

Citation for published version:
De Vos, M & Torsten, S (eds) 2009, SEA09: Software Engineering for Answer Set Programming. Department of
Computer Science Technical Report Series, no. CSBU-2009-20, Department of Computer Science, University of
Bath, Bath, U. K.

Publication date:
2009

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

https://researchportal.bath.ac.uk/en/publications/sea09(bbb1f7f2-43ad-4248-89c8-6096aae7e73d).html

Department of
Computer Science

Technical Report

SEA07: Software Engineering for Answer Set Programming

Marina De Vos and Torsten Schaub (Editors)

Technical Report 2009-20 November 2009
ISSN 1740-9497
Editor: Editor?

Copyright c©November 2009 by the author(s).

Contact Address:
Technical Report Editor
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497
Editor: Editor?

Software Engineering
for

Answer Set Programming

Second International Workshop
14 September 2009, Potsdam, Germany

Marina De Vos
Torsten Schaub (Eds.)

Preface

Over the last ten years, answer set programming (ASP) has grown from a pure theo-
retical knowledge representation and reasoning formalism to a computational approach
with a very strong formal backing. At present, ASP is seen as the computational em-
bodiment of non-monotonic reasoning incorporating techniques of databases, knowl-
edge representation, logic and constraint programming. ASP has become an appeal-
ing tool for knowledge representation and reasoning and thanks to the increasing effi-
ciency of the implementations of ASP solvers, the field has now started to tackle many
industrially-relevant applications.

Writing complex programs in any language is not an easy task, with ASP being
no exception. Most of the modern popular programming languages have an abundance
of tools and development methodologies to facilitate and improve the coding process.
Given the differences in for example language design, execution, and application do-
mains for languages such as Java and C++, the existing methodologies and tools that
are available are mostly not suitable for ASP. Therefore development tools and software
engineering methodologies specifically designed for ASP are required.

The SEA’09 workshop provides an international forum to discuss all software engi-
neering issues the field currently faces or in the future will experience.

SEA’09 is the second first event in hopefully a long series of workshops. The first
workshop was held in Tempe, Arizona, USA as a co-located workshop of LPNMR’07,
one of the leading conferences in the area of logic programming and in particular ASP.
For the second edition we have again co-located with LPNMR, this time organised in
Potsdam, Germany.

Apart from the regular paper presentations, the workshop also welcomes Tran Cao
Son from the New Mexico State University, US as an invited speaker. In the previous
edition we organised the ”ASP Language Forum” as a starting point for a discussion
on the requirements and specification of input, output and intermediate languages for
answer set solvers and grounders. This edition we plan a panel on ”How to program in
Answer Set Programming: Towards a Software Engineering Methodology” as a starting
point for a general programming methodology for ASP.

Within these proceedings you can find the five papers that were accepted for publi-
cation by our programme committee and the abstract of our invited talk together with a
related paper for reference.

The programme committee and organisers wish to thank all the authors who sub-
mitted papers, the panel members, the reviewers, all participants and everyone who
contributed to the success of this workshop.

May 2007 Marina De Vos
Torsten Schaub

Organisers
SEA’07

VI

Organisation

Executive Committee

Workshop Chairs: Marina De Vos (University of Bath, UK)
Torsten Schaub (University of Potsdam, Germany)

Programme Committee

Marcello Balduccini (Kodak Research Labs)
Martin Brain (University of Bath, UK)
Wolfgang Faber (University of Calabria, Italy)
Martin Gebser (University of Potsdam, Germany)
Enrico Pontelli (New Mexico State University, USA)
Alessandra Russo (Imperial College London, UK)
Tran Cao Son (New Mexico State University, USA)
Hans Tompits (Vienna University of Technology, Austria)
Richard Watson (Texas Tech University, USA)
Stefan Woltran (Technical University of Vienna, Austria)

Additional Referees

Johannes Oetsch

VIII

Table of Contents

I Invited Speaker

On Building a Competitive Comformant Planner . 3
Tran Cao Son (New Mexico State University, USA)

II Research Papers

A Preference Meta-Model for Logic Programs with Possibilistic Ordered
Disjunction . 19

R. Confalonieri (Universitat Politècnica de Catalunya), J. C. Nieves
(Universitat Politècnica de Catalunya), and J. Vázquez-Salceda
(Universitat Politècnica de Catalunya)

A Framework for Programming with Module Consequences 34
W. Faber (University of Calabria, Italy) and S. Woltran (Vienna University
of Technology, Austria)

A Pragmatic Programmer’s Guide for Answer Set Programming 49
M. Brain (University of Bath, UK), O. Cliffe (University of Bath, UK) and
M. De Vos (University of Bath, UK)

Yet Another Modular Action Language . 64
M. Gelfond (Texas Tech University, USA) and D. Inclezan (Texas Tech
University, USA)

A Visual Tracer for DLV . 79
F. Calimeri (Università della Calabria, Italy), N. Leone (Università della
Calabria, Italy), F. Ricca (Università della Calabria, Italy), P. Veltri
(Università della Calabria, Italy)

Author Index . 94

X

Part I

Invited Speaker

On Building a Competitive Comformant Planner

Tran Cao Son

Department of Computer Science
New Mexico State University
tson@cs.nmsu.edu

1 Invited Abstract

In this talk, I will detail the development of CpA(H), a competitive conformant planner,
that won the Conformant Planning Category in the International Planning Competition
2006. Lessons learned and the influence of logic programming in our development of
the planner will also be discussed.

Conformant Planning with Disjunctive Initial States:
Design and Development of an Efficient Planner

D-V. Tran, H-K. Nguyen, E. Pontelli, T.C. Son

Department of Computer Science
New Mexico State University

vtran | knguyen | epontell | tson@cs.nmsu.edu

Abstract. The paper illustrates the design and development of a competitive con-
formant planner. The planner builds on the theoretical foundations of approximation-
based planning to enable a compact representation of the possible states. The
novelty of the proposed approach is the realization that the description of the
(incomplete) initial state is often based on constraints (e.g., expressed through
PDDL’s or and oneof clauses); the paper illustrates how such constraints can be
reasoned upon to reduce the size of the search space. The reasoning process is
implemented in the form of transformations of the problem specification within
the planner. This, along with approximations and the use of combined heuris-
tics, leads to enhanced efficiency and scalability, outperforming state-of-the-art
conformant planners on several benchmark suites.

1 Introduction and Motivation

Conformant planning is the problem of finding a sequence of actions that achieves the
goal from every possible initial state of the world [14]. One of the main difficulties
encountered in the process of determining a conformant plan is the high degree of un-
certainty, due to the potentially large number of possible initial states of the problems.

The Planning Domain Definition Language (PDDL) introduces two constructs to
express incomplete knowledge about the initial state of the world: mutual-exclusion
statements (expressed using oneof-clauses) and disjunctive statements (expressed us-
ing or-clauses). Frequently, oneof-clauses are used to specify the possible initial states
and or-clauses are used to eliminate infeasible states. Because of this, the number
of possible initial states depends mainly on the number and the size of the oneof-
clauses—and these are often exponential in the number of constants present in the prob-
lem instances. For example, three out of six domains in the 2006 planning competition
have this property (Table 1).

Instance # Cons/States Instance # Cons/States
comm-15 35/216 coins-20 17/9× 86

comm-20 85/221 coins-25 39/1020

comm-25 140226 coins-30 45/1025

sortnet-10 11/211 sortnet-15 216/16
Table 1. Number of Constants/Possible Initial States

4 Tran Cao Son

Effective methodologies and data structures are required to deal with the large
number of possible initial states. Some conformant planners, such as POND [6] and
KACMBP [7], employ a BDD representation of belief states, while others, such as
CFF [4], adopt a CNF representation. These types of encodings avoid dealing directly
with the exponential number of states, but they require extra work in determining the
truth value of certain fluents after the execution of a sequence of actions in the initial
belief state. For instance, CFF needs to make a call to a SAT-solver with the initial state
and the sequence of actions; other planners need to recompute the BDD representation,
which could also be an expensive operation. Observe that the problem of determining
the truth value of a proposition after the execution of a single action in a belief state is
co-NP complete [1].

An alternative approach to deal with the large number of possible initial states is
used by the planners cf2cs(ff) and CPA [12, 17], and further investigated in their
successors t0 and CPA+ [13, 16]. This approach relies on an approximation seman-
tics in reasoning with incomplete information [15]. The planners cf2cs(ff) and t0
reduce the number of possible initial states to one by introducing additional proposi-
tions, transforming the original problem to a classical planning problem, and using FF,
a classical planner [8], to find solutions. On the other hand, CPA and CPA+ reduce this
number by dividing them into groups and using the intersection of each group as its
representative during planning.

CPA+ and t0 implement the idea of approximations differently. While CPA+ could
be seen as a standard heuristic search forward planner, t0 follows a translational ap-
proach. The performance of CPA+ depends on its heuristic function and its ability to
approximate the initial belief state to a manageable set of partial states. On the other
hand, the performance of t0 largely depends on the performance of FF. t0 was the
winner of the 2006 planning competition.

In this paper, we describe the design and implementation of a competitive confor-
mant planner. The proposed planner1 expands the idea of approximation-based con-
formant planning, introducing novel techniques to significantly enhance efficiency and
scalability. We explore the problem of engineering an approximation-based planner that
can avail of modern data structures and heuristic functions. A cornerstone of our ap-
proach is viewing the description of the initial state not just as a passive characteriza-
tion of a collection of states, but as a collection of constraints; by reasoning on such
constraints, we discover ways to transforms the problem specification, enabling drastic
reductions in the size of the search space. The resulting planner outperforms the state-
of-the-art in conformant planning on large pool of benchmarks, including the problems
from the latest planning competition.

2 Problem Representation

Following the notation in [12], we describe a problem specification as a tuple P =
〈F, O, I, G〉, where F is a set of propositions, O is a set of actions, I and O describe
the initial state of the world and the goal respectively. A literal is either a proposition
p ∈ F or its negation ¬p. ¯̀ denotes the complement of a literal ` and is defined by

1 Named CPA(H) to recognize its roots in the CPA+ system.

On Building a Competitive Comformant Planner 5

¯̀= ¬` where ¬¬p=p for p∈F . For a set of literals L, L = {¯̀ | ` ∈ L}. A conjunction
of literals is often represented by a set.

A set of literals X is consistent if there exists no p ∈ F such that {p,¬p} ⊆ X .
A state s is a consistent and complete set of literals, i.e., s is consistent, and for each
p ∈ F , either p ∈ s or ¬p ∈ s. A belief state is a set of states. A partial state is a
consistent set of literals. A cs-state is a set of partial states. A set of literals X satisfies
a literal ` (resp. a set of literals Y) iff ` ∈ X (resp. Y ⊆ X).

Each action a in O is associated with a precondition φ (denoted by pre(a)) and a
set of conditional effects of the form ψ → ` (also denoted by a : ψ → `), where φ and
ψ are sets of literals and ` is a literal.

The initial state of the world is described by I = Id ∪ Io ∪ Ir where Id is a set
of literals, Io is a set of oneof-clauses—of the form oneof(φ1, . . . , φn)—and Ir is
a set of or-clauses of the form or(φ1, . . . , φn), where each φi is a set of literals. A
oneof-clause indicates that the φi’s are mutually exclusive, while an or-clause is a
disjunctive normal form (DNF) representation of a formula. A set of literals X satisfies
oneof(φ1, . . . , φn) if there exists some 1≤i≤n s.t. φi ⊆ X and for every j 6= i,
1≤j≤n, φj ∩ X 6=∅. X satisfies or(φ1, . . . , φn) if there exists some 1≤i≤n s.t. φi ⊆
X . ext(I) denotes the set of all states satisfying Id, every oneof-clause in Io, and
every or-clause in Ir. E.g., if F={g, f} and I={g, oneof(f,¬f)} then ext(I) =
{{g, f}, {g,¬f}}.

G can contain literals or or-clauses. Given a oneof-clause or an or-clause o, we
write L ∈ o to denote that L is an element of o and lit(o) =

⋃
L∈o(L ∪ L̄).

3 A Competitive Conformant Planner: Design

The planner, called CPA(H), is composed of two modules. The first module (Prepro-
cessor) is a static analyzer that performs a number of transformations of the problem
specification. Along with a grounder (which also applies standard simplifications, such
as forward reachability), the preprocessor applies some novel transformations (oneof-
clause combination and goal splitting) aimed at drastically reducing the size of the
search space. The second module (Planning engine) is a heuristic search engine imple-
menting forward planning.

3.1 Design of the Planning Engine

Theoretical Foundations Given a state s and an action a, a is executable in s if
pre(a) ⊆ s. The set of effects of a in s, denoted by ea(s), is defined by: ea(s) =
{l | ψ → l is an effect of a, ψ ⊆ s}. The execution of a in a state s results in a succes-
sor state succ(a, s) which is defined by: succ(a, s) = s∪ea(s)\ea(s) if a is executable
in s; and succ(a, s) = failed, otherwise.

succ is extended to define succ∗, which computes the result of the execution of an
action in a belief state, as follows.

succ∗(a, S) =

{succ(a, s) | s ∈ S}
if a is executable in every s ∈ S

failed otherwise
(1)

6 Tran Cao Son

Finally, we can define the function ŝucc to compute the final belief state resulting from
the execution of a plan:
• ŝucc([a1, . . . , an], S) = S if n = 0, and
• ŝucc([a1, . . . , an], S)=succ∗(an, ŝucc([a1, . . . , an−1], S)) if n > 0.

Several heuristic search-based conformant planners (e.g. CFF, POND), employ ŝucc
in plan computation, using S0=ext(I) as the initial belief state. An action sequence α
is a solution of P iff ŝucc(α, S0) 6= failed and G is satisfied in every state belonging
to ŝucc(α, S0).

The notion of approximation used in CPA+, cf2cs(ff), and t0 has been origi-
nally proposed in [15]. The original intuition behind approximation is to approximate
sets of possible states by a single partial state—thus, reducing the complexity of reason-
ing w.r.t. using all possible states. It is characterized by a function (succA) that maps
an action and a partial state to a partial state. The possible effects of a in a partial state
δ are given by

pca(δ) = {l | ψ → l is an effect of a, ψ ∩ δ = ∅}. (2)

The successor partial state from the execution of a in δ is defined by succA(a, δ) =
(δ ∪ ea(δ)) \ pca(δ) if a is executable in δ; and succA(a, δ) = failed, otherwise.

Similarly to succ∗ and ŝucc, succA can be extended to define succ∗A (mapping cs-
states to cs-states) and ŝuccA for computing the result of the execution of an action
sequence starting from a cs-state. The notion of a solution of P w.r.t. the approximation
is extended accordingly. Our planner uses ŝucc∗A in its search for plans.

Observe that, in general, reasoning using approximations is incomplete. Complete-
ness can be gained by identifying appropriate partitions {∆1, . . . ,∆k} of ext(I) such
that

⋃k
i=1 ∆i = ext(I), ∆i∩∆j = ∅ for each i 6= j, and we have that for each formula

ϕ and sequence of actions α, ŝuccA(α, {δ1, . . . , δk}) entails ϕ iff ŝucc(α, ext(I)) en-
tails ϕ, where δi is the intersection of the states in ∆i. Research has been conducted to
provide sufficient syntactical conditions to identify valid partitions—based on the iden-
tification of fluents that should be explicitly distinguished in different partitions (see,
e.g., [16]).

Heuristic Search The succ∗A function is used in the context of a planning algorithm
which implements forward planning using a traditional best-first heuristic search.

The proposed planner enables the user to choose among different heuristics; as dis-
cussed in the experimental section, we observed that sustained better performance can
be achieved by using combinations of heuristics, improving the ability of discriminat-
ing between states in the priority queue (as employed in other systems as well [6]). The
basic heuristics employed are:
• The cardinality heuristic: we prefer belief states that have a smaller cardinality.

In other words, hcard(Σ) = |Σ| where Σ is a belief state. Note that we use this
heuristic in a forward fashion, and this is different from its use in [2, 5]. The intu-
ition behind this is that planning with complete information is “easier” than plan-
ning with incomplete information and a lower cardinality implies a lower degree of
uncertainty.

On Building a Competitive Comformant Planner 7

• The relaxed graphplan heuristic: for a belief state Σ, we define hrgp(Σ) =
∑
δ∈Σ d(δ),

where d(δ) is the well-known sum heuristic value given that the initial state is
δ ∪ {¬p | p ∈ F, p 6∈ δ, ¬p 6∈ δ} [11].

• The number of satisfied subgoals: denoted by hgc(Σ).
We investigate the following combination of these heuristics: hcss(Σ) = (hcard(Σ), hgc(Σ), hrgp(Σ));
heuristic measures are compared according to their lexicographic order.

3.2 Design of the Preprocessor

Standard Transformations Key to our analysis is the notion of dependence between
actions and propositions—similar to the notion of dependence between actions and
literals explored in [16]. We denote with P a planning problem.

Definition 1. An action a depends on a literal ` if

1. ` ∈ pre(a), or
2. there exists an effect a : φ→ h in P and ` ∈ φ, or
3. there exits an action b that depends on ` and a depends on some of the effects of b,

i.e., b depends on ` and there exists b : φ→ h such that a depends on h.

By preact(`) we denote the set of actions depending on `.

Intuitively, the fact that a depends on ` indicates that the truth value of ` could influence
the result of the execution of a. For a set of literals L, preact(L) =

⋃
`∈L preact(`).

Definition 2. Two literals ` and `′ are distinguishable if ` 6= `′ and there is no action
that depends on both ` and `′, i.e., preact(`) ∩ preact(`′) = ∅.
Obviously, the distinguishable relation is symmetric and irreflexive. Two set of literals
L1 and L2 are distinguishable if preact(L1) ∩ preact(L2) = ∅.

The dependence between a literal and an action, often used in reachability analysis,
is defined next.

Definition 3. A literal ` depends on an action a if (1) a : ψ → ` is in P ; or (2) there
exists an action b such that b : ψ → ` is in P and there exists some `′ in ψ or in pre(b)
s.t. `′ depends on a. We denote with deps(a) the set of literals that depend on a.

Intuitively, ` depends on a implies that ` may be achieved by executing a. postact(`)
denotes the set of actions which ` depends on, i.e., postact(`)={a | `∈deps(a)}.
Definition 4. Two literals ` and `′ are independent if ` 6= `′ and there exists no action
that both ` and `′ depend on, i.e., postact(`) ∩ postact(`′) = ∅.

The preprocessor starts its operations with a number of basic normalization steps,
aimed at reducing the number of propositions and the number of actions present in
the problem specification. In particular, it implements a traditional forward reachability
simplification (to detect propositions whose value cannot be changed and actions that
cannot be triggered w.r.t. the initial state) and a symmetrical goal relevance (removing
actions that cannot contribute to the goal).

8 Tran Cao Son

Combination of oneof-clauses The idea of this technique is based on the non-interaction
between actions and propositions in different sub-problems of a conformant planning
problem. We illustrate this idea in the next example.

