayhan, G. M (2007) A review on evolution of production scheduling with 
neural networks, Journal of Computers and Industrial Engineering. 53, 95-122. 

Alam, MR, Lee, KS, Rahman, M and Zhang, YF (2003) Process planning optimization for the 
manufacture of injection moulds using a genetic algorithm. International journal of 
computer integrated manufacturing. 16(3), 181-191. 

Allada, V and Anand, S (1996) Machine understanding of manufacturing features. 
International Journal of Production Research. 34(7), 228-243. 

Amaititik, S. M and Engin Killic , S (2007) An intelligent process planning system for 
preismatic parts using STEP feature. International Journal of Advanced Manufacture. 32, 
978-993. 

Babic B., Nesic, N., Miljkovic Z (2008) A review of automated feature recognition with rule-
based pattern recognition, Computers in Industries, 59(4): 321-337. 

Balic, J and Korosec (2002) Intelligent tool path generation for milling of free surface using 
neural  networks. Journal of Machine Tools and Manufacture. 42, 1171-1179. 

Braid, I.C. Designing with Volumes (2nd ed.). Cantab Press, 97 Hurst Park Ave, Cambridge, 
U.K., 1974.  

Burh, R. O (2003) Feature recognition in 3D surface models using self organizing maps. PhD 
Thesis. Rand Afrikaans University. South Africa.  

CAMWORKS™, http://www.teksoft.com/camworks/camworks.htm (accessed April 2008). 
Carpenter, G. A and Grossberg, S. (1987) ART2: self organization of stable category 

recognition codes for analogue input patterns. Applied optics. 26, 4919. 
Chakraborty, S and Basu, A (2006) Retrieval of machining information from feature patterns 

using artificial neural networks. 27, 781-787 
Chang, C.A and  Angkasith, V (2001) Using Hopfield neural networks for operational 

sequencing for prismatic parts on NC machines.   Engineering Applications of Artificial 
Intelligence 14, 357–368 

Chang, P.T. and Chang C.H.(2000)An integrated artificial intelligent computer aided process 

 35



planning system, International Journal of Computer Integrated Manufacturing, 13(6),  
483-497. 

Chuang, J.H., Wang, P.H. and Wu, M.C. (1999), Automatic classification of block-shaped 
parts based on their 2D projections, Computers & Industrial Engineering, 36(3), 697-718. 

Chambers, M and Mount-Campbell, C.A (2002) Process optimization via neural network 
metamodeling. International  Journal of  Production Economics 79 , 93-100.  

Chen, Y.H. and Lee, H.M., (1998) A neural network system for 2D feature recognition, 
International Journal of Computer Integrated Manufacturing, 11(2),  111-117 

Chen, C.L.P. and LeClair, S.R., (1993) Unsupervised neural learning algorithm for setup 
generation in process planning, Proceedings of International Conference on Artificial 
Neural Networks in Engineering, 663-668.  

Chen, H., Wang, T and Sun, B (2005) Application of intelligent CAPP systems based on the 
ANN. Micro-computer Information. 25.  

Chester, D (1990) Why two hidden layers are better than one. Proceedings of the International 
Joint Conference on Artificial Neural Networks. San Diego, June 17-21, 265-268. 

De Floriani L. and Bruzzone E. (1989) Building a feature-based object description from a 
boundary model”, Computer Aided Design, 21(10), 602-610. 

Deb, S., Ghosh, K and Deb, S. R. (2001) Machining process planning for rotational 
components by using a neural network approach. Proceedings of the 29th International 
conference on Computer and Industrial engineering. Montreal, Canada. 117-122.  

Deb, S., Ghosh, K and Paul, S (2006) A neural network base methodology for machining 
operations selection in computer aided process planning for rotationally symmetrical 
parts. Journal of Intelligent Manufacture. 17, 557-569. 

DellCam Powermill 6 http://www.powermill.com/ (accesses April 2008). 
Devireddy, C.R. and Ghosh, K. (1999), Feature-based modelling and neural networks-based 

CAPP for integrated manufacturing, International Journal of Computer Integrated 
Manufacturing, 12(1), 61-74. 

Devireddy, C.R., Eid, T and Ghosh, K (2002) Computer-aided process planning for rotational 
components using artificial neural networks. International journal of Agile 
Manufacturing. 5(1), 27-49. 