Example 1. Let P = 〈{f, g, h, p, i, j}, O, I, G〉where I = {oneof(f, g), oneof(h, p),¬i,¬j},
G = i ∧ j, and O =

{
a : f → i c : h→ j b : g → i d : p→ j

}
. It is easy to see that

the sequence α = [a, b, c, d] is a solution of P . Furthermore, the search should start
from the initial belief state consisting of the four states:

{f,¬g, h,¬p,¬i,¬j} {¬f, g, h,¬p,¬i,¬j}
{f,¬g,¬h, p,¬i,¬j} {¬f, g,¬h, p,¬i,¬j}

Let P ′ be the problem obtained from P by replacing I with I ′, where I ′ = {oneof(f ∧
h, g ∧ p),¬i,¬j}.

We can see that α is also a solution of P ′. Furthermore, each solution of P ′ is
also a solution of P . This transformation in interesting since the initial belief state now
consists only of two states: {f,¬g, h,¬p,¬i,¬j} and {¬f, g,¬h, p,¬i,¬j}. I.e., the
number of states in the initial belief state that a conformant planner has to consider in
P ′ is 2, while it is 4 in P . This transformation is possible because the set of actions that
are “activated” by f and g is disjoint from the set of actions that are “activated” by h
and p, i.e., preact({f, g}) ∩ preact({h, p}) = ∅.

The above example shows that different oneof-clause can be combined into a single
oneof-clause, which effectively reduces the size of the initial state that a planner needs
to consider in its search for a solution. Theoretically, if the size of the two oneof-clauses
in consideration is m and n, then it is possible to achieve a reduction in the number of
possible partial states from m × n to max(m,n). Since in many problems the size
of the oneof-clauses increases with the number of objects, being able to combine the
oneof-clauses could provide a significant advantage for the planner.

Definition 5. Let P = 〈F,O, I, G〉 be a planning problem. Two oneof-clauses o1

and o2 are combinable if (i) lit(o1) ∩ lit(o2) = ∅; and (ii) lit(o1) is distinguishable
from lit(o2). where lit(o) denote the union of the set of literals occurring in o and its
complements

For example, the oneof-clauses in Ex. 1 are combinable. Let o1 = oneof(L1, . . . , Ln)ando2 =
oneof(S1, . . . , Sm). Assume that n ≥ m. A combination of o1 and o2, denoted by
o1 ⊕ o2 (or o2 ⊕ o1) is the clause

oneof(L1 ∧ S1, . . . , Lm ∧ Sm, Lm+1 ∧ S1, . . . , Ln ∧ S1)
Intuitively, a combination of o1 and o2 is a oneof-clause whose elements are pairs
obtained by composing one element of o1 with exactly one element of o2.

Proposition 1. Let P = 〈F,O, I, G〉 be a planning problem, where G is a conjunc-
tion of literals and o1 and o2 are two combinable oneof-clauses in P . Let P ′ =
〈F, O, I ′, G〉, where I ′ is obtained from I by replacing o1 and o2 by o1 ⊕ o2. Every
solution of P ′ is also a solution of P and vice versa.

Observe that the above proposition may not hold if P contains disjunctive goals, as
shown next.

On Building a Competitive Comformant Planner 9

Example 2. Let P = 〈{q, g, h, p, i, j}, O, I, G〉 where

I = {oneof(h, g), oneof(p, q),¬i,¬j} and G = or(i, j)

and O consists of a : p,¬q → i, c : p, q → i, b : g,¬h→ j, and d : g,¬h→ j.
It is easy to check that oneof(h, g) and oneof(q, p) are combinable. Let P ′ be the

problem obtained from P by replacing I with I ′ = {oneof(g∧q, h∧p),¬i,¬j}. Then,
[a, b] is a solution of P ′ but not a solution of P .

The combinable notion can be generalized as follows.

Definition 6. A set of oneof-clauses {o1, . . . , ok} is combinable if oi and oj are com-
binable for each 1 ≤ i 6= j ≤ k.

Let ⊕(o1, . . . , ok) be the shorthand for (((o1 ⊕ o2)⊕ . . .)⊕ ok). Proposition 1 can be
generalized as follows.

Proposition 2. Let P = 〈F,O, I, G〉 be a planning problem, where G is a conjunc-
tion of literals. Let {o1, . . . , ok} be a combinable set of oneof-clauses in P . Let P ′ =
〈F, O, I ′, G〉, where I ′ is obtained from I by replacing {o1, . . . , ok}with⊕(o1, . . . , ok).
We have that each solution of P ′ is a solution of P and vice versa.

We implemented a greedy algorithm, whose running time is polynomial in the size
of P , for detecting sets of combinable oneof-clauses and replacing them with their
corresponding combination. This is possible since testing if ` and `′ are distinguishable
can be done in polynomial time in the size of P , and the number of pairs that need this
test is quadratic in the number of propositions.

Goal Splitting Reducing the size of the initial state only helps the planner to start the
search. It does not necessarily imply that the planner can find a solution. In this section,
we present another technique, called goal-splitting, which can be used in conjunction
with the combination of oneof to deal with large planning problems. This technique
can be seen as a variation of the goal ordering technique in [9] and it relies on the
notion of dependence proposed in Def. 4. The key idea is that if a problem P contains
a subgoal whose truth value cannot be negated by the actions used to reach the other
goals, then the problem can be decomposed into smaller problems with different goals,
whose solutions can be combined to create a solution of the original problem. This is
illustrated in the following example.

Example 3. Consider the problem P of Example 1. It is easy to see that the two goals i
and j are independent and P can be decomposed into two sub-problems P1 = 〈F,O1, I, i〉
and P2 = 〈F, O2, I2, j〉 where O1 = {a : f → i, b : g → i} and O2 = {c : h →
j, d : p → j} with the following property: if α is a solution of P1 and β is a solution
of P2 where I2 = ŝuccA(α, I1), then α; β is a solution of P .2

Let us start with a definition capturing the condition that allows the splitting of
goals.

2 α;β denotes the concatenation of two sequences of actions.

10 Tran Cao Son

Definition 7. Let P = 〈F, O, I,G〉 be a planning problem and let ` ∈ G. We say that
` is G-separable if, for each `′ ∈ G \ {`} we have that ¯̀and `′ are independent.

Proposition 3. Let P = 〈F, O, I,G〉 be a planning problem and let ` be G-separable.
Let P` = 〈F, postact(`), I, `〉 and α be a solution of P`. Let PG\{`} = 〈F, postact(G\
{`}), I ′, G \ {`}〉, where I ′ = ŝuccA(α, I), and β be a solution of PG\{`}. Then, α; β
is a solution of P .

The proof is trivial, since postact(G \ {`}) does not contain any action that can make
¯̀ true.

On the other hand, it is easy to see that not every plan of P can be split into two
parts α and β such that α is a solution of P` and β is a solution of PG\{`}. We can prove,
however, that for each plan γ of P , there is a plan α for P` and a plan β for PG\{`} such
that γ is a permutation of α; β. This provides a weak form of completeness.

We note that the splitting proposed in Prop. 3 can be improved by also splitting the
propositions and initial states into different theories. We have implemented a general-
ized version of Prop. 3 to split a problem into a sequence of problems. This implemen-
tation runs in polynomial time in the size of P .

4 Implementation Considerations

The preprocessor has been implemented as a Prolog program. The program maps the
input PDDL theory to a collection of Prolog clauses. This mapping nicely avoids the
need of explicitly grounding the problem specification a priori. The transformations are
implemented as fixpoint computations on the Prolog clauses representing the problem
specification.

The planning engine has been implemented as a C++ program, running on a Linux
(Athlon 64, 4Ghz), gcc 4.2.1 version, with STL library. A partial state is implemented
as a set (a basic data structure in STL) of literals.

The engine implements a best first search over the search space of cs-states. Each
cs-state is a data structure consisting of a set of partial states, a plan to reach that cs-
state, and the heuristic values: hcard, hgc, and hrpg . A modified version of the algorithm
presented in [10] is implemented to compute hrpg .

succ∗A is used to compute the next cs-state. A hash table (resp. priority queue) is
used to store the visited (resp. unvisited) cs-states. A special module is developed to
compute the initial cs-state, which consists of the set of initial partial states. Each initial
partial state δ satisfies the following conditions: a) {p,¬p}∩δ 6= ∅ for each proposition
p appears in I; b) Id ⊆ δ; c) for each oneof(φ1, . . . , φn) ∈ Io, there exists an i such
that φi ⊆ δ and for all j 6= i, φj ∩ δ 6= ∅; d) for each or(φ1, . . . , φn) ∈ Ir, there exists
an i such that φi ⊆ δ; e) δ is consistent. Choosing to implement the initial cs-state as a
set (of the set of initial partial states) makes the computation of the successor cs-state
(the result of succ∗A) easier. The main disadvantage of this choice is that the size of the
initial cs-state can be exponential in the size of the number of object constants in the
problem. This is the reason why reducing the size of the initial cs-state is critical to our
planner.

On Building a Competitive Comformant Planner 11

5 Experimental Evaluation

The experimental evaluation has been performed using several benchmark suites—i.e.,
problems from the IPC-5 (or I5) and the IPC-6 (I6) planning competitions, challeng-
ing (C) problems proposed in [13], and several other domains from previous planning
competitions. The benchmark suite for each domain is listed in Table 5. Due to lack of
space, we omit the detailed description of the actual benchmarks, that have been drawn
from the existing literature. We also report only a subset of the complete experimental
results due to limited space (full results will be made available through a linked tech-
nical report). Time is in seconds, TO denotes time-out (30 min), AB denotes out of
memory, and BM denotes benchmark suite.

Table 2 summarizes some results aimed at evaluating the impact of the transforma-
tions; the three columns indicate execution times and the length of the first plan found;
we can observe that the improvement in performance is often significant; it occasionally
comes at the price of a longer plan.

Problem NoTransf. oneof goal-splitting
coins-05 0.02/13 0.024/19 0.03/14
coins-10 1.33/35 0.66/129 1.52/43
coins-15 /AB 13.54/391 /AB
coins-20 /AB 33.39/621 /AB
comm-05 0.90/48 0.31/60 0.20/35
comm-10 61.14/87 3.98/190 22.40/65
comm-15 /AB 15.82/327 /AB
uts-05 34.43/115 34.43/115 1.06/43
uts-10 36.14/130 36.14/130 21.21/87
uts-20 53.88/286 53.88/286 35.91/138
uts-30 152.07/177 152.07/177 18.06/74
dispose-4-2 1.30/72 0.395/59 0.78/76
dispose-4-3 43.00/93 0.36/78 19.14/111
dispose-8-2 412.70/272 10./234 368.03/284
dispose-8-3 /AB 487.28/1187 /AB
push-4-2 1.11/58 1.00/133 1.84/96
push-4-3 34.66/265 2.04/251 46.68/141
push-8-2 282.55/444 128.21/979 /AB
push-8-3 /AB 454.80/1811 /AB

Table 2. Impact of oneof-combination and goal-splitting

Table 3 reports the execution times of the planner using different heuristics. The
column tS indicates the time for preprocessing. Although the results are mixed for
small instances, hcss(Σ) comes ahead for large instances.

Table 4 compares the execution times and plan lengths for the proposed planner and
other three state-of-the-art systems for conformant planning (t0, CFF, and POND,
all run with default parameters according to their documentation). Table 5 reports the
number of instances each planner can solve.

6 Discussion

We now discuss the question of whether the proposed techniques can be applied to other
planning systems.

Observe that a combination of several oneof-clauses is a oneof-clause, whose ele-
ments are conjunctions of literals, which can be represented by a set of oneof-clauses

12 Tran Cao Son

Problem tS CPA(H) CPA(H) CPA(H) CPA(H)
hcard hgc hrgp hcss(Σ)

bwl-02 0.13 0.262/26 /TO 0.064/33 0.217/41
bwl-03 0.18 7.668/198 /TO 2.219/145 73.188/312
coins-15 0.49 7.449/423 15.874/551 0.387/191 5.920/329
coins-20 0.66 25.51/756 24.413/722 0.902/195 20.239/481
comm-15 3.64 0.496/96 0.148/95 0.094/95 0.124/95
comm-20 141 2.739/240 0.993/239 0.994/239 0.976/239
comm-25 1081 18.74/389 3.355/389 3.674/389 3.249/389
sortnet-05 0.11 0.054/13 16.35/13 0.036/12 0.023/12
sortnet-10 0.24 12.537/39 /TO 3.270/39 4.205/39
sortnet-15 0.52 /TO /TO /TO 313.044/65
uts-10 0.93 21.21/87 /TO 17.567/89 9.602/80
uts-20 0.89 35.91/138 /TO 12.596/150 36.314 /125
uts-30 0.86 18.06/74 /TO 346.467/103 31.609/94
d-4-3 .61 . 3.94/288 4.83/369 0.95/314 3.80/288
d-8-1 47.3 1.95/143 124.71/1229 24.12/725 1.86/137
d-8-2/C 53.6 386.68/1328 600.77/2298 135.8/1494 391.44/1328
d-10-1 285 7.65/213 /AB 148.7/1489 7.69/213
push-4-3 .65 40.45/1176 340.23/959 1.0/225 288.21/847
push-8-1/C 52.4 3.824/184 /AB 27.25/468 3.97/184
push-10/C 304 23.04/414 /AB /AB 23.48/414
1-d-4-3 .69 24.8/64 /AB 81.57/108 25.12/64
1-d-8-1 47.9 9.91/340 /AB /AB 9.22/340
1-d-10-1 288 36/568 /AB /AB 33.81/568
lng-8-1-1 50.4 2.45/94 284.73/5547 /AB 1.78/94
lng-8-2-1 57.8 0.97/94 31.79/563 68.45/287 0.97/94
lng-8-1-2 59.5 73.14/125 /AB /AB 72.65/125

Table 3. Comparison between heuristics

and a set of disjunctions eliminating the unwanted combinations. We tested the effec-
tiveness of the oneof-simplification on POND and CFF. Table 6 shows the results
of our experiment with the planner POND in the comm and coins domains where
the oneof-combination is applicable. As we can see, the performance of POND im-
proves in these problems, and the improvement is more significant when the size of
the problem is large. This technique helps POND to scale up but its impact is not as
great as in CPA(H): POND can solve more problems in the comm domain. The prob-
lems comm-16.0 and comm-16.1 have more objects than comm-16 but less than
comm-17. For CFF, we did not observe improvements using the modified problems.

We also experimented with using the preprocessor to perform goal splitting and
produce modified PDDL files that can be processed by other planners. For example,
CFF is unable to solve the problems from p21 to p30 of the coins domain. The diffi-
culty in this domain lies in the large number of elevators and coins. The goal-splitting
technique divides the problem into a sequence of sub-problems, each dealing with one
coin but still has all elevators, enabling CFF to solve these problems. We observed that
CFF spent most of the time finding the solution for the first problem. This is reason-
able, since the location of the elevators is initially unknown, and some locations will be
known at the end of the first solution. The planning time of CFF for coins p21, p25 and
p30 is 24.48 2.13 and 68.09 (secs) accordingly.

These initial experiments show that the proposed techniques could be useful for
other planners.

7 Conclusions

In this paper, we presented the complete design and implementation of an efficient con-
formant planner, called CPA(H). The planner builds on recently developed techniques
for conformant planning using approximations; it introduces several novelties, includ-
ing a preprocessing module to transform the problem specification, leading to signifi-
cantly reduced search spaces, and the ability to explore the search space with different

On Building a Competitive Comformant Planner 13

Problem tS CPA(H) t0 CFF POND
hcss(Σ)

block-03 0.13 0.22/41 /NA /AB 1.02/26
block-04 0.18 73.19/312 /NA /AB 1379/111
coins-10 0.18 0.14/81 0.09/26 1.02/38 5.26/28
coins-15 0.49 5.92/329 0.26/81 7.35/79 /TO
coins-20 0.66 20.24/481 0.32/108 38.19/143 /TO
comm-15 3.64 0.12/95 0.19/110 0.22/95 1662/110
comm-20 141 0.98/239 0.86/278 13.33/239 / TO
comm-25 1081 3.25/389 3.99/453 109.49/389 / TO
sortnet-10 0.24 4.21/39 NA NA /TO
sortnet-15 0.52 313.04/65 NA NA /TO
adder-01 8.2 1.29/3 /NA /AB /AB
UTS-cycle-03 0.17 1.08/3 /NA /NA 1.99/3
UTS-cycle-04 0.29 23.88/6 /NA /NA 48.19/6
forest-02 2.4 23/84 0.37/12 0.03/17 1.33/15
forest-04 7.7 /TO 1.58/60 /TO 71.17/62
Rao-keys-02 0.22 0.04/32 /NA 0.08/33 0.29/21
Rao-keys-03 0.37 3.84/152 /NA 25.09/101 4.51/68
dispose-8-1 47.3 1.86/137 27.85/291 423.25/226 /AB
dispose-8-2 53.6 391/1328 118.46/422 /AB /AB
dispose-10-1 285 7.69/213 275.08/474 /AB /AB

Table 4. Comparison between systems (NA: not applicable)

Domain/BM # of CPA(H) t0 CFF POND
instances hcss(Σ)

block/I6 4 3 0 1 3
adder/I5 4 1 0 0 0
coins/I5 30 20 20 20 10
comm/I5 25 25 25 25 16
sortnet/I5 15 15 0 0 6
uts/I5 30 30 30 30 24
UTS-cycle/I6 27 2 0 0 2
forest/I6 9 1 8 1 2
Rao-keys/I6 29 2 0 2 2
dispose/C 90 62 50 41 8
push/C 90 29 33 27 12
1-dispose/C 90 24 7 1 8
look-n-grab/C 81 63 20 21 9

Table 5. Number of problems solved in different domains

heuristic functions. The result is a conformant planner that has been shown to be highly
competitive with the state-of-the-art in the field. In particular, CPA(H) outperforms all
existing systems on the problems from the latest International Planning Competition.

The results presented in this paper confirm the strength of using approximations for
conformant planning, the possibility of implementing approximation-based planning in
an efficient and scalable system, and the scope for improvement that can be achieved
via transformation of problem specifications.

Problem Orig/Modified Problem Orig/Modified
comm-15 1662/4.89 coins-5 0.52/0.51
comm-16 TO/57.93 coins-10 5.54/1.63
comm-16.0 TO/124.05 coins-15 17.13/17.95
comm-16.1 TO/267.39 coins-10 143/126

Table 6. Impact of oneof-Combination on POND (Orig/ Modified: Time for solving the origi-
nal/modified problem)

14 Tran Cao Son

The future developments of this project include exploring whether alternative meth-
ods for the internal implementation of cs-states (e.g., OBDD) can further enhance per-
formance. We also plan to expand the reasoning component of the preprocessor, to ob-
tain additional simplifications of the problem specifications (e.g., detecting symmetries
between fluents).

Acknowledgement

The authors are partially supported by the NSF grants IIS-0812267, CBET-0754525,
CNS-0220590, and CREST-0420407.

References

1. C. Baral et al. Computational complexity of planning and approximate planning in the pres-
ence of incompleteness. AIJ, 122:241–267, 2000.

2. P. Bertoli et al. Heuristic search + symbolic model checking = efficient conformant planning.
IJCAI, pages 467–472, 2001.

3. B. Bonet and B. Givan. Results of the conformant track of the 5th planning competition, 2006.
http://www.ldc.usb.ve/˜bonet/.

4. R. Brafman and J. Hoffmann. Conformant planning via heuristic forward search: A new
approach. ICAPS-04, pages 355–364, 2004.

5. D. Bryce and S. Kambhampati. Heuristic Guidance Measures for Conformant Planning.
ICAPS-04, pages 365–375, 2004.

6. D. Bryce et al. Planning Graph Heuristics for Belief Space Search. JAIR, 26:35–99, 2006.
7. A. Cimatti et al. Conformant Planning via Symbolic Model Checking and Heuristic Search.

Artificial Intelligence Journal, 159:127–206, 2004.
8. J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation Through Heuristic

Search. JAIR, 14:253–302, 2001.
9. J. Hoffmann et al. Ordered landmarks in planning. JAIR, 22:215–278, 2004.
10. D. Long and M. Fox. . Efficient Implementation of the Plan Graph in STAN. JAIR, 10, 1999.
11. X.L Nguyen et al. Planning graph as the basis for deriving heuristics for plan synthesis by

state space and CSP search. AIJ, 135:73–123, 2002.
12. H. Palacios and H. Geffner. Compiling Uncertainty Away: Solving Conformant Planning

Problems Using a Classical Planner. AAAI, 2006.
13. H. Palacios and H. Geffner. From Conformant into Classical Planning: Efficient Translations

that may be Complete Too. ICAPS-07, 2007.
14. D.E. Smith and D.S. Weld. Conformant graphplan. AAAI, pages 889–896, 1998.
15. T.C. Son and C. Baral. Formalizing sensing actions - a transition function based approach.

Artificial Intelligence, 125(1-2):19–91, January 2001.
16. T.C. Son and P.H. Tu. On the Completeness of Approximation Based Reasoning and Plan-

ning in Action Theories with Incomplete Information. KRR, 2006.
17. T.C. Son, P.H. Tu, M. Gelfond, and R. Morales. Conformant Planning for Domains with

Constraints. AAAI, pages 1211–1216, 2005.

On Building a Competitive Comformant Planner 15

16 Tran Cao Son

Part II

Research Papers

A Preference Meta-Model for Logic Programs
with Possibilistic Ordered Disjunction

Roberto Confalonieri, Juan Carlos Nieves, and Javier Vázquez-Salceda

Universitat Politècnica de Catalunya
Dept. Llenguatges i Sistemes Informàtics

C/ Jordi Girona Salgado 1-3
E - 08034 Barcelona

{confalonieri,jcnieves,jvazquez}@lsi.upc.edu

Abstract This paper presents an approach for specifying user prefer-
ences related to services by means of a preference meta-model, which
is mapped to logic programs with possibilistic ordered disjunction fol-
lowing a Model-Driven Methodology (MDM). MDM allows to specify
problem domains by means of meta-models which can be converted to in-
stance models or other meta-models through transformation functions. In
particular we propose a preference meta-model that defines an abstract
preference specification language allowing users to specify preferences in
a more friendly way using models. We also present a meta-model for
logic programs with possibilistic order disjunction. Then we show how
we conceptually map the preference meta-model to logic programs with
possibilistic ordered disjunction by means of a mapping function.

1 Introduction

Recently with the adoption of both Service-Oriented Architectures (SOA) and
Web services as growing trend for building distributed applications, services can
be world-widely advertised and accessed. In this context, service discovery and
selection play an important role w.r.t. the search and selection of the most suit-
able services users are looking for. With the rapidly growing number of services
that are becoming available, users will be offered in fact with a choice of function-
ally similar services, which increase the need of enhancing traditional discovery
and selection processes with the possibility for the users to express preferences
about and relevant to certain services.

On the other hand, expressing and reasoning about user preferences is a com-
plex and challenging task, as preferences cannot be generally explicitly expressed
because of the large number of possible alternatives. Nonmonotonic logics have
shown to be a potent knowledge representation formalism to reason about prefer-
ences [4]. Several extensions of the basic formalism of Answer Set Programming
(ASP) have been proposed to model preferences [6], showing how nonmonotonic
logics constitute an effective way of resolving indeterminate solutions, reasoning
in terms of preferred answer sets of a logic program. Unfortunately, nonmono-
tonic logics by themselves are not flexible enough and not well designed for mod-

eling orderings on belief sets specified in terms of preferences on their elements
[4].

Logic programs with ordered disjunction (or LPODs) offer one way to over-
come this problem as they permit to explicitly represent preference information
directly into head rules [2]. In this way, the language can capture user qualitative
preferences by means of disjunction rules, represent choices among different al-
ternatives and specify a preference order between the answer sets through some
comparison criteria. However, in some scenarios the preference information can
be subject to uncertainty and preference-aware reasoning methods that can han-
dle uncertainty are needed [5]. For this reason in [5] the authors have proposed
an extension of the semantics of logic programs with ordered disjunction in order
to cope with the degree of uncertainty in the reasoning process. In particular,
they have defined a possibilistic semantics for capturing logic programs with pos-
sibilistic ordered disjunction (or LPPODs) which is close to the proof theory of
possibilistic logic and answer set semantics.

ASP has become quite popular in knowledge representation problems as it
is based on solid theoretical foundation, it is expressively rich, and its semantics
and computational properties well understood today. Moreover many efficient
ASP solvers such as dlv [8] and smodels [14] are available. As such ASP has
called the attention from the industry, and points out to be a promising knowl-
edge representation method in many application areas. Nevertheless, ASP has
not been applied to Service-Oriented Architectures yet. One of the main obsta-
cles towards the adoption of nonmonotonic preference representation methods
is determined by the lack of an ASP programming environment. Writing correct
and efficient ASP programs is in fact a difficult task and users are required to
have the sufficient expertise to encode real problems in ASP. For this reason one
of the open issues of ASP is the development of ASP programming environments
and friendly interfaces [10].

In this paper we propose an approach for specifying user preferences related
to services by means of a preference meta-model which we map to LPPODs
following a Model-Driven Methodology (MDM). MDM allows to specify problem
domains by means of meta-models which can be converted to instance models or
other meta-models through transformation functions. We propose a preference
meta-model that defines an abstract preference specification language allowing
the users to specify preferences about services in a more friendly way using
models. We also present a meta-model for logic programs with possibilistic order
disjunction showing how we conceptually map the preference meta-model to the
model of LPPODs by means of a mapping function.

The paper is organised as follows. In Section 2 the syntax and semantics of
logic programs with possibilistic ordered disjunction are presented and the main
characteristics of the MDM approach are described. In Section 3 we propose a
model-driven framework for capturing preferences in SOA and a preference meta-
model is described. In Section 4 we present the meta-model for logic programs
with possibilistic ordered disjunction and a conceptual mapping. In Section 5 we
describe how MDM can be applied in the modeling of a simple user preference

20 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

scenario. Finally in Section 6 we discuss our approach, draw some conclusions
and outline future work.

2 Background

In this section we introduce the reader with some basic concepts w.r.t. the syntax
and semantics of logic programs with possibilistic ordered disjunction and Model-
Driven Methodology.

2.1 Logic Programs with Possibilistic Ordered Disjunction

Logic programs with possibilistic ordered disjunction (LPPODs) are logic pro-
grams with ordered disjunction with possibilistic values added to each rule [5].
The syntax of a logic program with possibilistic ordered disjunction is based on
the syntax of ordered disjunction rules [2] and of possibilistic logic [7].

LPPODs Syntax: A signature L is a finite set of elements called atoms. Atoms
negated by ¬ will be called extended atoms. The concept of atom will be used
without paying attention if it is an extended atom or not. A possibilistic atom is
a pair p = (a, q) ∈ A×Q where A is a set of atoms and (Q,≤) a finite lattice1.
The projection ∗ to any possibilistic atom p is defined as follows: p∗ = a. Given
a set of possibilistic atoms M , the generalization of ∗ over M is defined as:
M∗ = {p∗ | p ∈ M}. Given a lattice (Q,≤), a possibilistic ordered disjunction
rule r is of the form:

α : c1 × . . .× cn ← b1, . . . , bm, not bm+1 . . . , not bm+k

where α ∈ Q and ci(1 ≤ i ≤ n), bj(1 ≤ j ≤ m + k) are atoms. Sometimes a pos-
sibilistic ordered disjunction clause is denoted as: α : c1× . . .×cn ← B+, not B−
where B+ = {b1, . . . , bm} and B− = {bm+1, . . . , bm+k}. The projection ∗ for a
possibilistic ordered disjunction rule r, is r∗ = c1 × . . . × cn ← B+, not B−. It
can be observed that the ordered disjunction clause r∗ is an ordered disjunction
clause as was defined in [2]. n(r) = α is a necessity degree representing the cer-
tainty level of the information described by r. A possibilistic constraint C is of
the form T OPQ :← B+, not B−, where T OPQ is the top of the lattice (Q,≤)
and ← B+, not B− is a constraint as in standard ASP [1]. Please notice that
any possibilistic constraint must have the top of the lattice (Q,≤). This restric-
tion is motivated by the fact that, like constraints in standard Answer Set Pro-
gramming, the purpose of the possibilistic constraint is to eliminate possibilistic
models. Hence, it is assumed that there is no uncertainty about the informa-
tion captured by a possibilistic constraint. As in possibilistic ordered disjunction
rules, the projection ∗ for a possibilistic constraint C is C∗ =← B+, not B−.

A logic program with possibilistic ordered disjunction (LPPOD) is a tuple of
the form P := 〈(Q,≤), N〉 such that N is a finite set of possibilistic ordered
1 Only finite lattices are considered.

A Preference Meta-Model for Possibilistic Ordered Disjunction 21

disjunction rules and possibilistic constraints. The generalization of ∗ over P is
defined as follows: P ∗ := {r∗ | r ∈ N}. Notice that P ∗ is an ordered disjunction
logic program.

LPPODs Semantics: Before defining the possibilistic semantics for capturing
LPPODs, basic operations between sets of possibilistic atoms and a relation of
order between them are introduced.

Definition 1. Given A a finite set of atoms and (Q,≤) a lattice, PS = 2A×Q

is considered as the finite set of all the possibilistic atom sets induced by A and
Q. Let A,B ∈ PS, the operators u, t and v can be defined as follows:

A uB = {(x,GLB{q1, q2})|(x, q1) ∈ A ∧ (x, q2) ∈ B}
A tB = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪ {(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪

{(x, LUB{q1, q2})|(x, q1) ∈ A and (x, q2) ∈ B}.
A v B ⇐⇒ A∗ ⊆ B∗, and ∀x, q1, q2, (x, q1) ∈ A ∧ (x, q2) ∈ B then q1 ≤ q2.

The semantics of LPPODs is close to the proof theory of possibilistic logic
and answer set semantics. As in answer set semantics definition, the possibilistic
semantics is defined based on a syntactic reduction.

Definition 2 (Reduction rM
×). Let r = α : c1 × . . . × cn ← B+, not B−

be a possibilistic ordered disjunction clause and M be a set of atoms. The ×-
possibilistic reduct rM

× is defined as follows:

rM
× := {α : ci ← B+|ci ∈M and M ∩ ({c1, . . . , ci−1} ∪ B−) = ∅}

Definition 3 (Reduction PM
×). Let P = 〈(Q,≤), N〉 be a LPPOD and M be

a set of atoms. The ×-possibilistic reduct PM
× is defined as follows:

PM
× =

⋃
r∈N

rM
×

Observe that the program PM
× is a possibilistic positive extended logic pro-

gram.2 Once a LPPOD P has been reduced by a set of possibilistic atoms M , it
is possible to test whether M is a possibilistic answer set of the program P by
considering the following definition.3

Definition 4 (Possibilistic answer set). Let P = 〈(Q,≤), N〉 be a LPPOD
and M be a set of possibilistic atoms such that M∗ is an answer set of (PM∗

×)∗.
M is a possibilistic answer set of P if and only if PM∗

× `PL M and @M ′ ∈ PS
such that M ′ 6= M , P

(M ′)∗
× `PL M ′ and M vM ′.

By the original (no possibilistic) ordered disjunction rule definition, it is
possible to represent preferences among possibilistic answer sets by considering
degrees of satisfaction denoted as degM (r) and defined by the following defini-
tion.
2 A positive program is a program without negation as failure atoms.
3 `PL denotes the inference under possibilistic logic.

22 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

Definition 5 (Rule Satisfaction Degree). Let M be a possibilistic answer
set of a LPPOD P . Then M satisfies the rule r

α : c1 × . . .× cn ← b1, . . . , bm, not bm+1 . . . , not bm+k

– to degree 1 if bj 6∈ M∗ for some j (1 ≤ j ≤ m), or bi ∈ M∗ for some i
(m + 1 ≤ i ≤ m + k),

– to degree j (1 ≤ j ≤ n) if all bl ∈ M∗ (1 ≤ l ≤ m), bi /∈ M∗ (m + 1 ≤ i ≤
m + k), and j = min{r | cr ∈M∗, 1 ≤ r ≤ n}.
To distinguish between preferred possibilistic answer sets, the satisfaction

degree of a possibilistic answer set M w.r.t. a rule, denoted by degM (r), provides
a ranking of the possibilistic answer sets of a LPPOD, and a preference order on
the possibilistic answer sets can be obtained by means of a comparison criteria.
In [5] the authors have proposed three criteria for comparing possibilistic answer
sets, respectively possibilistic cardinality, possibilistic inclusion and possibilistic
Pareto, which are the possibilistic version of the original criteria of [2].
The set of possibilistic atoms M satisfying a degree i is defined as follows:

Definition 6. Let M be a set of possibilistic atoms and P be a LPPOD. Then
M i,α(P) = {r ∈ P | degM (r) = i and n(r) ≥ α}.

Given a set of possibilistic atoms M , n(M) is defined as min{α | (a, α) ∈M}.
Three preference relations can be defined. The possibilistic version of cardinality-
based preference can be defined as follows:

Definition 7. Let M1 and M2 be possibilistic answer sets of a LPPOD P .
M1 is possibilistic cardinality-preferred to M2, (M1 >pc M2) iff ∃ i such that
| M i,α

1 (P) |>| M i,α
2 (P) | and ∀j < i, | M j,α

1 (P) |=| M j,α
2 (P) |, where α =

min{n(M1), n(M2)}.
The inclusion-based preference is defined as:

Definition 8. Let M1 and M2 be possibilistic answer sets of a LPPOD P . M1 is
possibilistic inclusion-preferred to M2, (M1 >pi M2) iff ∃ k such that Mk,α

2 (P) ⊂
Mk,α

1 (P) and ∀ j < k, M j,α
1 (P) = M j,α

2 (P), where α = min{n(M1), n(M2)}.
Lastly, the possibilistic Pareto-based preference is:

Definition 9. Let M1 and M2 be possibilistic answer sets of a LPPOD P . M1

is possibilistic pareto-preferred to M2, (M1 >pp M2) iff ∃ r ∈ P such that
degM1(r) < degM2(r), and @r′ ∈ P such that degM1(r

′) > degM2(r
′), and

n(r) ≥ min{n(M1), n(M2)}.
One interesting characteristic of LPPODs is that they provide a mean to rep-

resent preferences among problem solutions and allow to represent preferences
which can depend on incomplete knowledge. As LPPODs are based on extended
nonmonotonic logic, incomplete information can be expressed by means of de-
fault negation.

A Preference Meta-Model for Possibilistic Ordered Disjunction 23

2.2 Model-Driven Methodology

Model-Driven Engineering (MDE) refers to the systematic use of models as pri-
mary artefacts throughout the Software Engineering (SE) development process.
The defining characteristic of MDE is the use of models to represent the im-
portant artefacts in a system [13]. Each of the models in a MDE system is
constructed from a language specified in a meta-model, which captures the con-
cepts and relationships of the language in a structured and regular form. In
relation to these meta-models, the models can then be stored, manipulated and
transformed to other models, and to implementation artefacts.

A Model-Driven Methodology (MDM) to development is generally based on
the Model Driven Architecture (MDA) [19], an initiative by the Object Manage-
ment Group (OMG)4 which specifies a framework of open standards and related
technologies. The framework is built upon the metamodel foundation in order
to enable a standard specification and interoperability mechanism for tools. So
systems and applications are formalized with metamodel descriptions and are
visualized by models as metamodel instantiations. Actual code implementations
are created automatically by applying predefined transformations from source
models to target models and implementation languages.

In the context of this paper, MDD specifies the user preference meta-model
(Section 3.3) upon which a user preference editor can be created, allowing the
modeling and instantiation of corresponding models. By the specification of a
meta-model for logic programs with possibilistic ordered disjunction (Section 4.1)
and a transformations function it is possible to (semi-)automatically translate
the user preference abstract representation to the formalism of logic programs
with possibilistic ordered disjunction (Section 4.2).

3 Preferences in Service-Oriented Architectures

The use of nonmonotonic reasoning about preferences in Service-Oriented Ar-
chitectures is a new and unexplored field. We believe that the applicability of
preference and reasoning methods to the services’ domain can enhance the ser-
vice discovery and selection processes and assist the user in services’ searches. In
order to reuse existing works about service oriented technologies and nonmono-
tonic preference handling methods for preference representation and reasoning
we propose a model-driven framework that attempts to glue these approaches
together.

3.1 Model-Driven Framework

Figure 1 shows the model-driven framework we are proposing. The diagram
depicts the main components of the framework, and shows the relations between
user preferences and services. The meta-model provides a domain independent
and technology independent representation of user preferences about services.
4 http://www.omg.org/

24 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

Figure 1. Model-Driven Framework for User Preferences in SOA

The framework is inspired by the Web Service Modeling Framework [9] which
has been recently adopted in WSMO [15], although we introduce new concepts
covering the relation between user preferences and services. The main component
of the framework are: goals user preferences, services, ontologies, and adaptors:

– Services offer specific functionalities to users, and are described by func-
tional and non-functional properties. Functional descriptions of services con-
sist in service input and output and pre and post-conditions. Non-functional
properties are usually related to service usage or domain dependent proper-
ties. Services are semantically described through an ontology.

– Goals and User Preferences: a goal is the user-centered view of a service
usage. Normally users have specific tasks they want to accomplish and goals
are specifications of a desired state of outcomes. Goals are accompanied by
a preference list which represents the user preferences for the service. Such
preferences request functional and non-functional properties. For instance let
us imagine a user is interested in getting a map of restaurants, and she has
a set of preferences about the type of restaurants, the map and the cost.
Her goal could be to get a service that takes as input an object of type
Restaurant and as output type Map, while preferences could be ”I prefer a
high resolution map than a low resolution” or ”I prefer to spend 1 euro than
2 euros, if the service response is fast”. A goal usually consists of a functional
description of the objectives users want to achieve using a Web service. In
this sense a user goal is a hard-constraint w.r.t. a service functionality. User
preferences are requirements the user wants over achieving a goal. They may
include Quality of Services (QoS) metrics or domain dependent properties.
From this point of view preferences are soft-constraints w.r.t. the properties
ot the service that fulfills a certain goal.