Darwin, C. The origins of species by means of natural selection or preservation of favoured 
races in the struggle for life. The book league of America 1929. USA 

Ding, L. and Yue, Y., (2002) A Novel Input Representation for ANN-Based Feature 
Recognition, Frontiers in Artificial Intelligence and Applications, 82, Knowledge-Based 
Intelligent Information Engineering Systems and Allied Technologies, KES 2002, Part I, 
311-315.  

Ding, L., 2003, Feature technology and its applications in computer integrated manufacturing. 
Ph.D Thesis. Luton University, UK. 

Ding, L and Yue, Y (2004) Novel ANN-based feature recognition incorporating design by 
features Computers in Industry, 55(2), 197-222. 

Ding, L., Yue, Y., Ahmet, K., Jackson, M and Parkin, R. (2005) Global optimization of a 
feature-based sequence using GA and ANN techniques. International Journal of 
Production Research, 2005, 15(1) 3247-3272. 

Ding, L., Ball, A., Matthews, J., McMahon, C.A and Patel, M. Product representation in 
lightweight format for product lifecycle management (PLM) Proceeding of Digital 
Enterprise Technologies (DET2007). September 2007, Bath, United Kingdom. 87-95. Eds 
P Maropoulos and S Newman, 637-645. ISBN 978-0-86197-141-1. 

Donaldson I.A. and Corney J.R. (1993) Rule-based feature recognition for 2.5D machined 
components. International Journal of Computer Integrated Manufacturing, 6(1-2), 51-64. 

ECMA-363 (2007). Universal 3D File Format. 4th ed. url: http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-363%204th%20Edition.pdf (2008-
02-01).  

 36



ESPRIT® CAD/CAM Software. DP-Technology corporation. 
http://www.dptechnology.com/en/products.asp (accessed April 2008) 

Fausett, L. Fundamentals of Neural Networks: Architectures, Algorithms and Applications, 
Prentice Hall International, Inc, 1994. 

Fuh J.Y.H and Li, W. D. Advances in collaborative CAD: the-state-of-the art, Computer-
Aided Design, 2005, 37(5),571-581. 

Gu, Z., Zhang, Y.F. and Nee, A.Y.C., (1997) Identification of important features for 
machining operations sequence generation”, International Journal of Product Research, 
35(8), 2285-2307. 

Hicks, B.J., Mullineux, G., Matthews, J and Medland, A. J. Towards an integrated CADCAM 
process for the production of forming shoulders with exact geometry. Proceedings of 
IMechE part B, Journal of Manufacturing Engineering, 2007, 221(10), 1521-1531. 

Hopfield,J.J and Tank, D. W (1985) Neural computation of decision in optimization 
problems. Biological Cybernetics 52(3), 141-152. 

Hwang, J.L.Applying the perceptron to 3D feature recognition, PhD Thesis, Arizona State 
University, USA, 1991.  

Hwang, J.L and Henderson, M.R (1992) Applying the preceptron to three-dimensional feature 
recognition. Journal of design manufacture, 2(4), 187-198. 

Huysmans, J.,Baesens,B and Vanthienen,J. ITER: an algorithm for pre-dictive regression rule 
extraction. In 8th International Conference on Data Warehousing and Knowledge 
Discovery (DaWaK 2006), pages Springer Verlag, lncs, 2006. 

Huysman, J., Beasen, B and Vanthienen, J (2006) Using rule extraction to improve the 
comprehensibility of predictive models. FETEW Internal research. K.U. Leuven. 

Jacobsson, H. Rule extraction from recurrent neural networks: A taxonomy and review. 
Neural Computation, 17, 1223-1263, 2005. 

Joo, J., Park, S and Cho, H. (2001). Adaptive and dynamic process planning using neural 
networks. International Journal Production Research. 39(13), 2923-2946. 

Joshi, S.B. and Chang, T.C. (1988) Graph-based heuristics for recognition of machined 
features from a 3D solid model, Computer Aided Design, 20(2), 58-66. 

Johannet , A., Vayssade, B and Bertin, D (2007) Proceedings of world academy of science, 
engineering and technology.  24, 162-169. 

Jun, Y., Raja, V and Park,S (2001). Geometric feature recognition for reserves engineering 
using neural networks. International Journal of Manufacturing Technology. 17, 462-470. 

Kandel, A, Langholz, G. (1992), Hybrid Architectures for Intelligent Systems, CRC Press, 
Boca Raton, FL. 

Kim Y.S., (1992) Recognition of form features using convex decomposition, Computer Aided 
Design, 24(9), 461-476. 