A Preference Meta-Model for Possibilistic Ordered Disjunction 25

Figure 2. Service Properties Meta-model

– Service Adaptors address the handling of heterogeneities occurring be-
tween elements that shall interoperate by resolving mismatches between dif-
ferent used terminologies (data level), on communicative behavior between
services (protocol level), and on the business process level.

– Ontologies provide the formal semantics for the terminology used within
all other framework components. We expect to have a framework ontology
which will consist in a service ontology and domain ontologies specific for
domain applications.

In order to express preferences about and relevant to services, we need to
consider the properties requested by the user and the properties offered by the
service.

3.2 Service Properties Meta-Model

From a provider perspective a service can expose different offered properties
associated with the same functionality to address different business requirements
(e.g. speedy and slow service at different price). We assume that functional
descriptions are provided in terms of input and output. Pre- and post-condition
are constraints about input and output respectively. Offered properties consist in
a set of non-functional properties which can be qualitative and quantitative whose
values are defined in a domain ontology (Figure 2). Non-functional properties can
be seen as a kind of service configuration which the provider offers for the service
usage.

3.3 User Preference Meta-Model

Figure 3 shows the user preference meta-model. From a user perspective, required
properties can be considered as a set of constraints on the requested services. To

26 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

Figure 3. User Preference Meta-model

collect sets of preferences we consider a preference list to associate a goal with a
set of preferences. A goal is described by input and output which specify strong
constraints w.r.t. a service that fullfills that goal. A preference list is an ordered
list of preferences specified by the user, where such order represents a preference
order between sets of desired properties. Desired properties can be viewed along
two dimensions: functional and non-functional. Functional properties are prefer-
ences about input and output of the goal, while non-functional preferences are
related to service usage.

To manage qualitative and quantitative properties (e.g. Restaurant and Cost),
two classes of properties are introduced, quantitative and qualitative properties
respectively. All the properties’ values are concepts of the domain ontology (e.g.
Restaurant, Map) or data types (String, Integer etc). Preferences may be as-
sociated with a degree of relevance w.r.t. the preference rules or non-functional
properties of a service. A Preference has a preference relation to be able to specify
a preference order (e.g. ”I prefer a map with higher resolution to a lower one”),
and a conditional preference relation to be able to capture conditional prefer-
ences between properties e.g. (”if the cost of the service is not high I prefer a
high map resolution”).

4 Model Transformations

As we do not want to stick to a particular formalism, language or technology
during the solution specification, we have defined a meta-model describing how
user preferences and service properties should be specified in a general way. The
advantage to have a meta-model is to have a specification general enough which
can be then translated to other meta-models and models (representing target
languages or formalism) through transformations [18].

Generally speaking, a model transformation takes as input a model conform-
ing to a given meta-model and produces as output another model conforming to

A Preference Meta-Model for Possibilistic Ordered Disjunction 27

Figure 4. Meta-Model for Logic Programs with Possibilistic Ordered Disjunction

a given meta-model. The process of translating a model to another is specified
by a mapping algorithm. The main advantage of this approach is that, from
the same meta-model specification, several mappings to different models can be
done through different mapping functions [12].

We define a transformation t of a preference model M1 according to the
preference meta-model P MM to a LPPOD model M2 according to the LPPODs
meta-model LPPOD MM as

t : M1P MM
→M2LP P OD MM

To be able to (informally) define a the transformation function t we first need
a meta-model which describes the formalism of LPPODs.

4.1 Meta-Model for LPPODs

A proposal of a meta-model for this class of logic programs is shown in Figure
4. A possibilistic LPOD program consists of a finite set of possibilistic LPOD
rules associated with a possibilistic degree. Each rule has a head and a body,
where in the body a preference relation is specified by means of the logical
connector × (times). Outcomes of LPPOD are possibilistic answer sets and a
relation order between them can be obtained applying the comparison criteria
defined in Section 2.1.

4.2 A Mapping to LPPODs

According to MDD the preference meta-model P MM and LPPOD meta-model
LPPOD MM dependencies are formulated with model driven mappings (re-
lations). The mappings are specified with a transformation language, among
the corresponding elements of the P MM and LPPOD MM meta-models shown
in Figure 3 and Figure 4 respectively. As illustrative example the mappings
preferenceListToLPPOD and preferenceToPossibilisticLPODRule have been
specified.

28 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

The transformation process can be initiated from the preferenceListToLPPOD
mapping that converts user preferences in a LPPOD. The rule in turn applies a
mapping between preference and preference rules of a LPPOD.

mapping preferenceListToLPPOD(in pl:P_MM::PreferenceList,
inout lppod:LPPOD_MM::PossibilisticLPOD) {
var preferenceRules := pl.preference -> collect(p|map
preferenceToPossibilisticLPODRule(p,pl,preferenceRules));
lppod.possibilisticLPODrule := preferenceRules;
}
mapping preferenceToPossibilisticLPODRule(in p:P_MM::Preference,
in: pl:P_MM::PreferenceList,
inout: pr:LPPOD_MM::PossibilisticLPODrule) {

pr.possibilisticDegree := p.relevance;
pr.head := p.functionalProperties -> collect(fp|map
functionalPropertiesToHead(fp,p.preferenceOrder));
pr.body := p.NFproperties -> collect(nfp|map
nfPropertiesToBody(nfp));

}
mapping functionalPropertiesToHead(in fp:P_MM::functionalProperty,
in po:P_MM:PreferenceRelation) {
...

}
mapping nfPropertiesToBody(in nfp:P_MM::NFPropertyPreference) {
....

}

5 Applying Model-Driven Methodology to User
Preference Modeling

The preference meta-model presented in Section 3.3 can be instantiated to differ-
ent domain problems and used for expressing user preferences about services in
an abstract way. In particular it can be generated by means of a preference editor.
The meta-model in fact can be specified by the Eclipse Ecore specification. Once
the meta-model is available, a preference editor can be implemented using the
EMF tools of the Eclipse Platform.5 The model generated by the editor can be
mapped to an instantiated model of a LPPOD by means of the transformation
function t (Figure 5).

For example let us consider a user looking for a recommendation service, that
takes as input restaurants and returns a map. She can have a goal where Restau-
rant is the Input and Map is the Output. She can have preferred values about the
input and output of the goal, be undecided about the type of restaurants, and
be looking for specific non-functional properties such as the cost of the service
5 http://www.eclipse.org/modeling/emf

A Preference Meta-Model for Possibilistic Ordered Disjunction 29

LPPOD_MMP_MM

M1
Preferences about

Restaurant Services

M2
LPPOD about

Restaurant Services

Meta-Model Layer:

Model Layer:

mapping t

Meta-MetaModel Layer: Ecore

instance-ofinstance-of

instance-of instance-of

Figure 5. MDD applied to User Preference Modeling

and the map resolution. The request of a personalized service according to her
preferences can be expressed as a list of preference such as:

– she prefers Italian to Mexican restaurants
– she prefers a higher map resolution to a lower one if the cost of the service

is not > 2 euros (high) and the time of response is not ≥ 0.5 sec (slow).
– she prefers a lower map resolution if the service cost is > 2 euros (high) and

time of response is ≥ 0.5 sec (slow).

Let us imagine we have the model M1 for the scenario described above. By
the transformation function t we can then generate the model of a LPPOD M2.
A further step (not shown here) is represented by a code generation function
that converts M2 to the syntax of LPPODs. The code generation results in the
LPPOD code shown in the following example.

Example 1. Let P = 〈(Q,≤), N〉 be a LPPOD expressing the user preferences
about restaurant maps. First of all we define the lattice (Q,≤) to specify an
ordered set of relevance degrees. We consider the lattice Q = ({0, 0.1, 0.2, . . . , 1},
≤), and ≤ the standard relation between rational numbers. Let N be the set
of possibilistic ordered disjunction rules expressing the user preferences about
restaurant maps generated by the transformation function t. One possible way
to encode the user preferences in the syntax of a LPPOD is:6

r1 = 1 : rest(italian)× rest(mexican).
r2 = 1 : map(high)×map(low)← not cost(, high), not response(, slow).
r3 = 1 : map(low)×map(high)← cost(, high).
r4 = 1 : map(low)×map(high)← response(, slow).
r5 = 1 : ← map(low),map(high).

Please notice that whenever the α values are equal to 1, the LPPOD behaves
like an ordered disjunction program where the possibilistic values of the atoms

6 The predicates cost(,high) and response(,slow) are qualitative predicates for the
quantitative value w.r.t. the cost and the response time. Such predicates can be built
by specific rules in the logic program.

30 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

in the answer sets are the top of the lattice. Therefore we can see that there are
four possibilistic answer sets satisfying the program,

M1 = {(rest(italian), 1), (map(high), 1)}
M2 = {(rest(italian), 1), (map(low), 1)}
M3 = {(rest(mexican), 1), (map(high), 1)}
M4 = {(rest(mexican), 1), (map(low), 1)}
and according to their satisfaction degrees they have the following preference or-
der: M1 >pp M2, M1 >pp M3, M2 and M3 are equally preferred and M3 >pp M4.
Such a order can be exploited to select the best service that accomplish the user
goal. Each of the possibilistic answer set in fact can be used to build a service
search where the atoms are used as input parameters for a matchmaker.7 The
matchmaking process returns a list of candidate services w.r.t. the possibilistic
answer sets used. Non-functional service properties can be converted as a set of
possibilistic facts PF i, where the necessity-value degrees corrispond to normal-
ized non-functional properties values (e.g. 0.5 : cost(s1, high)) and added to a
new LPPOD Pi, such that Pi = P ∪ PF i ∪Ci.8 The possibilistic answer sets of
the new generated LPPODs Pi (one for each original Mi) are candidate service
solutions where the possibilistic values drawn the selection of the best service
w.r.t. the user preferences.

6 Conclusions

In this paper we have presented an approach for assisting the user in expressing
preferences about services’ searches following the Model-Driven Methodology.
We have defined a preference meta-model which allows to represent user pref-
erences about services without being bound to a specific implementation tech-
nology. We have conceptually shown how it is possibile to translate preference
models to the model of LPPODs. The advantage of having a model for LPPODs
is that LPPODs’ code can be (semi-)automatically generated by means of a
transformation function t.

The proposed preference meta-model provides in fact a flexible way to cap-
ture user preferences and represents the basic artefact through which different
problem domains can be instantiated. The preference meta-model representation
can ease the development of a preference editor which allows users to express
preferences relevant to services in a friendly way. This abstract representation
can be mapped to LPPODs which, based on ordered disjunction programs, are
a flexible way to represent and reason about user preferences.

Concerning related works on user preference representation about services, in
most of the existing approaches preferences have been studied in the context of

7 The matchmaker is a component which is able to perform a syntactic or semantic
matching of a user goal against service descriptions.

8 Ci is a possibilistic constraint that forces the solutions of each Pi to be relevant only
w.r.t. Mi.

A Preference Meta-Model for Possibilistic Ordered Disjunction 31

Web services composition [11,17,16]. For instance, in [16] user preferences spec-
ified using Conditional Preference Networks (CP-Nets) are used to improve the
quality of generated compositions. In [11,17] an augmented version of the logic
programming language Golog is used to specify and to integrate user prefer-
ences into Web service composition. Although the use of user preferences related
to services is not new, our proposed work differs with the cited works on at
least two aspects: a) we use a preference-aware and uncertainty-aware prefer-
ence representation language as part of the user preference selection process; b)
we incorporate the use of this language as part of a MDD methodology according
to which implementation details will be trasparent to the user. The meta-models
we are proposing in fact can improve the time of development of LPPODs and
the preference meta-model represents the first step towards a preference editor
implementation. Our approach can be generalised to be used in other ASP-based
formalisms in order to ease the knowledge modeling and the reuse of existing
knowledge. Moreover relations between the original formalism of logic programs
with ordered disjunction (LPODs) and other preference handling methods such
as CP-Nets have been already explored in [3] showing that a further mapping is
feasible.

Interesting issues for future work are the refinement of the preference and
LPPODs meta-models and the specification of the transformation function t
in a more formal way using the ATL transformation language.9 Currently we
are implementing our approach using the Eclipse Platform and the tools of the
Ecore framework. As soon as we have the Ecore meta-models we can start the
implementation of the preference editor to model practical domain problems.
Although not related to the paper itself, it is worthy to mention that we are also
studying the implementation of the solver for LPPODs.

Acknowledgements This work has been funded mainly by the European Com-
mission Framework 7 funded project ALIVE (FP7-215890). Javier Vázquez-
Salceda’s work has been also partially funded by the Ramón y Cajal program
of the Spanish Ministry of Education and Science. The opinions of the authors
do not reflect the opinions of the European Commission. We thank anonymous
referees for the valuable comments.

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

2. G. Brewka, I. Niemelä, and T. Syrjänen. Logic Programs with Ordered Disjunction.
Computational Intelligence, 20(2):333–357, 2004.

3. G. Brewka, I. Niemelä, and M. Truszczyński. Answer Set Optimization. In Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence, pages
867–872. Morgan Kaufmann Publishers, 2003.

9 http://www.eclipse.org/m2m/atl/

32 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

4. G. Brewka, I. Niemelä, and M. Truszczyński. Preferences and Nonmonotonic Rea-
soning. AI Magazine, 29(4):69–78, 2008.

5. R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda. Logic Programs with Possi-
bilistic Ordered Disjunction. Technical Report LSI-09-19-R, Universitat Politècnica
de Catalunya - LSI, 2009.

6. J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A classification and Survey
of Preference Handling Approaches in Nonmonotonic Reasoning. Computational
Intelligence, 20(2):308–334, 2004.

7. D. Dubois, J. Lang, and H. Prade. Possibilistic Logic. In D. Gabbay, C. J. Hogger,
and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning, pages
439–513. Oxford University Press, Oxford, 1994.

8. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System dlv:
Progress Report, Comparisons and Benchmarks. In L. S. A.G. Cohn and S. Shapiro,
editors, Proceedings Sixth International Conference on Principles of Knowledge
Representation and Reasoning, pages 406–417. Morgan Kaufmann, 1998.

9. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Elec-
tronic Commerce Research and Applications, 1(2):113–137, 2002.

10. N. Leone. Logic Programming and Nonmonotonic Reasoning: From Theory to
Systems and Applications. In Proceedings of 9th International Conference on Logic
Programming and Nonmonotonic Reasoning, page 1, 2007.

11. S. Mcilraith and T. C. Son. Adapting Golog for Programming the Semantic Web.
In In Fifth International Symposium on Logical Formalizations of Commonsense
Reasoning, pages 195–202, 2001.

12. A. Metzger. Model-Driven Software Development, chapter A Systematic Look at
Model Transformations, pages 19–33. Computer Science. Springer Berlin Heidel-
berg, 2005.

13. J. B. Nicolas, N. Farcet, J. M. Jézéquel, B. Langlois, and D. Pollet. Reflective
Model Driven Engineering. In Proceedings of the 6th International Conference on
the Unified Modeling Language, LNCS, pages 175–189. Springer, 2003.

14. I. Niemelä and P. Simons. Smodels - An Implementation of the Stable Model
and Well-Founded Semantics for Normal LP. In Proceedings of the 4th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR97), pages 421–430. Springer-Verlag, 1997.

15. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology. Applied
Ontology, 1(1), 2005.

16. G. Santhanam, S. Basu, and V. Honavar. On Utilizing Qualitative Preferences
in Web Service Composition: A CP-net Based Approach. In IEEE Congress on
Services - Part I, pages 538–544, July 2008.

17. S. Sohrabi, N. Prokoshyna, and S. A. McIlraith. Web Service Composition Via
Generic Procedures and Customizing User Preferences. In International Semantic
Web Conference, volume 4273 of LNCS, pages 597–611. Springer, 2006.

18. A. U. Stephen Mellor, Kendall Scott and D. Weise. MDA Distilled: Principles of
Model-Driven Architecture. Addison Wesley, 2004.

19. T. Weis, A. Ulbrich, and K. Geihs. Model Metamorphosis. IEEE Software,
20(5):46–51, 2003.

A Preference Meta-Model for Possibilistic Ordered Disjunction 33

A Framework for Programming with Module
Consequences⋆

Wolfgang Faber1 and Stefan Woltran2

1 University of Calabria, Italy
wf@wfaber.com

2 Vienna University of Technology, Austria
woltran@dbai.tuwien.ac.at

Abstract. We present a framework which allows to combine answer-set pro-
grams in a way that consequences (rather than answer sets themselves) of pro-
grams can be used as input to other programs. Situations in which such a compo-
sition of programs is required appear in many practical application problems. So
far, to deal with such problems, multiple calls to answer-set solvers wereusually
indispensable, as a direct ASP encoding is often much less obvious. In addition,
we provide a technique for compiling such frameworks into a single ASP program
which consequently can be evaluated by a single call to an answer-set solver. Our
approach relies on the recently introduced concept of manifold programs which
make use of weak constraints to identify consequences of programs.

1 Introduction

In the last decade,Answer-Set Programming(ASP) [1, 2], also known as A-Prolog
[3, 4], has emerged as a declarative programming paradigm. ASP is well suited for
modelling and solving problems which involve common-sensereasoning, and has been
fruitfully applied to a wide variety of applications including diagnosis, data integration,
configuration, and many others. This development was fueledby the efficiency of the
latest tools for processing ASP programs (so-called ASP solvers) which reached a state
that makes ASP applicable for problems of practical importance [5]. The most frequent
use of ASP is to compute answer sets (usually stable models) of a logic program from
which the solutions of the problem encoded by the program canbe obtained.

A somewhat neglected aspect of ASP are its capabilities in terms of consequence
relations (or, more general, using queries over answer sets), which are firmly rooted in
the tradition of nonmonotonic reasoning. Different to classical settings, in nonmono-
tonic reasoning there is no canonical consequence relation—the two most studied ones
are brave and cautious consequence (sometimes also termed as brave and cautious rea-
soning); the former is also known as credulous or possible reasoning, the latter is also
referred to as skeptical or certain reasoning. In the context of ASP, one is usually inter-
ested in a subset of the atomic brave or cautious consequences, which corresponds to a

⋆ This work was supported by the Vienna Science and Technology Fund (WWTF), grant ICT08-
028, and by M.I.U.R. within the Italia-Austria internazionalization project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensioni e tecniche di ottimizzazione”.

generalization of query answering for databases. In this sense, ASP can also be seen as
an evolution of Datalog, a logical database query language.

As an example scenario, let us consider a problem stemming from database systems.
A database is inconsistent, if a given database instance does not satisfy some of the
constraints imposed. One could argue that the creation of inconsistent databases should
be inhibited, but it is also obvious that this is not always possible: For instance, when
integrating data, that is, whenever only partitions of the data are maintained in a locally
consistent state (for example due to permissions or physical distribution), the merged
data is not guaranteed to be consistent. Still, one would like to work with such data.