Knapp, G. M., & Wang, H. P. (1992). Machine fault classification: A neural network 
approach. International Journal of Production Research, 30(4), 811-823. 

Kohonen, T (1987) Adaptive, association and self organization functions in computing. 
Applied Optics. 26 , 4910 

Korosec, M., Balic, J and Kopac, J (2005) Neural network based manufacturability evaluation 
of free form machining. International Journal of Machine Tools and Manufacturing, 45, 
13-20. 

Korosec, M and Kopac, J (2006) A method of choosing an optimal tool-path in free form 
surface machining. Proceeding of the sixth International Symposium on Tools and 
Methods of Competitive Engineering TMCE , 875-796. I Horvath and J Duhovnik eds.. 

Kulkarni, S.R., Lugosi, G and Venkatesh, S. S (1998). Learning Pattern Classification—A 
Survey IEEE Transactions on information theory, 44(6).2178-2205 . 

Lam, S.M and Wong, T. N (2000) Recognition of machining features—a hybrid approach, 
International Journal of Production Research. 38, 4301–4316. 

 37

http://www.dptechnology.com/en/products.asp


Lankalapalli, K Chatterjee, S and Chang, T. C (1997) Feature recognition using ART2: a self 
organizing neural network. Journal of Intelligent Manufacturing. 8, 203-214. 

Lentz D.H. and Sowerby R. (1993) Feature extraction of concave and convex regions and 
their intersections, Computer Aided Design, Vol. 25, No. 7, 421-437. 

Le Tumelin, C., Garro, O. and Charpentier, P. (1995), “Generating process plans using neural 
networks”, Proceedings of 2nd International Workshop on Learning in Intelligent 
Manufacturing Systems, Budapest, Hungry 

Little, G., Tuttle, R., Clark, D. E. R and Corney, J. R (1998) Delta volume decomposition for 
multi-sided components. Computer Aided Design. 30(9) 695-705. 

Little, G., Tuttle, R., Clark, D. E. R and Corney, J. R (1999) The Heriot Watt FeatureFinder: 
CIE97 results, Computer Aided Design, 30(13) 991-996.  

Li WD, Ong SK and Nee AYC (2000) recognition of overlapping machining features based 
on hybrid AI Techniques. Procs IMECHE pt B. 214, 739-744. 

Li WD, Ong SK, Fuh JYH, Wong YS, Lu YQ, Nee AYC (2004) Feature-based design in a 
collaborative and distributed environment. CAD 36(9):775–797. 

Li, Y., Mills, B., Moruzzi, J.L. and Rowe, W.B., Grinding wheel selection using a neural 
network, Proceedings of the 10th National Manufacturing Research Conference, 
Loughborough, 597-601, 1994. 

Looney, C. G (1997) Pattern recognition using neural networks: theory and algorithms for 
engineers and scientists. Oxford University Press. New York, USA. 

Mäntylä, M. (1988) An Introduction to Solid Modeling. Principles of Computer Science. 
Computer Science Press, Maryland, U.S.A 

Mamalis, V., Ganosvsky,  S and Guenova, V (1994) System based approach to the 
development of a CAPP system for automated discrete production. International Journal 
of Advanced manufacture. 

Marquez, M., White, A and Gill, R (2001) A hybrid neural network, feature-based 
manufacturability analysis of mould reinforced plastic parts. Proceeding of the Institute of 
Mechanical Engineer Part B: Journal of Maufacturing Engineering, 215, 1065-1079.  

Marquez, M., Gill, R and Whit, A (1999) Application of neural networks in feature 
recognition of mould reinforced plastic parts. 7(2), 115-122. 

Matthews, J., Singh, B., Mullineux, G., Medland, (2006). A constraint-based approach to 
investigate the ‘process flexibility’ of food processing equipment. Journal of Computers 
and Industrial Engineering. 51(4), 809-820. 

McMahon, C and Browne , J (1993) CADCAM from principles to practice. Addison-Weasley. 
Workingham, UK. 

McCulloch, W. S and Pitts, W (1943) A logical calculus of the ideas imminent in the nervous 
activity. Bulleting of mathematical biophysics, 5, 115-133 

Medsker, L., Liebowitz, J. 1994. Design and Development of Expert Systems, Macmillan, 
Basingstoke,. 

Mei, J., Zhang, H.C. and Oldham, W.J.B. (1995) A neural network approach for datum 
selection in computer-aided process planning, Computers in Industry, 27(1), 53-64 

Meeran, S and Zulkifli, A.H (2002) Recognition of simple and complex interacting non-
orthogonal features. Pattern Recognition, 35, 2341-2353 

Ming, X.G., Mak, K.L. and Yan, J.Q., (1999) A hybrid intelligent inference model for 
computer aided process planning", Integrated Manufacturing Systems, 10(6), 343-353. 

Ming, X.G. and Mak, K.L (2000a) Intelligent set up planning by neural network based 
approach, Journal of Intelligent Manufacturing, 11, 311-331. 

Ming, X.G., and Mak, K.L (2000b), A hybrid Hopfield Network-Genetic approach to optimal 
process plan selection, International Journal of Production Research, 38(8), 1823-1838. 

Neuframe version 4, Getting started manual (2000), Southampton.  Neuscience Intelligent 
solutions, UK. 

 38



Neural Computing Manual, (1991), Neural Ware, Inc, Wiley. 
Nezis, K. and Vosniakos, G., “Recognising 2.5D shape features using a neural network and 

heuristics”, Computer Aided Design, 29(7), 523-439, 1997. 
Oussar, Y and Dreyfus, G (2000)  How to be a Gray Box: Dynamic Semi-physical Modeling 

Neural Networks, invited paper, 14, 1161-1172.  
Öztürk N. and Öztürk F. (2001). Neural network based no-standard feature recognition to 

integrate CAD and CAM. Computers in Industry, 45,123-135. 
Öztürk N. and Öztürk F. (2004). Hybrid neural network and genetic algorithm based 

machining feature recognition. Journal of Intelligent Manufacturing. 15, 287-298 
Osakada, K. and Yang, G.B., (1991) Neural networks for process planning of cold forging, 

Annals of the CIRP, Vol. 40, No. 1, 243-246. 
Park, M.W., Rho, H.M. and Park, B.T.(1996) Generation of modified cutting condition using 

neural network for an operation planning system, Annals of the CIRP, 45(1), 475-478 
Park, M.W., Park, B.T., Rho, Y.M. and Kim, S.K. (2000), Incremental supervised learning of 

cutting conditions using the Fuzzy ARTMAP neural network, Annals of the CIRP, 49(1), 
 375-378. 

Peters, T.J., (1992) Encoding mechanical design features for recognition via neural nets. 
Research in Engineering Design, 4(2). 67-74. 

Picton, P (1994) Introduction to neural networks, MacMillan Press London, UK 
Prabhakar, S. and Henderson, M.R. (1992) Automatic form-feature recognition using neural-

network-based techniques on B-rep of solid models, Computer Aided Design, Vol. 24(7), 
381-393. 

Principe, J.C., Euliano, N.R. and Lefebvre, W.C. (2000), Neural and adaptive system: 
Fundamentals through Simulations, John Wiley & Sons, Inc. 

Sadaiah, M., Yadav, D. Y ., Mohanram, P. V and Radhakrishnan  P(2002) A generative 
CAPP system for prismatic components, International Journal of Advanced 
Manufacturing Technology 20 , 709–719. 

Santochi, M. and Dini, G., (1996) Use of neural networks in automated selection of 
technological parameters of cutting tools, Computer Integrated Manufacturing Systems, 
9(3), 137-148. 

Sakurai, H and  Chin, C (1994) Definition and recognition of volume features for process 
planning, in J Shah, M. Mantyla, D. Nau (eds), Advances in feature based manufacture. 
Elsevier, 65-80.  

Sakakura, M. and Inasaki, I.,(1992) A neural network approach to the Decision-making 
process for grinding operations, Annals of the CIRP, 41(1),353-356.  

Shan, X.H., Nee, A.Y.C. and Poo, A.N., (1992)Integrated application of expert systems and 
neural networks for machining operation sequencing, Neural Networks in Manufacturing 
and Robotics, ASME, PED 57, 117-126. 

STEP AP224, Sharma R, Gao JX (2002) A progressive design and manufacturing evaluation 
system incorporating STEP AP224. Computers in Industry 47:155–167. 

STEP (ISO 10303-1:1994) Industrial automation systems and integration Product data 
representation and exchange - Overview and Fundamental Principles, International 
Standard, ISO TC184/SC4, 1994.  

STEP-NC (ISO 14649-1:2001) Industrial automation systems and integration Physical Device 
Control-Part 1: Overview and Fundamental Principles, Draft International Standard ISO 
TC184/SC4, 2001. 