An attractive approach to dealing with inconsistent data isto consider minimal re-
pairs, that is, considering minimal modifications of the data that establish a consis-
tent state. ASP has been successfully employed for specifying and computing mini-
mal repairs (see, e.g., [6]). In general, there is no unique minimal repair, and the usual
workaround is to take a conservative approach and consider those parts of the database
which hold in each minimal repair. In the ASP setting, this neatly corresponds to con-
sidering the cautious consequences of the program encodingthe database repairs.

However, as mentioned earlier, support for consequence relations is somewhat lim-
ited in current answer-set programming tools: Not all ASP systems support computing
atomic consequences directly, and even if they do, it is usually done as a final process-
ing step, in the sense that it is not possible to use the atomicconsequences in the same
run in order to do further reasoning. One could try to simulate this kind of reasoning
by adding additional rules to the program over which the consequences are computed.
However, the following simple example demonstrates the problems of this approach:
The program{a :- not b ; b :- not a} has two answer sets,{a} and{b}, and so its
brave atomic consequences area andb, while there is no cautious atomic consequence.
In order to represent the question whether at least one ofa or b is a consequence, one
could try to add{q :- a ; q :- b} to the program and check whetherq is an atomic
consequence. While this works correctly for brave consequences (a positive answer),
it does not for cautious consequences. The reason is thatq is indeed a cautious con-
sequence of the modified program thus yielding a positive answer to the query, while
neithera nor b is a cautious atomic consequence.

Actually, one would hope to be able to use as many language features that ASP
provides in order to reason with atomic consequences of a program, but as seen in the
simple example above, existing query interfaces are insufficient for this task. Indeed, if
one wants to employ recursion, a hypothetical method of endowing the original program
by additional rules is quite obviously inadequate in most cases.

In this work, we introduce a framework that overcomes the limitations outlined
above. In particular, we propose a language that encapsulates computing brave, cautious
or definite3 consequences of a program, which can then be utilized in a larger ASP
program.

We discuss properties and limitations of the language and describe techniques for
implementing a system supporting the language. In particular, we propose an extension
of manifold programs, that we have recently proposed as a method for compiling query
answering into ASP in [8]. In particular, a manifold programMP of an ASP program

3 An alternative notion proposed in [7].

A Framework for Programming with Module Consequences 35

P allows for identifying all consequences of a certain type (variants exist for brave,
cautious, and definite consequences) within a single answerset. The framework we
present here goes beyond the concept of a single manifold program which facilitates
query answering wrt. a single program. Our framework permits that the results (i.e.,
consequences of a certain type) of modules can serve as inputfor further modules which
compile different queries of their own, and so forth. A so-called base program finally
collects the result necessary for the overall task and computes its own answer sets.
These sets are identified as the answer sets of the entire framework.

However, there is a price to be paid for identifying program consequences by mani-
folding: WhileMP contains optimization constructs (in [8] weak constraintswere used,
cf. [9]), P should not contain any optimization constructs. There is also a reason for this:
While deciding whether one ground atom is a brave (respectively cautious) consequence
is NP-complete for normal ground programs andΣP

2 -complete for disjunctive ground
programs (respectivelyco-NP- and ΠP

2 -complete), enumerating brave (or cautious)
consequences is complete for the complexity classFPNP

|| for normal ground programs

and forFPΣP
2

|| for disjunctive ground programs. It follows that unless thepolynomial
hierarchy collapses, a program enumerating brave or cautious consequences without
optimization constructs does not exist. Moreover, in [9] the relevant decision problems
for programs with weak constraints (without different levels) have been shown to be
complete for the complexity classΘP

2 (ΘP
3 in the presence of disjunction), from which

the function complexityFPNP
|| (FPΣP

2
||) can be obtained. It follows that the presence of

weak constraints is necessary given our current knowledge on NP
?= P and also not

excessive.

2 Preliminaries

In this section, we review the basic syntax and semantics of ASP with weak constraints,
following [10], to which we refer for a more detailed definition.

An atomis an expressionp(t1, . . .,tn), wherep is apredicateof arity α(p) = n ≥ 0
and eachti is either a variable or a constant. Aliteral is either an atoma or its negation
not a. A (disjunctive) ruler is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, and wherea1, . . . , an, b1, . . . , bm are atoms.
Theheadof r is the setH(r) = {a1, . . . , an}, and thebodyof r is the setB(r) =

{b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore,B+(r) = {b1, . . . , bk} andB−(r) =
{bk+1, . . . , bm}. We will sometimes denote a ruler asH(r) :-B(r).

A weak constraint[9] is an expressionwc of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]

wherem ≥ k ≥ 0 andb1, . . . , bm are literals, whileweight(wc) = w (the weight)
andl (the level) are positive integer constants or variables. For convenience,w and/or
l may be omitted and are set to 1 in this case. The setsB(wc), B+(wc), andB−(wc)
are defined as for rules. We will sometimes denote a weak constraintwc as:∼ B(wc).

36 W. Faber and S. Woltran

A programP is a finite set of rules and weak constraints.Rules(P) denotes the
set of rules andWC(P) the set of weak constraints inP . wP

max andlPmax denote the
maximum weight and maximum level overWC(P), respectively. A program (rule,
atom) ispropositionalor ground if it does not contain variables. A program is called
strongif WC(P) = ∅, andweakotherwise.

For any programP , let UP be the set of all constants appearing inP (if no constant
appears inP , an arbitrary constant is added toUP); let HBP be the set of all ground
literals constructible from the predicate symbols appearing in P and the constants of
UP ; and letGround(P) be the set of rules and weak constraints obtained by applying,
to each rule and weak constraint inP all possible substitutions from the variables in
P to elements ofUP . UP is usually called theHerbrand Universeof P andHBP the
Herbrand Baseof P .

A ground ruler is satisfiedby a setI of ground atoms iffH(r) ∩ I 6= ∅ whenever
B+(r) ⊆ I andB−(r) ∩ I = ∅. I satisfies a ground programP , if eachr ∈ P is
satisfied byI. For non-groundP , I satisfiesP iff I satisfiesRules(Ground(P)). A
ground weak constraintwc is violatedby I, iff B+(wc) ⊆ I andB−(wc)∩ I = ∅; it is
satisfied otherwise.

Following [11], a setI ⊆ HBP of atoms is ananswer setfor a strong programP
iff it is a subset-minimal set that satisfies thereduct

P I = {H(r) :-B+(r) | I ∩B−(r) = ∅, r ∈ Ground(P)}.
A set I ⊆ HBP of atoms is ananswer setfor a weak programP iff I is an an-

swer set ofRules(P) andHGround(P)(I) is minimal among all the answer sets of
Rules(P), where the penalization functionHP (I) for weak constraint violation of a
ground programP is defined as follows:

HP (I) =
∑lPmax

i=1

(
fP (i) ·∑w∈NP

i (I) weight(w)
)

fP (1) = 1, and
fP (n) = fP (n− 1) · |WC(P)| · wP

max + 1 for n > 1.

whereNP
i (I) denotes the set of weak constraints ofP in level i violated byI. For

any programP , we denote the set of its answer sets byAS(P). Note that for programs
having weak constraints only of weight and level 1,HGround(P)(I) amounts to the
number of weak constraints violated inI.

A ground atoma is a brave (sometimes also called credulous or possible) conse-
quence of a programP , denotedP |=b a, if a ∈ A holds for at least oneA ∈ AS(P).
A ground atoma is acautious(sometimes also called skeptical or certain) consequence
of a programP , denotedP |=c a, if a ∈ A holds for allA ∈ AS(P). A ground atom
a is adefiniteconsequence [7] of a programP , denotedP |=d a, if AS(P) 6= ∅ and
a ∈ A holds for allA ∈ AS(P). The sets of all brave, cautious, definite consequences
of a programP are denoted asBC(P), CC(P), DC(P), respectively.

3 Consequence Modules

A module essentially consists of a program, a collection of partially instantiated atoms,
and a reasoning mode. It can also receive some predicates as input. The idea is that this

A Framework for Programming with Module Consequences 37

module represents those consequences of the program under the specified reasoning
mode which match one of the atoms.

Definition 1. Aconsequence module(or module, for short) is a quadruple〈P, I,O,m〉,
whereP (the module program) is a strong program,I (the input predicates) is a set of
predicates,O (the output atoms) is a set of atoms (possibly containing variables), and
m (the reasoning mode) is one ofbrave, cautious, definite.

A consequence module framework(or consequence module program)F = 〈B,M〉
consists of a strong programB (called the base program) and a setM of consequence
modules.

Although the realization of a module looks very similar to known concepts (e.g.
modules as defined in [12] or the signature of module atoms in [13]), we remark that
the concept of a reasoning mode clearly separates our approach from previous ones. In
particular, the output of a module in our approach is just a set of facts (depending on the
chosen reasoning mode, this set is obtained from the answer sets of the modules) which
serves as input to further modules, while in other approaches the output is usually a
collection of answer sets, which have to combined with answer sets of other modules.

We define the universeUF of a consequence module frameworkF as the set of all
constants appearing inF (if no constant appears inF , an arbitrary constant is added),
and the baseHBF of F as the set of all ground literals constructible from the predicate
symbols appearing inF and the constants ofUF .

A consequence module framework is stratified on modules if there are no circular
dependencies through consequence modules. In the following, letPred(Σ) denote the
set of predicates in a syntactic elementΣ.

Definition 2 (Stratification on Modules). A consequence module frameworkF =
〈B,M〉 is stratified on modulesif there exists a level mappingλ (a stratification) from
the set of predicates inF to N, such that for each ruler in B, λ(b) ≤ λ(h) holds for
eachb ∈ Pred(B(r)) andh ∈ Pred(H(r)), and for each module〈P, I,O,m〉 ∈ M,
λ(i) < λ(o) holds for eachi ∈ I ando ∈ Pred(O).

In the following, we will consider only consequence module programs, which are
stratified on modules.

The semantics of a stratified consequence module programF is given by an evalu-
ation along one of its level mappings. In other words, the answer sets ofF are obtained
by simply running the modules in an order of stratification and applying the modules
query on the result of each.

Definition 3. Given a stratified consequence module frameworkF = 〈B,M〉 andλ
one of its stratifications, let, for eachi ∈ N, Bi = {r ∈ B | i = max{λ(h) | h ∈
H(r)}} andMi = {〈P, I,O,m〉 ∈ M | i = max{λ(o) | o ∈ Pred(O)}}.
Definition 4. For a moduleM = 〈P, I,O,m〉 and a setA of ground atoms,AS(A ⊲
M) = {oσ | o ∈ O, oσ ∈ X}, whereσ is a substitution,X = BC(P ∪ A) if
m = brave, X = CC(P ∪A) if m = cautious, X = DC(P ∪A) if m = definite. For
a setM of modules, letAS(A ⊲M) =

⋃
M∈M AS(A ⊲ M).

38 W. Faber and S. Woltran

Given a stratified consequence module frameworkF = 〈B,M〉, we then define the
following sequence

AS0(F) = AS(B0) ∪AS(∅ ⊲M0)
ASi(F) = AS(ASi−1(F) ∪Bi) ∪AS(ASi−1(F) ⊲Mi), for i > 0

in order to obtainAS(F) = ASn(F) wheren = max{λ(p) | p ∈ Pred(F)}.
It is not hard to see that any stratification will lead to the same answer sets.
Note that the semantics of unstratified consequence module frameworks cannot be

defined in this way because of circular dependencies. In thispaper we refrain from
studying unstratified settings, as their intended semantics is not obvious and possibly
gives rise to complexity issues. In a similar way, we do not consider nested modules
(that is, occurrences of modules inside module programs). While the intended seman-
tics for these would be more obvious, they would hamper the considerations in Section 5
and possibly also give rise to complexity issues. We believethat the framework in this
paper is sufficiently rich to describe many problems, which incur reasoning subtasks,
in a natural way. We conjecture that considering an unrestricted language not requiring
stratification and allowing for nested consequence moduleswould result in a relatively
high complexity, while the language considered here essentially stays inside ASP com-
plexity bounds.

4 Applications

In this section, we study some example encodings using consequence modules. The
first one is a well-known problem from propositional logic, which we will describe in
detail, the second one is from planning. Another example would be computing the ideal
extension for abstract argumentation frameworks, which was studied in [8], and which
we omit here for space reasons.

4.1 The Unique Minimal Model Problem

As a first example, we show how to encode the problem of deciding whether a given
propositional formulaϕ has a unique minimal model. This problem is known to be in
ΘP

2 and to beco-NP-hard (the exact complexity is an open problem). Our encodings
will rely on the following observation which is obvious if one considers models as sets
of those atoms which are assigned to true: LetI be the intersection of all models ofϕ,
thenϕ has a unique minimal model iffI is also a model ofϕ.

We will use a simple consequence module framework for this task consisting of
a single module which will take care of computing the intersection of all models of
a propositional CNF formulaϕ, and a simple base program which, on the one hand,
contains a suitable representation of the formulaϕ (and passes this to the module), and,
on the other hand, checks whether the result of the module yields a model ofϕ.

Let us make this idea more precise. To start with, we fix the representation of CNFs.
Let ϕ (over atomsA) be of the form

∧n
i=1 ci. Then,

Dϕ = {at(a) | a ∈ A} ∪ {cl(i) | 1 ≤ i ≤ n} ∪

A Framework for Programming with Module Consequences 39

{pos(a, i) | atoma occurs positively inci} ∪
{neg(a, i) | atoma occurs negatively inci}.

For the module, we require a program whose answer sets are in aone-to-one corre-
spondence to models of formulas. For this purpose, considerthe programSAT as the
set of the following rules.

true(X) :- not false(X), at(X);
false(X) :- not true(X), at(X);

ok(C) :- true(X),pos(X,C);
ok(C) :- false(X),neg(X,C);

:- not ok(C), cl(C).

It can be checked that the answer sets ofSAT∪Dϕ are in a one-to-one correspondence
to the models (overA) of ϕ. In particular, for any modelI ⊆ A of ϕ there exists an
answer setM of SAT ∪Dϕ such thatI = {a | true(a) ∈ M}.

Our consequence module will now be given by

SATcautious = 〈SAT, {at, cl,pos,neg}, {true(X)}, cautious〉.

In fact, usingDϕ as input toSATcautious, we obtain a result which characterizes those
atoms inϕ which are true in all models ofϕ.

For the base program, let us now define the programMODELCHECK as the set
of the following rules

ok(C) :- true(X),pos(X,C);
ok(C) :- not true(X),neg(X,C);
:- not ok(C), cl(C).

We immediately obtain the following result.

Theorem 1. For any CNF formulaϕ, it holds thatϕ has a unique minimal model, if
and only if the framework〈Dϕ∪MODELCHECK, {SATcautious}〉 has an answer set.

A slight adaption of this encoding allows us to formalize reasoning under the closed-
world assumption (CWA), cf. [14], over a propositional knowledge baseϕ, since the
atomsa in ϕ, for which the corresponding atomstrue(a) are not contained in any
answer set of the programSAT on inputDϕ, i.e. those atomstrue(a) not contained in
the output of the moduleSATcautious on inputDϕ, are exactly those which are added
negated toϕ for CWA-reasoning. In other words, the framework,

〈Dϕ ∪ {false(X) :- not true(X), at(X)}, {SATcautious}〉

represents the closed-world closure ofϕ. Further extensions of the base program can
now be used to formulate CWA-reasoning problems.

40 W. Faber and S. Woltran

4.2 Planning

Let us consider secure planning, which is also known as conformant or certain plan-
ning [15–18]. Given a description of a nondeterministic transition system involving
states (composed of fluents) and actions (occurring betweenstates), a secure plan is a
sequence of actions (a plan), which allows for reaching a goal state in any possible out-
come of action execution. This means that, starting from a set of initial states, executing
a secure plan must not get “stuck” during execution (the subsequent action must always
be executable), and must eventually reach the goal state.

Let us consider the problem of deciding whether a given plan is secure. For the
languageK of [17], some ASP encodings have been defined in [19]. Let us assume the
availability of a programTRAJ (for a given transition system described inK) that has
one answer set for each trajectory for a sequence of actions given in the input, where
a trajectory is a sequence of states along a path in the given transition system that is
labeled by the sequence of actions in the input. For so-called proper transition systems
(cf. [17]) it is sufficient to check whether all trajectoriesend in a goal state.

We can then define a consequence module

TRAJcautious = 〈TRAJ, {a1, . . . , an}, {f1(t1), . . . , fn(tn)}, cautious〉.
wherea1, . . . , an are predicates representing actions (and thus plans), andf1(t1), . . . ,
fn(tn) are atoms representing a goal state. Secure plan checking can then be captured
by a framework

〈AP ∪G = { :- not g ; g :- f1(t1), . . . , fn(tn)}, {TRAJcautious}〉
whereAP is an encoding of the plan to be checked. If there is an answer set, the plan is
secure.

Now assume thatINITEX is a program that computes initial states of a given tran-
sition system and which moreover derives an atomi with each initial state (cf. [19]).
We define the consequence module

INITEXbrave = 〈INITEX, ∅, {i}, brave〉.
Moreover, assume the existence of a programENUMPLANS, which wheneveri holds,
generates as answer sets all possible plans of a specified length (cf. [19]). Finding se-
cure plans for proper planning domains can then be accomplished by the following
framework.

〈ENUMPLANS ∪G, {INITEXbrave,TRAJcautious}〉

5 Transforming Consequence Modules to ASP

While one could implement the suggested language using oracles formed of ASP sys-
tems (see [20] for a recent realization of such an approach),and so lifting the framework
on a metalevel, we propose an alternative method which allows for an implementation
using ASP itself. We make use of manifold programs that we have recently proposed in
[8], and elaborate on them.

A Framework for Programming with Module Consequences 41

5.1 Manifold Programs

The main idea of manifold programs is to obtain a translationwhich creates a copy of
a given program for each element of a subset of its Herbrand base. Let us first consider
the simpler case of propositional programs.

We create a copy of a given programP for each atoma in a given setS, whereby
the transformation guarantees the existence of an answer set by enabling the copies
conditionally.

Definition 5. For a strong propositional programP andS ⊆ HBP , define itsmanifold
as

P tr
S =

⋃
r∈P

{H(r)a :- {c} ∪B(r)a | a ∈ S} ∪ {c :- not i ; i :- not c}.

whereIa = {pa | atomp ∈ I}∪{not pa | not p ∈ I} for a setI of atoms and an atom
a. We assumeHBP ∩HBP tr

S
= ∅, that is, all symbols inP tr

S are assumed to be fresh.