Trajan-neural network simulator. (2004)User manual. Trajan software limited, UK. 
Wang, Z., Wang, N and Chen, Yu (2004). Resource decision in integration of CAPP and 

production planning control. Jisuanji Jicheng Zhizao Xitong-Computer Integrated 
Manufacturing Systems, 10 (6), 646-650. 

Wang, J and Liu, S (1993)Hopfield Neural Network-based Automatic Recognition for 3-D 

 39



Features Proceedings of 1993 International Joint Conference on Neural Networks  
IJCNN93. Nayoto Japan. 

Woo Y. and Sakurai H (2002) Recognition of maximal features by volume decomposition, 
Computer-Aided Design,34, 195-207. 

Wong, T.N and Lam, S.M (2000) Automatic recognition of machining features from 
computer aided design part models. Proceeding of Institute of Mechanical Engineers. Part 
B. 214, 515-520. 

Wu, M.C. and Jen, S.R., (1994) Global shape modelling and classification of 2D work pieces. 
International journal of computer Integrated Manufacturing. 7, 261-275. 

Wu, M.C. and Jen, S.R., (1996) A neural network approach to the classification of 3D 
prismatic parts, International Journal of Advanced Manufacturing Technology, 11(5), 
325-335. 

Yahia, N.B.; Fnaiech, F.; Abid, S.; Sassi, B.H., (2002) Manufacturing process planning 
application using artificial neural networks, IEEE International Conference on Systems, 
Man and Cybernetics , 5,  6-9  

Yan, H and Qiao, L (2004) A Hopfield neural network algorithm for machining operation 
sequencing. Seventh International Conference on Progress of Machining Technology. 
ICPT2004. Suzhou, China. 879-884 

Yue, Y., Ding, L., Ahmet, K., Painter, J and Walters, M (2001) Study of neural network 
techniques for computer integrated manufacture. Engineering Computation. 19(2), 136-
157. 

Zhang HC and Atling, L (1994) Computerised manufacturing process planning system. 
Chapman and Hall, London 

Zhang, X.Q, Peng, Y.H., Ruan, X.Y and Yamazaki, K (2006) Feature based integrated 
Intelligent sequence design for cold extrusion. Journal of Materials processing 
technology, 174 74-81. 

Zhao, W., Liu, X., Chi, G and Li, Z (2002) Study on the intelligent system for EDM. Jixie 
Gongcheng Xuebao/ Chinese Journal of Mechanical Engineering. 12, 70-74. 

Zhong, Y-G., Qiu, C-H and Shi, D-Y (2004) Application of neural network methods to 
process planning in ship pipe machining. Journal of Marine Science and Application. 
3(2). 42-45. 

Zhou, X., Qui,Y., Grangru, H Huifeng, W and Ruan, X (2007) A feasible approach to the 
integration of CAD and CAPP. Computer-Aided-Design. 39, 324-338. 

Zulkifli, A.H. and Meeran, S. (1999), Feature patterns in recognising non-interacting and 
interacting primitive, circular and slanting features using a neural network, International 
Journal of Production Research, 37(13), 3063-3100. 

 

 40


	Lian Ding, Jason Matthews * 
	 
	1. BACKGROUND 
	2. ARTIFICIAL NEURAL NETWORKS 
	2.1 Types of artificial neural networks 
	2.1.1 Feed-forward networks.  
	Hopfield network. The Hopfield network is a single layer recurrent network that uses threshold process elements and an interconnect symmetric matrix as shown in Figure 5.  The Hopfield network has only one layer and the nodes are used for both input and output (Hopfield and Tank, 1985). A minimum point or attractor has been demonstrated to be existence in this network, which corresponds to one of the stored patterns.  The dynamics of the Hopfield network can be described by the state of an energy function which eventually gets to a minimum point.  Wang and Liu (1993) exploited the ability of a Hopfield net to recognize basic features on a CAD drawing. At the time of their publication this network offered superior processing for their approach against contemporary algorithms 

	2.2 Input and output node characteristics 
	2.2.1 Input node characteristics 
	2.2.2. Output node characteristics 
	2.3 Network learning strategy 
	2.4 Software environments employed 
	3. FEATURE INPUT PREPARATION 
	4. ANN CAPP INTEGRATION  
	4.2 Hybrid approaches to CAPP using ANN 

	5. DISCUSSION 
	6. CONCLUSIONS AND FUTURE DIRECTIONS 
	7. ACKNOWLEDGMENTS 
	8. REFERENCES 