Example 1.ConsiderΦ = {p ∨ q :- ; r :- p ; r :- q} for which AS(Φ) = {{p, r},
{q, r}}, BC(Φ) = {p, q, r} andCC(Φ) = DC(Φ) = {r}. When forming the manifold
for HBΦ = {p, q, r}, we obtain

Φtr
HBΦ

=

pp ∨ qp :- c ; rp :- c, pp ; rp :- c, qp ; c :- not i ;
pq ∨ qq :- c ; rq :- c, pq ; rq :- c, qq ; i :- not c ;
pr ∨ qr :- c ; rr :- c, pr ; rr :- c, qr

Note that given a strong programP andS ⊆ HBP , the construction ofP tr

S can
be done in polynomial time (w.r.t. the size ofP). The answer sets of the transformed
program consist of (and extend) all combinations (of size|S|) of answer sets of the
original program (augmented byc) plus the special answer set{i} which we shall use
to indicate inconsistency ofP .

Example 2.ForΦ of Example 1, we obtain thatAS(Φtr
HBΦ

) consists of{i} plus (copies
of {q, r} are underlined for readability)

{c, pp, rp, pq, rq, pr, rr}, {c, qp, rp, pq, rq, pr, rr}, {c, pp, rp, qq, rq, pr, rr},
{c, pp, rp, pq, rq, qr, rr}, {c, qp, rp, qq, rq, pr, rr}, {c, qp, rp, pq, rq, qr, rr},
{c, pp, rp, qq, rq, qr, rr}, {c, qp, rp, qq, rq, qr, rr}.

Using this transformation, each answer set encodes an association of an atom with
some answer set of the original program. If an atoma is a brave consequence of the
original program, then a witnessing answer set exists, which contains the atomaa. The
idea is now to prefer those atom-answer set associations where the answer set is a
witness. We do this by means of weak constraints and penalizeeach association where
the atom is not in the associated answer set, that is, whereaa is not in the answer set
of the transformed program. Doing this for each atom means that an optimal answer set
will not containaa only if there is no answer set of the original program that contains
a, so eachaa contained in an optimal answer set is a brave consequence of the original
program.

42 W. Faber and S. Woltran

Definition 6. Given a strong propositional programP andS ⊆ HBP , let

P bc
S = P tr

S ∪ {:∼ not aa | a ∈ S} ∪ {:∼ i}
Observe that all weak constraints are violated in the special answer set{i}, while in

the answer set{c} (which occurs if the original program has an empty answer set) all
but :∼ i are violated.

Example 3.For the programΦ as given Example 1,Φbc
HBΦ

is given byΦtr
HBΦ

∪ {:∼
not pp ; :∼ not qq ; :∼ not rr ; :∼ i}. We obtain thatAS(Φbc

HBΦ
) = {A1, A2},

whereA1 = {c, pp, rp, qq, rq, pr, rr} andA2 = {c, pp, rp, qq, rq, qr, rr}, as these two
answer sets are the only ones that violate no weak constraint. We can observe that
{a | aa ∈ A1} = {a | aa ∈ A2} = {p, q, r} = BC(Φ).

For cautious consequences, we use a similar idea, taking into account that if a pro-
gram is inconsistent (in the sense that it does not have any answer set), each atom is a
cautious consequence.

Definition 7. Given a strong propositional programP andS ⊆ HBP , let

P cc
S = P tr

S ∪ {:∼ aa | a ∈ S} ∪ {aa :- i | a ∈ S} ∪ {:∼ i}
Example 4.Recall programΦ from Example 1. We haveΦcc

HBΦ
= Φtr

HBΦ
∪{:∼ pp ; :∼

qq ; :∼ rr ; pp :- i ; qq :- i ; rr :- i ; :∼ i}. We obtain thatAS(Φcc
HBΦ

) =
{A3, A4}, whereA3 = {c, qp, rp, pq, rq, pr, rr} andA4 = {c, qp, rp, pq, rq, qr, rr}, as
these two answer sets are the only ones that violate only one weak constraint, namely
:∼ rr. We observe that{a | aa ∈ A3} = {a | aa ∈ A4} = {r} = CC(Φ).

Finally we slightly adapt the construction for definite consequences.

Definition 8. Given a strong propositional programP andS ⊆ HBP , let

P dc
S = P tr

S ∪ {:∼ aa; ia :- i; :∼ ia | a ∈ S} ∪ {:∼ i}
Example 5.Recall programΦ from Example 1. We haveΦdc

HBΦ
= Φtr

HBΦ
∪{:∼ pp ; :∼

qq ; :∼ rr ; ip :- i ; iq :- i ; ir :- i :∼ ip ; :∼ iq ; :∼ ir ; :∼ i}. As in Example 4,
A3 andA4 are the only ones that violate only one weak constraint, namely :∼ rr, and
thus are the answer sets ofΦdc

HBΦ
.

Proposition 1. Given a strong propositional programP andS ⊆ HBP , for anyB ∈
AS(P bc

S), {b | bb ∈ B} = BC(P) ∩ S; for any C ∈ AS(P cc
S), {c | cc ∈ C} =

CC(P) ∩ S; for anyD ∈ AS(P dc
S), {d | dd ∈ D} = DC(P) ∩ S.

Obviously, one can compute all brave, cautious, or definite consequences of a pro-
gram by choosingS = HBP . We also note that the programs from Definitions 6, 7 and
8 yield multiple answer sets. However each of these yields the same atomsaa, so it is
sufficient to compute one of these. This issue will be addressed in Section 5.2.

We now generalize these techniques to non-ground strong programs. In principle,
one could annotate each predicate (rather than atom as before) with ground atoms of

A Framework for Programming with Module Consequences 43

a subset of the Herbrand Base. However, one can also move the annotations to the
non-ground level: For example, instead of annotating a rulep(X,Y) :- q(X,Y) by the
set{r(a), r(b)} yieldingpr(a)(X,Y) :- qr(a)(X,Y) andpr(b)(X,Y) :- qr(b)(X,Y) we
will annotate using only the predicater and extend the arguments ofp, yielding the
compact ruledr

p(X,Y,Z) :- dr
q(X,Y,Z) (we use predicate symbolsdr

p anddr
q rather

thanpr andqr just for pointing out the difference between annotation by predicates
versus annotation by ground atoms). In this particular example we have assumed that
the program is to be annotated by all ground instances ofr(Z); we will use this assump-
tion also in the following for simplifying the presentation. In practice, one can clearly
add atoms to the rule body for restricting the instances of the predicate by which we
annotate, in the example this would yieldpr(X,Y,Z) :- qr(X,Y,Z), dom(Z) where
the predicatedom should be defined appropriately. In the following, recall that α(p)
denotes the arity of a predicatep.

Definition 9. Given an atoma = p(t1, . . . , tn) and a predicateq, let atr
q be the atom

dq
p(t1, . . . , tn,X1, . . . ,Xα(q)) whereX1, . . . ,Xα(q) are fresh variables anddq

p is a new
predicate symbol withα(dq

p) = α(p)+α(q). Furthermore, given a setL of literals, and
a predicateq, letLtr

q be{atr
q | atoma ∈ L} ∪ {not atr

q | not a ∈ L}.
Note that we assume that even though the variablesX1, . . . ,Xα(q) are fresh, they

will be the same for eachatr
q . One could define similar notions also for partially ground

atoms or for sets of atoms characterized by a collection of defining rules, from which
we refrain here for the ease of presentation. We define the manifold program in analogy
to Definition 5, the only difference being the different way of annotating.

Definition 10. Given a strong programP and a setS of predicates, define itsmanifold
as

P tr
S =

⋃
r∈P

{H(r)tr
q :- {c} ∪B(r)tr

q | q ∈ S} ∪ {c :- not i ; i :- not c}.

Example 6.Consider programΨ = {p(X) ∨ q(X) :- r(X); ; r(a) :- ; r(b) :- } for
which AS(Ψ) = {{p(a), p(b), r(a), r(b)}, {p(a), q(b), r(a), r(b)}, {q(a), p(b), r(a),
r(b)}, {q(a), q(b), r(a), r(b)}}. Hence,BC(Ψ) = {p(a), p(b), q(a), q(b), r(a), r(b)}
andCC(Ψ) = DC(Ψ) = {r(a), r(b)}. Forming the manifold forS = {p}, we obtain

Ψ tr
S =

{
dp

p(X,X1) ∨ dp
q(X,X1) :- dp

r(X,X1), c ;
dp

r(a,X1) :- c ; dp
r(b,X1) :- c ; c :- not i ; i :- not c

}
AS(Ψ tr

S) consists of{i} plus 16 answer sets, corresponding to all combinations of the
four answer sets inAS(Ψ).

Now we are able to generalize the encodings for brave, cautious, and definite con-
sequences. These definitions are direct extensions of Definitions 6, 7, and 8, the dif-
ferences are only due to the non-ground annotations. In particular, the diagonalization
atomsaa should now be written asdp

p(X1, . . . ,Xα(p),X1, . . . ,Xα(p)) which represent
the set of ground instances ofp(X1, . . . ,Xα(p)), each annotated by itself. So, a weak
constraint:∼ dp

p(X1, . . . ,Xα(p),X1, . . . ,Xα(p)) gives rise to{:∼ dp
p(c1, . . . , cα(p),

c1, . . . , cα(p)) | c1, . . . , cα(p) ∈ U} whereU is the Herbrand base of the program in
question, that is one weak constraint for each ground instance annotated by itself.

44 W. Faber and S. Woltran

Definition 11. Given a strong programP and a setS of predicate symbols, let

P bc
S = P tr

S ∪ {:∼ not ∆q | q ∈ S} ∪ {:∼ i}
P cc

S = P tr
S ∪ {:∼ ∆q; ∆q :- i | q ∈ S} ∪ {:∼ i}

P dc
S = P tr

S ∪ {:∼ ∆q; Iq :- i; :∼ Iq | q ∈ S} ∪ {:∼ i}

where∆q = dq
q(X1, . . . ,Xα(q),X1, . . . ,Xα(q)) andIq = iq(X1, . . . ,Xα(q)).

Proposition 2. Given a strong programP and a setS of predicates, for an arbitrary
A ∈ AS(P bc

S), (resp.,A ∈ AS(P cc
S), A ∈ AS(P dc

S)), the set{p(c1, . . . , cα(p)) |
dp

p(c1, . . . , cα(p), c1, . . . , cα(p)) ∈ A} is the set of brave (resp., cautious, definite) con-
sequences ofP with a predicate inS.

Example 7.Consider againΨ andS = {p} from Example 6. We obtainΨ bc
S = Ψ tr

S ∪
{:∼ not dp

p(X1,X1) ; :∼ i} and we can check thatAS(Ψ bc
S) consists of the sets

R∪{dp
p(a, a),dp

p(b, b),d
p
q(a, b),dp

q(b, a)}, R∪{dp
p(a, a),dp

p(b, b),d
p
p(a, b),dp

q(b, a)},
R∪{dp

p(a, a),dp
p(b, b),d

p
q(a, b),dp

p(b, a)}, R∪{dp
p(a, a),dp

p(b, b),d
p
p(b, a),dp

p(b, a)};

whereR = {dp
r(a, a),dp

r(a, b),dp
r(b, a),dp

r(b, b)}. For eachA of these answer sets we
obtain{p(t) | dp

p(t, t) ∈ A} = {p(a), p(b)} which corresponds exactly to the brave
consequences ofΨ with a predicate ofS = {p}.
For cautious consequences,Ψ cc

S = Ψ tr
S ∪ {:∼ dp

p(X1,X1) ; dp
p(X1,X1) :- i ; :∼ i}

and we can check thatAS(Ψ cc
S) consists of the sets

R∪{dp
q(a, a),dp

q(b, b),d
p
q(a, b),dp

q(b, a)}, R∪{dp
q(a, a),dp

q(b, b),d
p
p(a, b),dp

q(b, a)},
R∪{dp

q(a, a),dp
q(b, b),d

p
q(a, b),dp

p(b, a)}, R∪{dp
q(a, a),dp

q(b, b),d
p
p(b, a),dp

p(b, a)};

whereR = {dp
r(a, a),dp

r(a, b),dp
r(b, a),dp

r(b, b)}. For eachA of these answer sets we
obtain{p(t) | dp

p(t, t) ∈ A} = ∅ and indeed there are no cautious consequences ofΨ
with a predicate ofS = {p}.
Finally, for definite consequences,Ψdc

S = Ψ tr
S ∪ {:∼ dp

p(X1,X1) ; ip(X1) :- i ; :∼
ip(X1) ; :∼ i}. It is easy to see thatAS(Ψdc

S) = AS(Ψ cc
S) and so{p(t) | dp

p(t, t) ∈
A} = ∅ for each answer setA of Ψdc

S , and indeed there is also no definite consequence
of Ψ with a predicate ofS = {p}.

These definitions exploit the fact that the semantics of non-ground programs is de-
fined via their grounding with respect to their Herbrand Universe. So the fresh variables
introduced in the manifold will give rise to one copy of a rulefor each ground atom. In
practice, ASP systems usually require rules to be safe, thatis, that each variable occurs
(also) in the positive body. The manifold for a set of predicates may therefore contain
unsafe rules (because of the fresh variables). But this can be repaired by adding ado-
main atomdomq(X1, . . . ,Xm) to a rule which is to be annotated withq. This predicate
can in turn be defined by a ruledomq(X1, . . . ,Xm) :-u(X1), . . . , u(Xm) whereu is
defined using{u(c) | c ∈ UP }. One can also provide smarter definitions fordomq by
using a relaxation of the definition forq.

A Framework for Programming with Module Consequences 45

5.2 Transforming Consequence Module Frameworks by Manifolding

The main intuition is to replace each module by a suitable manifold program. In par-
ticular, given a moduleM = 〈P, I,O,m〉 in a frameworkF , we intend to create its
manifold transform asP bc

Pred(O) if m = brave, P cc
Pred(O) if m = cautious, P dc

Pred(O) if
m = definite. Together with suitableadaptor rules, which map the transformed predi-
cates back to predicates of the original program, these willbe joined to the base program
of the framework.

However, there are two main issues to resolve: As remarked earlier, the various
manifold programs may admit more than one answer set, which are equivalent with
respect to the consequences represented in them. Still, in the context of modules we
would like to have a single answer set. The second issue dealswith the fact that the
manifold transforms of different modules should not interfere with each other.

The first issue can be dealt with by adding penalties in a way that only one answer
set remains. In order to avoid interference with other weak constraints, these should be
put into a separate level of lower importance. To this end oneshould fix an arbitrary
order of the ground atoms inX = {dq

q(c1, . . . , cα(q), c
′
1, . . . , c

′
α(q)) | ci, c

′
j ∈ UF , ck 6=

c′k} ∪ {dp
q(c1, . . . , cα(q), c

′
1, . . . , c

′
α(p)) | p 6= q, ci, c

′
j ∈ UF } and assigning weights of

the exponential sequence1, 2, 4, 8, . . . to them. This is because each atom should incur
a penalty which is greater than the sum of penalties of all preceding atoms. In particular,
if a0, a1, . . . is an enumeration ofX respecting the chosen order, add a weak constraint
:∼ ai.[2i : 1]. The weak constraints of the original manifold programs should be put in
the more important level 2 (higher levels are more importantin the semantics of weak
constraints), so all weak constraints introduced in Section 5.1 should be extended by
[1 : 2] (weight1 is the default for weights, which was implicitly used in Section 5.1).

The weak constraints introduced in this way can be thought ofreducing the set of
answer-set candidates in the following way: If answer sets without a0 exist, further
consider only those, otherwise there is no reduction. So theresulting candidates either
all do not containa0, or all do. Then, among the result, if answer sets withouta1 exist,
further consider only those, otherwise there is no reduction. The remaining candidates
do not differ on the presence ofa0 anda1. Continuing like this, in the end the remaining
candidates will not differ on the presence of any element inX. If the original set of
answer-set candidates differs only on elements inX, then only one answer set remains.

The second modification regards combinability of manifold programs. We would
like to be able to simply form the union of all manifold programs replacing the modules.
The way in which manifold programs have been defined in Section 5.1, they could
in principle share predicate names, which would lead to unwanted interferences. We
therefore ensure that each manifold program introduces a unique set of predicates by
extending the predicatesdq

p, iq (pa, ia in the propositional case) andi, c by a string
uniquely identifying the module, which the manifold program represents.

Definition 12. For a moduleM = 〈P, I,O,m〉, let its manifold transformbe defined
asT (M) = Pm

Pred(O), whereP brave
Pred(O), P cautious

Pred(O), P definite
Pred(O) correspond to the mani-

fold programs of Section 5.1 with the modifications described above.
Theadaptor rulesfor the moduleM are defined as

AM = {p(t1, . . . , tα(p)) :- dp
p(t1, . . . , tα(p), t1, . . . , tα(p)) | p(t1, . . . , tα(p)) ∈ O}

46 W. Faber and S. Woltran

Themanifold programfor a consequence module frameworkF = 〈B,M〉 is then
T (F) = B ∪⋃

M∈M(T (M) ∪AM).

Now we can state the correspondence result.

Proposition 3. For a consequence module frameworkF , AS(F) = AS(T (F)) ∩
HBF . In fact, there is a one-to-one correspondence betweenAS(F) andAS(T (F)) ∩
HBF .

Some of the key observations for this correspondence resultare that the depen-
dencies of predicates of the base program remain unaltered in T (F), and that module
dependencies between predicates inF become standard dependencies inT (F) via the
predicates introduced by manifolding. This allows for applying the splitting set theo-
rem of [21] to the program without weak constraints, mimicking the sequenceASi(·)
of Definition 4. However, the manifold parts ofT (F) give rise to many answer-set can-
didates, among which there are also answer sets that containexactly the consequences
under the respective reasoning mode. The combined programT (F) thus will contain
many answer-set candidates, but among these there are also precisely the answer sets of
the framework, because the latter are defined by replacing the modules by the respective
consequences.

The combination of all weak constraints then eliminates allbut these candidates.
Combining the weak constraints, considering first only those weak constraints described
in Section 5.1, has the desired effect because the symbols introduced byT (M) are not
contained in any otherT (M ′). Because of this and since these weak constraints all
have weight1, any global optimum must also be an optimum locally for anyT (M).
Therefore, without adding the additional weak constraintsfor enforcing uniqueness,
the first part of Proposition 3 already holds. One can then show that the differences
between multiple answer sets ofT (F) representing a single answer set ofF is only due
to atoms in the setsX described above, which are reduced to precisely one using the
method described earlier, thus obtaining a one-to-one correspondence.

6 Conclusion

In this paper, we provided a novel framework for specifying ASP programs, which in-
volve the consequences of subprograms, defining syntax and semantics of the proposed
language. We gave examples for problems that possess a comparably natural represen-
tation in this language, while a traditional ASP specification is not obvious. Moreover,
we proposed a transformation of consequence module frameworks to ASP with weak
constraints, based on an adaption of the recently proposed manifold program technique,
which allows for using a standard ASP solver supporting weakconstraints for comput-
ing answer sets of consequence module frameworks.

For future work, we are interested in studying the effects oflifting the restriction
of module stratification and of module nesting. We would alsolike to explore the
possibility to use alternative optimization constructs offered by ASP solvers, such as
minimize supported bylparse andgringo, in order not to be restricted by the

A Framework for Programming with Module Consequences 47

availability of weak constraints. Also on our agenda is analyzing the relationship be-
tween our framework and other proposals for modular ASP (see, e.g. [22, 13]). Finally,
we would also like to implement a system that supports consequence module program-
ming.

References

1. Marek, V.W., Truszczýnski, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm – A 25-Year Perspective. (1999) 375–
398

2. Niemel̈a, I.: Logic programming with stable model semantics as a constraint programming
paradigm. AMAI25(3–4) (1999) 241–273

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP
(2002)

4. Gelfond, M.: Representing knowledge in A-Prolog. In: Computational Logic: From Logic
Programming into the Future. LNCS 2408, (2002) 413–451

5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub,T., Truszczýnski, M.: The first
answer set programming system competition. In: LPNMR’07. LNCS 4483, (2007) 3–17

6. Bravo, L., Bertossi, L.E.: Logic programs for consistently querying data integration systems.
In: IJCAI 2003, (2003) 10–15

7. Sacc̀a, D.: Multiple total stable models are definitely needed to solve unique solutionprob-
lems. Inf. Process. Lett.58(5) (1996) 249–254

8. Faber, W., Woltran, S.: Manifold answer-set programs for meta-reasoning. In: LPNMR’09.
LNCS 5753, (2009) 115–128

9. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE
Trans. Knowl. Data Eng.12(5) (2000) 845–860

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. TOCL7(3) (2006) 499–562

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs anddisjunctive databases.
New Generation Comput.9(3/4) (1991) 365–386

12. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stablemodel semantics for
smodels programs. TPLP8(5-6) (2008) 717–761

13. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic program-
ming revisited. In: Proceedings of the ICLP’09. LNCS 5649, (2009) 145–159

14. Reiter, R.: On closed world data bases. In: Logic and Databases. Plenum Press (1978) 55–76
15. Goldman, R.P., Boddy, M.S.: Expressive planning and explicit knowledge. In: AIPS’96,

AAAI Press (1996) 110–117
16. Smith, D.E., Weld, D.S.: Conformant Graphplan. In: AAAI’98,AAAI Press (1998) 889–896
17. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to

knowledge-state planning: Semantics and complexity. TOCL5(2) (2004) 206–263
18. Son, T.C., Tu, P.H., Gelfond, M., Morales, A.R.: An approximation of action theories of and

its application to conformant planning. In: LPNMR’05. LNCS 3662, (2005) 172–184
19. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to

knowledge-state planning, II: the DLVK system. Artif. Intell.144(1–2) (2003) 157–211
20. Balduccini, M.: A general method to solve complex problems by combining multiple answer

set programs. In: Proceedings ASPOCP’09. (2009)
21. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP’94, MIT Press (1994) 23–37
22. Oikarinen, E.: Modularity in Answer Set Programs. PhD thesis, Helsinki University of

Technology, Finland (2008)

48 W. Faber and S. Woltran

A Pragmatic Programmer’s Guide to Answer Set
Programming

Martin Brain, Owen Cliffe? and Marina De Vos?

Department of Computer Science
University of Bath

Bath, BA2 7AY, UK
{mjb,occ,mdv}@cs.bath.ac.uk

Abstract. With the increasing speed and capacity of answer set solvers and
showcase applications in a variety of fields, Answer Set Programming (ASP)
is maturing as a programming paradigm for declarative problem solving. Com-
prehensive programming methodologies have been developed for procedural and
object-oriented paradigms to assist programmers in developing their programs
from the problem specification. In many cases, however it is not clear how, or
even if, such methodologies can be applied to answer set programming. In this
paper, we present a first and rather pragmatic methodology for ASP and illustrate
our approach through the encoding of graphical puzzle.

1 Introduction

Answer Set Programming (ASP) is a declarative programming paradigm based on the
answer set semantics [16, 1]. Like other declarative programming languages, the pro-
grammer specifies what needs to be achieved, rather than how it should be achieved.
It therefore lends itself naturally to applications in the domain of artificial intelligence,
such as plan generation and reasoning in agents. In ASP, programs are written in AnsPro-
log and describe the requirements for the solutions of certain problem. The answer sets
of the program are interpreted to give theses solutions. The possible answer sets for an
AnsProlog input program are computed with a program called a solver. Current solvers
include SMODELS [19, 21], DLV [11, 12], CLASP [14], CMODELS [17], SUP [18].

A report by the Working group on Answer Set Programming (WASP)1 acknowl-
edges that better tools are required to support programming in this paradigm [20]. How-
ever in order to identify the aspects that require better support, and thus develop the
appropriate tools to support them, a better understanding of the programming process
is needed.

The process of engineering solutions to problems in declarative languages differs
from conventional procedural software engineering in many regards. Conventional soft-
ware engineering approaches (e.g. UML) (but excluding more recent agile approaches)
focus on building specifications of data structures and functional units in advance, be-
fore proceeding to their implementation. However the declarative approach used in
? Work supported by the ALIVE project (FP7 215890)
1 http://wasp.unime.it/

Problem Solution

Program Answer Sets

Model

Solve

Interpret

Fig. 1. The Four Box Diagram

AnsProlog means that programs essentially act as their own specification. Thus the
process of understanding, decomposing and encoding problem structures (the specifi-
cation) is necessarily blurred with the process of solving the problem itself (the imple-
mentation).

AnsProlog is increasingly being used to solve practical problems both in and out
of the academic domain. At present it is our experience that developers who use these
systems to solve real problems tend to develop either without a specific methodology,
or build their own methodological process. Just as the community is trying to reach
consensus on language standards [22] and intermediate formats for program represen-
tation and such [15, 22], we feel there is a need to reach a similar consensus on practical
processes by which programs are developed and maintained. However, as with all pro-
graming techniques we cannot claim to know the best way to solve problems using ASP,
all we can talk about is how we write programs and relate our experiences working in
a number of domains. Thus, in this paper we do not try to document “best practice”,
simply “our practice”. We hope that this can be the start of a discussion and that we, as
a community, can start building up an idea of best practice.

The structure of the remainder of paper is as follows, we start by addressing issues
relating to the whole process of problem solving using ASP, specifically we focus on
methodological questions relating to how problems are captured. We then discuss some
specific observations relating to problem encodings themselves through a guided ex-
ample. Finally we look at the process of resolving problems within existing AnsProlog
programs (debugging).

2 Towards a Development Process

ASP can be described via the four box diagram, as shown in Figure 1. One starts with a
problem which is modelled as a AnsProlog program. This program is passed then to a
solver. The answer sets are then interpreted to obtain the solutions.

A common problem we have found when encouraging students and collaborators
from other fields to become active involved in developing applications using ASP is
that while they understand how the tools work (the solving link in Figure 1) and finished

50 M. Brain, O. Cliffe, and M. De Vos

models (the program box), they do not understand how to go from their problem to a
program (the modelling link). As far as we know there is no documentation that we can
point them to and say “this is how to solve a problem using ASP”. The authors of [8]
give a very nice break down of how a logical model is structured and is currently the
best resource for this. However they present the models as a finished product and do not
discuss the process, reasoning or tools that created them.

3 The Methodology

In this section we provide a detailed description of our methodology for using ASP
to solve problems. As a running example we will use the Hashiwokakero puzzle. The
puzzles creators, Nikoli2 describe the puzzle as follows:

Hashiwokakero is played on a rectangular grid with no standard size, al-
though the grid itself is not usually drawn. Some cells start out with (usually
encircled) numbers from 1 to 8 inclusive; these are the islands. The rest of the
cells are empty.

The goal is to connect all of the islands into a single connected group by
drawing a series of bridges between the islands. The bridges must follow cer-
tain criteria:
1. Connect islands (the dots with numbers) with as many bridges as the num-

ber in the island.
2. There can be no more than two bridges between two islands.
3. Bridges cannot go across islands or other bridges.
4. The bridges will form a continuous link between all the islands.

We also use examples from our music composition system ANTON [3] and our
superoptimisation application, TOAST [5] which are among the largest applications
using ASP.

Although some debugging tools exist [4], we have come to believe that a more in-
cremental, test-driven [2] approach allows for easy verification at every stage. While it
does not make debugging tools superfluous, a systematic approach prevents program-
mers from making certain errors and increases productivity.

3.1 Step 1: Start Simple

We advocate starting with a simplified model of the problem that to be solved, because
it is much easier to build up a correct model into something more complicated than it
is to fix a complicated but broken program. For example, in the case of ANTON we
started out composing one part for 8 notes. This point cannot be stressed enough, start
simple, start laughably simple, and work upwards.

2 http://www.nikoli.com/en/puzzles/hashiwokakero/rule.html

A Pragmatic Programmer’s Guide for Answer Set Programming 51

Example 1. To start encoding our puzzle, we need to decide which literals to use to
represent each concept. We need to consider what information will be in the instances,
what the constraints are and what information you wish to infer. In this case, we decided
to use the following:

Atom Concept represented
Instance Specific Information

col(X) There is a column labelled X (ascending integers from 1).
row(Y) There is a row labelled Y (ascending integers from 1).

island(X,Y,N) There is an island in column X, row Y with value N.
Information to be Inferred

singleHorizontal(X,Y) There is a single horizontal bridge in column X, row Y.
doubleHorizontal(X,Y) There is a double horizontal bridge in column X, row Y.
singleVertical(X,Y) There is a single vertical bridge in column X, row Y.
doubleVertical(X,Y) There is a double vertical bridge in column X, row Y.

At this stage, our program now looks like as Listing 1.

row(1..height).
col(1..width).

Listing 1. The first step towards our Hashiwokakero program

Deciding the meaning of the base literals should be enough to create and visualise
(see next step) a problem instance. It is best to start with as small an instance as is mean-
ingful, as otherwise it will be difficult to check by hand. This also helps mitigate any
scaling issues during development. Given we are advocating incremental development,
one does not want to have to wait more than a few seconds per run during development,
so one needs to pick an appropriately sized example.

Listing 2 shows (with modified formatting) an instance of our puzzle.

3.2 Step 2: Visualisation

The next step is a visualisation or post-processing mechanism. This is effectively the
interpretation link in the four box diagram. Post-processing and visualisation are oft-
neglected parts of the development process, but very important ones as they allow the
developer to see the program and its development in terms of the initial problem and
solution, allowing a much more intuitive development process. This stage closes the se-
mantic gap between the program encoding and the problem domain and aids debugging
as it allows programmers to see what they wrote and easily compare it with what they
intended to write. As argued in [6], when writing programs there is often a mismatch
between the answer set you get and what you expected. Visualisation makes it much
easier to see what one has, and specifically it often makes it easier to see when what one

52 M. Brain, O. Cliffe, and M. De Vos

#const height=13.
#const width=13.

uniqueStart(1,1).

island(1,1,2). island(3,1,4). island(5,1,3).
island(1,4,2). island(3,4,3). island(5,3,2).
island(1,6,1). island(3,6,5). island(5,5,2).
island(1,10,2). island(3,8,4). island(5,8,4).
island(1,13,3). island(3,10,2). island(5,10,3).

island(3,12,1). island(5,12,2).

island(6,4,2). island(7,1,1). island(8,6,1). island(9,1,2).
island(6,6,2). island(7,3,3). island(8,8,3). island(9,3,2).
island(6,11,2). island(7,5,5). island(8,11,4). island(9,5,3).
island(6,13,3). island(7,7,2). island(8,13,1). island(9,7,2).

island(9,10,3).

island(10,2,3). island(11,5,4). island(12,1,1). island(13,2,1).
island(10,4,3). island(11,7,4). island(12,4,1). island(13,7,2).
island(10,11,4). island(11,10,2). island(12,6,2). island(13,10,3).
island(10,13,2). island(12,8,3). island(13,13,2).

island(12,11,3).

Listing 2. An Hashiwokakero instance

has is incorrect. How the visualisations/interpretations are produced is up to the pro-
grammer and different types of program will lend themselves to different visualisation
and processing approaches. One possibility is using a scripting language (e.g. Perl) and
ASCII art. A more sophisticated choice would be ASPVIZ [9], a ASP visualisation tool
using AnsProlog as its representation language. GraphViz 3 is also frequently a useful
tool for visualising problems solutions.

The utility of visualisation cannot be overstated. It is often the most time consuming
part of development but it does pay dividends by simplifying the process of isolating
programming errors. After this it should be possible to visualise all of the elements of
the full search space.

Example 2. The visualisation program written in ASPVIZ for Hashiwokakero can be
found in Listing 3 (see [9] for a description of the language). The rules produce graph-
ical artifacts for each island, shown as an ellipse containing the number of required
bridges and the connecting bridges. An example of the output, for the program and
instance given so far can be found in Figure 2.

3.3 Step 3: The Search Space Generator

The first part of the program to be written should be the search space generator. This
tends to be a set of choice rules that define the search space of the problem in question4;
to start with, this should give an answer set for each possible element of the search
space. In the case when the problem being solved is co-NP, search generation is es-
pecially important. Working with programs with no answer sets is problematic. This
should be obvious if one accepts the argument [6] that one knows there is a bug if there

3 http://www.graphviz.org/
4 We are of the opinion that all uses of ASP should effectively be phrased as search problems.

As a consequence, we see the ‘hard’ part of the problem as the search phase. We note that
there is a view that the procedural, data processing side is more significant.

A Pragmatic Programmer’s Guide for Answer Set Programming 53

% Draw islands and numbers
draw_ellipse(dflb,p(X*16,Y*16),14,14) :- island(X,Y,N).
draw_text(dflf,c,c,p(X*16,Y*16),N):- island(X,Y,N).

% Draw single bridges
draw_line(dflb,p(X*16,(Y*16)-8),p(X*16,(Y*16)+8)):-

verticalBridge(X,Y), not doubleVertical(X,Y).
draw_line(dflb,p((X*16)-8,Y*16),p((X*16)+8,Y*16)) :-

horizontalBridge(X,Y), not doubleHorizontal(X,Y).

% Draw double bridges
draw_line(dflb,p((X*16)-8,Y*16+2),p((X*16)+8,Y*16+2)) :- doubleHorizontal(X,Y).
draw_line(dflb,p((X*16)-8,Y*16-2),p((X*16)+8,Y*16-2)) :- doubleHorizontal(X,Y).

draw_line(dflb,p(X*16+2,(Y*16)-8),p(X*16+2,(Y*16)+8)):- doubleVertical(X,Y).
draw_line(dflb,p(X*16-2,(Y*16)-8),p(X*16-2,(Y*16)+8)):- doubleVertical(X,Y).

Listing 3. The visualisation program for Hashiwokakero

Fig. 2. Visualisation of an unsolved instance of the Hashiwokakero puzzle

is a difference between the expected and given answers. When the expected result is
that no answer sets are produced and one gets no answer sets, how does one know if the
code is working correctly or whether one has introduced a contradiction? Just using the
number of branches or other solver performance stats is not reliable. Thus one wants to
spend as much time as possible with answer sets, to the point of commenting out some
constraints or deliberately working with instances that are ‘incorrect’.

Example 3. We now need to add rules to generate the search space. The program up to
this stage can be found in Listing 4. Adding these first rules allows us to see the solution
taking shape as we build the model.

We now run our program together with the instance provided in Listing 2. From
this, we obtain an answer set for every combination of bridges (a very large number).
At this point, we do not yet care whether bridges join up or not. We can exploit the
randomisation functionality of most answer set solvers to generate a small selection of
answer sets which are visualised in Figure 3.

3.4 Commenting

Comments are very important during development. AnsProlog is very expressive and
allows modelling of some very sophisticated concepts with very little code. Without

54 M. Brain, O. Cliffe, and M. De Vos

row(1..height).
col(1..width).

%% We need to know which squares contain island
%% So we project out the value of the island
isIsland(X,Y) :- island(X,Y,N).

%% For each square that is not an island, pick whether it should contain
%% a bridge or not and if so, what kind of bridge.
1 { empty(X,Y), singleHorizontal(X,Y), doubleHorizontal(X,Y),

singleVertical(X,Y), doubleVertical(X,Y) } 1 :- row(Y), col(X),
not isIsland(X,Y).

Listing 4. Adding the search space for Hashiwokakero

Fig. 3. Example outputs for random bridge assignments

comments this compactness can lead to terseness and unreadability (commonly referred
to as write-only code in procedural languages). Normally each rule or group of related
rules will be preceded by a comment, saying (in natural language) what aspect or idea
from the problem it is intended to encode and (in the few cases where the encoding
is complicated enough), how it is encoded. As well as making the program more in-
telligible, heavy commenting is very important for debugging and maintenance as it
expresses, as much as is possible, what was intended by the code. As noted in [6] a bug
in an AnsProlog program is a mismatch between what is written and what was intended.
When no expression of intent is available except for the rules, then only the programmer
who wrote the code can debug it, and generally only while writing it. Maintenance and
further development become very difficult as first one has to infer what the programmer
was thinking when they wrote the code. Given the (frequently) small semantic gap be-
tween the comments and the code, natural language generation may offer an interesting
route to program support/debugging tools. If what is written does not provide a correct
description of the problem, then generally one can see which part of the description is
a problem. We also tend to use comments to record what each of the key propositions
presents about the world, i.e “move(T,X,Y) is known if the move at time step T is to
position (X,Y)”. Ideally it should be possible to read the comments top to bottom as a
description of the model.

A Pragmatic Programmer’s Guide for Answer Set Programming 55

row(1..height).
col(1..width).

%% We need to know which squares contain island
%% So we project out the value of the island
isIsland(X,Y) :- island(X,Y,N).

%% For each square that is not an island, pick whether it should contain
%% a bridge or not and if so, what kind of bridge.
1 { empty(X,Y), singleHorizontal(X,Y), doubleHorizontal(X,Y),

singleVertical(X,Y), doubleVertical(X,Y) } 1 :- row(Y), col(X),
not isIsland(X,Y).

%% A single horizontal bridge must lead to another single bridge or an island
:- singleHorizontal(X,Y), not singleHorizontal(X+1,Y), not isIsland(X+1,Y).

%% Likewise for double horizontal bridges
:- doubleHorizontal(X,Y), not doubleHorizontal(X+1,Y), not isIsland(X+1,Y).

%% Similarly for vertical bridges
:- singleVertical(X,Y), not singleVertical(X,Y+1), not isIsland(X,Y+1).
:- doubleVertical(X,Y), not doubleVertical(X,Y+1), not isIsland(X,Y+1).

Listing 5. The first increment of Hashiwokakero

Fig. 4. An answer set visualisation of Hashiwokakero after the first increment.

3.5 Step 4: Incremental Development

Development now progresses in an incremental fashion, using very small increments. A
set of rules (normally corresponding to one comment / idea) is written, then the solver
is re-run and the answer set(s) visualised. This may seem slow but it removes a lot of
bugs and saves time while trying to diagnose the causes of problems. In more complex
applications the visualisation program may need to be updated along with the program
to show the effect of new literals.

Example 4. Increment One: We now add rules saying that bridges must continue in
their existing direction (and with the same width) or stop at an island. The program at
this stage is shown in Listing 5. Note that these are only phrased in terms of increasing
row / width as the decreasing case follows via symmetry. A visualisation of one the
answer sets of our puzzle after we added the first increment is shown in Figure 4.

56 M. Brain, O. Cliffe, and M. De Vos

%% We want to be able to talk about either kind of horizontal / vertical bridge
horizontalBridge(X,Y) :- singleHorizontal(X,Y).
horizontalBridge(X,Y) :- doubleHorizontal(X,Y).
verticalBridge(X,Y) :- singleVertical(X,Y).
verticalBridge(X,Y) :- doubleVertical(X,Y).

%% A horizontal bridge cannot start a vertical bridge
:- horizontalBridge(X,Y), verticalBridge(X,Y+1).

%% Neither can an empty square
:- empty(X,Y), verticalBridge(X,Y+1).

%% Correspondingly for vertical bridges
:- verticalBridge(X,Y), horizontalBridge(X+1,Y).
:- empty(X,Y), horizontalBridge(X+1,Y).

Listing 6. The second increment of Hashiwokakero

Fig. 5. An answer set visualisation of Hashiwokakero after the second increment.

Example 5. Increment Two: From the visualisation in Figure 4 is is clear that answer
sets are beginning to resemble solutions but a few conditions are missing as there are
cases where bridges are running into each other or starting from nothing. Thus we
project the existence of horizontal / vertical bridges and prevent the other kind from
starting immediately after them. Similarly for empty squares. The projection is a trade
off between the number of literals and the number of rules. Given that rules are more
often the limit of scalability, it is often worth doing. The rules added to the program are
shown in Listing 6 and its output in Figure 5.

Example 6. Increment Three: The bridges are beginning to look correct, however the
visualisation (Figure 5) points out a few conditions that have been missed. As we have
been focusing on the ‘next’ location, we have edge conditions at the border. These are
easily removed as there should never be vertical bridges in the top or bottom row, nor
horizontal ones in either edge. The code in Listing 7 is added to our program which
results in output like Figure 6.

Example 7. Increment Four: The bridges look correct but are a little sparse, so the next
condition to add is the number of bridges coming in to each island. The obvious way to

A Pragmatic Programmer’s Guide for Answer Set Programming 57

%% No vertical bridges in the top or bottom rows
:- verticalBridge(X,1).
:- verticalBridge(X,height).

%% Likewise no horizontal bridges in the edge columns.
:- horizontalBridge(1,Y).
:- horizontalBridge(width,Y).

Listing 7. The third increment of Hashiwokakero

Fig. 6. An answer set visualisation of Hashiwokakero after the third increment.

do this is using a weight constraint. The additions to the program are shown in Listing 8.
Again, the visualisation (Figure 7) makes it relatively easy to check that the effect of
these rules matches the intend behind them.

Example 8. Fifth and final Increment: Now for the last constraint: all of the islands need
to be connected. Careful examination of the output (Figure 7) will show that the islands
are not connected. We formalise connectivity as reachability from a unique starting
point and then require that all islands must be reachable. This raises the question of
how to pick a unique starting point. We opt for the easiest solution of adding this to
the instance requirements. The final addition to our program is shown in Listing 9. The
entire program resulting in a complete (and unique) solution (Figure 8)

3.6 Coding Conventions

A number of coding conventions have been found to be useful and practical. Firstly
literals are only ever used with one arity. This means that omissions of variables should
be a detectable problem, rather than silently changing the meaning of the programs.
Likewise, where at all possible, variable names are only ever used for one domain, i.e.
T will always be a quantification over the time() domain, if X is a distance, it will
always be used as one, in the same direction. These meanings are program specific, the
key point is that it should be consistent across the program. Likewise the position, and
ordering of variables should always be the same. If several literals refer to a 2D position
at a given time step then they will all start with (T,X,Y,...), etc.

58 M. Brain, O. Cliffe, and M. De Vos

%% For an island to be correct connected the number of bridges
%% entering a island must equal the weight at the island.
correctlyConnected(X,Y) :- island(X,Y,N),

N [singleHorizontal(X-1,Y) = 1,
doubleHorizontal(X-1,Y) = 2,
singleHorizontal(X+1,Y) = 1,
doubleHorizontal(X+1,Y) = 2,
singleVertical(X,Y-1) = 1,
doubleVertical(X,Y-1) = 2,
singleVertical(X,Y+1) = 1,
doubleVertical(X,Y+1) = 2] N.

%% All islands must be correctly connected
:- isIsland(X,Y), not correctlyConnected(X,Y).

Listing 8. The fourth increment of Hashiwokakero

Fig. 7. An answer set visualisation of Hashiwokakero after the fourth increment.

3.7 Extension and Maintenance

Once the program is working, development shifts to extension and maintenance. While
previously we were intentionally cutting down the space of possibilities, in the mainte-
nance and enhancement phase the aim is often to make changes without inadvertently
removing portions of the solution space (or making the program inconsistent, i.e. re-
moving all of the solutions). Regression testing was used during the development of
ANTON to address this problem. If we view ASP as solving a search problem, then the
solution is a point in the search space and can be used as an initial condition for the
search. If it gives the (single) solution that was found originally then it is still a solu-
tion, if it is inconsistent then the space of solutions has decreased, indicating a possible
error. Once the original composition system was working, its output was checked by
an expert and a collection of valid (and respectively, invalid) pieces was created. After
each step of the development (one or more new rules), the regression tests could be run
to automatically check that each of these was/was not obtainable and thus that no bugs
had been introduced. This helped isolate bugs early in the development cycle and add a
considerable degree of certainty to the development process.

A Pragmatic Programmer’s Guide for Answer Set Programming 59

%% The unique start is reachable
reachable(X,Y) :- uniqueStart(X,Y).

%% If an island is reachable then all neighbouring bridges are reachable
reachable(X-1,Y) :- isIsland(X,Y), reachable(X,Y), horizontalBridge(X-1,Y).
reachable(X+1,Y) :- isIsland(X,Y), reachable(X,Y), horizontalBridge(X+1,Y).
reachable(X,Y-1) :- isIsland(X,Y), reachable(X,Y), verticalBridge(X,Y-1).
reachable(X,Y+1) :- isIsland(X,Y), reachable(X,Y), verticalBridge(X,Y+1).

%% If a horizontal bridge is reachable then so are neighbouring bridges/islands
reachable(X-1,Y) :- horizontalBridge(X,Y), reachable(X,Y), horizontalBridge(X-1,Y).
reachable(X+1,Y) :- horizontalBridge(X,Y), reachable(X,Y), horizontalBridge(X+1,Y).
reachable(X-1,Y) :- horizontalBridge(X,Y), reachable(X,Y), isIsland(X-1,Y).
reachable(X+1,Y) :- horizontalBridge(X,Y), reachable(X,Y), isIsland(X+1,Y).

%% Likewise vertical bridges
reachable(X,Y-1) :- verticalBridge(X,Y), reachable(X,Y), verticalBridge(X,Y-1).
reachable(X,Y+1) :- verticalBridge(X,Y), reachable(X,Y), verticalBridge(X,Y+1).
reachable(X,Y-1) :- verticalBridge(X,Y), reachable(X,Y), isIsland(X,Y-1).
reachable(X,Y+1) :- verticalBridge(X,Y), reachable(X,Y), isIsland(X,Y+1).

%% Every island must be reachable
:- isIsland(X,Y), not reachable(X,Y).

Listing 9. The final additions to Hashiwokakero

Fig. 8. The visualisation of the solution to the Hashiwokakero.

3.8 Generating Program Instances and Encodings

Literature on ASP often refers to splitting programs into instances and encoding. This
is an intuitive division because in many cases there is a general class of problems and
a particular instance of the problem we wish to solve. However there is often an as-
sumption that this split is syntactic; facts for the instance and rules for the encoding.
From our experience, this is not always the case. It is perfectly possible for the instance
to include constants, extra constraints as well as atoms. Constants tend to be the most
significant because these often alter the remaining program significantly.

In the case where the instance encoding is non-trivial we normally write a script that
takes obvious, human readable parameters (as in ANTON) or a problem specific input
format (as in TOAST) and generates at least the instance if not the whole program.
This is where the distinction between instance and encoding begins to break down, as

60 M. Brain, O. Cliffe, and M. De Vos

part of the reason for having these scripts is combining the necessary program frag-
ments, which are often instance specific. ANTON includes a #include construct to
manage dependencies between program fragments and simplify program generation.
In TOAST , the search program component included the architecture file which could
be considered both instance and encoding. If one thinks of the visualisation scripts as
the interpretation arrow in the four-box diagram Figure 1, then the program generation
script that puts together the AnsProlog program is the representation arrow.

4 Debugging Programs

While the current debugging tools [6, 4] have their use, we have come to believe that
existing tools do not yet provide the necessary support for programmers. The main
problem is the amount of time the interface takes because one has to (implicitly or
explicitly) mark which parts of the program are right and wrong. In practise this is too
slow. One may think that it is no coincidence that none of the papers on debugging give
more than a trivial, propositional example. All of the existing debuggers are primarily
focused on computation of the reasons why certain properties of the answer sets hold.
A topic that has received little research or implementation attention is the question of
how to present the resultant symbolic information back to the user. This problem is
discussed in more detail in [7].

However, with careful, incremental development and computing and visualising
models after each change the programmer will already have a rough idea about what
caused the problem and probably also why. The regression tests should catch the more
obscure cases the programmer did not necessarily think of when going back and chang-
ing an older definitions.

5 Conclusion

In this paper we have presented an anecdotal methodology for software development in
answer set programming. In summary:
1. Our approach is incremental and test-driven, allowing for early error detection.
2. After a suitable characterisation of the key concepts is determined, we recommend

that a visualisation tool for the answer sets is used.
3. Having a graphical, auditory or more readable representation of the answer sets in

terms of the problem domain will make it a lot easier to spot problems with the
code.

4. Code documentation is even more important in ASP than it is in procedural lan-
guages. As errors are typically the result of a misalignment between the what was
meant and what was written down, clearly stating what was intended in a human-
readable form near to the relevant code makes identifying such errors easier.

5. The methodology is constructed around the notion that all our problems are search
problems.

6. We model the entire search space first, before adding constraints to find acceptable
solutions.

A Pragmatic Programmer’s Guide for Answer Set Programming 61

7. The characterisation of solutions and the constraints that reduce the search space
should be done incrementally in order to detect bugs as early as possible.

8. Regression testing is used to verify that previous functionality is maintained after
changes. A database containing good and bad solutions (cf. unit tests in procedural
programming) can be constructed for this purpose.
While we find our approach to be useful in the context of our experience in devel-

oping complex AnsProlog systems, the methodology itself is informal and in no way
comprehensive. The objective of this paper is to stimulate a discussion on possible best
practice in the field.

One area which we have not considered is the ability to add assertions or ‘sanity
checks’ that verify implicit properties of the encoding (for example the symmetric case
of the constraints added in Listing 4). Even with the current state of the art in pre-
processors [13], adding these as conventional constraints seems to bulk the program
and result in much slower computation of solutions. Thus some technique for marking
constraints as implicit, so that the encoding could be verified against them but they
would be omitted from the normal program, could prove a useful development aid.

References

1. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

2. Kent Beck. Test-driven Development. Addison-Wesley, 2003.
3. Georg Boenn, Martin Brain, Marina De Vos, and John ffitch. Automatic Composition of

Melodic and Harmonic Music by Answer Set Programming. In Proceedings of ICLP08,
December 2008.

4. M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, and S. Woltran. “That is illogical
captain!” – The debugging support tool spock for answer-set programs: System description.
In De Vos and Schaub [10], pages 71–85.

5. Martin Brain, Tom Crick, Marina De Vos, and John Fitch. Toast: Applying answer set pro-
gramming to superoptimisation. In International Conference on Logic Programming, LNCS.
Springer, August 2006.

6. Martin Brain and Marina De Vos. Debugging Logic Programs under the Answer Set Seman-
tics. In Marina De Vos and Alessandro Provetti, editors, ASP05: Answer Set Programming:
Advances in Theory and Implementation, pages 142–152, Bath, UK, July 2005. Research
Press International. Also available from http://CEUR-WS.org/Vol-142/files/page141.pdf.

7. Martin Brain and Marina De Vos. Answer set programming – a domain in need of explana-
tion. In Exact08: International Workshop on Explanation-aware Computing, 2008.

8. M. Cayli, A. G. Karatop, E. Kavlak, H. Kaynar, F. Ture, and E. Erdem. Solving challenging
grid puzzles with answer set programming. In Proceedings of the 4th Workshop on Answer
Set Programming: Advances in Theory and Implementation, pages 175–190, Porto, Portugal,
September 2007.

9. Owen Cliffe, Marina De Vos, Martin Brain, and Julian Padget. Aspviz: Declarative visuali-
sation and animation using answer set programming. In Logic Programming, Lecture Notes
in Computer Science, pages 724–728. Springer Berlin / Heidelberg, 2008.

10. M. De Vos and T. Schaub, editors. Proceedings of the Workshop on Software Engineering
for Answer Set Programming (SEA’07), 2007.

11. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello. The
KR system dlv: Progress report, comparisons and benchmarks. In Anthony G. Cohn,

62 M. Brain, O. Cliffe, and M. De Vos

Lenhart Schubert, and Stuart C. Shapiro, editors, KR’98: Principles of Knowledge Repre-
sentation and Reasoning, pages 406–417. Morgan Kaufmann, San Francisco, California,
1998.

12. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello. The
KR System dlv: Progress Report, Comparisons and Benchmarks. In Anthony G. Cohn,
Lenhart Schubert, and Stuart C. Shapiro, editors, KR’98: Principles of Knowledge Represen-
tation and Reasoning, pages 406–417. Morgan Kaufmann, San Francisco, California, 1998.

13. Niklas En and Armin Biere. Effective preprocessing in sat through variable and clause elim-
ination. In SAT05, volume 3569 of LNCS, pages 61–75. Springer, 2005.

14. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving. In
M. Veloso, editor, Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07), pages 386–392. AAAI Press/The MIT Press, 2007. Available at
http://www.ijcai.org/papers07/contents.php.

15. Martin Gebser, Tomi Janhunen, Max Ostrowski, Torsten Schaub, and Sven Thiele. A versa-
tile intermediate language for answer set programming. In Maurice Pagnucco and Michael
Thielscher, editors, Proceedings of the 12th International Workshop on Nonmonotonic Rea-
soning, pages 150–159, Sydney, Australia, September 2008. University of New South Wales,
School of Computer Science and Engineering, Techical Report, UNSW-CSE-TR-0819.

16. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming, Proceedings of
the Fifth International Conference and Symposium, pages 1070–1080, Seattle, Washington,
August 1988. The MIT Press.

17. Y. Lierler and M. Maratea. Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight
Programs. In Proceedings of the 7th International Conference on Logic Programming and
Nonmonotonic Reasoning, volume 2923 of LNCS, pages 346–350. Springer, 2004.

18. Yuliya Lierler. Abstract Answer Set Solvers. In ICLP ’08: Proceedings of the 24th In-
ternational Conference on Logic Programming, pages 377–391, Berlin, Heidelberg, 2008.
Springer-Verlag.

19. I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal LP. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors, Proceed-
ings of the 4th International Conference on Logic Programing and Nonmonotonic Reason-
ing, volume 1265 of LNAI, pages 420–429, Berlin, July 28–31 1997. Springer.

20. Ilkka Niemelä, editor. WASP WP3 Report: Language Extensions and Software Engineering
for ASP. 2005.

21. T. Syrjänen and I. Niemelä. The Smodels System. In Proceedings of the 6th International
Conference on Logic Programming and Nonmonotonic Reasoning, 2001.

22. Marek Truszczyński, Janhunen Tommi, Martin Brain, Wolfgang Faber, Marco Maratea, Axel
Polleres, Torsten Schaub, and Roman Schindlauer. Language forum. In De Vos and Schaub
[10], pages 3–39.

A Pragmatic Programmer’s Guide for Answer Set Programming 63

Yet Another Modular Action Language

Michael Gelfond and Daniela Inclezan

Computer Science Department
Texas Tech University

Lubbock, TX 79409 USA
Michael.Gelfond@ttu.edu, daniela.inclezan@ttu.edu

Abstract. The paper presents an action language, ALM, for the rep-
resentation of knowledge about dynamic systems. It extends action lan-
guage AL by allowing definitions of new objects (actions and fluents) in
terms of other, previously defined, objects. This, together with the mod-
ular structure of the language, leads to more elegant and concise repre-
sentations and facilitates the creation of libraries of knowledge modules.

1 Introduction

This paper presents an extension, ALM, of action language AL [1], [2] by simple
but powerful means for describing modules.AL is an action language used for the
specification of dynamic systems which can be modeled by transition diagrams
whose nodes correspond to possible physical states of the domain and whose
arcs are labeled by actions. It has a developed theory, methodology of use, and a
number of applications [3]. However, it lacks the structure needed for expressing
the hierarchies of abstractions often necessary for the design of larger knowledge
bases and the creation of KR-libraries. The goal of this paper is to remedy
this problem. System descriptions of our new language, ALM, are divided into
two parts. The first part contains declarations of the sorts, fluents, and actions
of the language. Intuitively, it defines an uninterpreted theory of the system
description. The second part, called structure, gives an interpretation of this
theory by defining particular instances of sorts, fluents, and actions relevant to
a given domain. Declarations are divided into modules organized as tree-like
hierarchies. This allows for actions and fluents to be defined in terms of other
actions and fluents. For instance, the action carry (defined in a dictionary as
“to move while supporting”) can be declared as a special case of move. There
are two other action languages with modular structure. Language MAD [4],[5]
is an expansion of action language C [6]. Even though C and AL have a lot in
common, they differ significantly in the underlying assumptions incorporated
in their semantics. For example, the semantics of AL incorporates the inertia
axiom [7] which says that “Things normally stay the same.” The statement is a
typical example of a default, which is to a large degree responsible for the very
close and natural connections between AL and ASP [8]. C is based on a different
assumption – the so called causality principle – which says that “Everything
true in the world must be caused.” Its underlying logical basis is causal logic [9].

There is also a close relationship between ASP and C but, in our judgment, the
distance between ASP and ALM is much smaller than that between ASP and
C. Another modular language is TAL-C [10], which allows definitions of classes
of objects that are somewhat similar to those in ALM. TAL-C, however, seems
to have more ambitious goals: the language is used to describe and reason about
various dynamic scenarios, whereas in ALM the description of a scenario and
that of reasoning tasks are not viewed as part of the language.

The differences in the underlying languages and in the way structure is incor-
porated into ALM, MAD and TAL-C lead to very different knowledge repre-
sentation styles. We believe that this is a good thing. Much more research and
experience of use is needed to discover if one of these languages has some advan-
tages over the others, or if different languages simply correspond to and enhance
different habits of thought.

This paper consists of two parts. First we define the syntax and semantics of an
auxiliary extension of AL by so called defined fluents. The resulting language,
ALd, will then be expanded to ALM.

2 Expanding AL by Defined Fluents

2.1 Syntax of ALd

A system description of ALd consists of a sorted signature and a collection of
axioms. The signature contains the names for primitive sorts, a sorted universe
consisting of non-empty sets of object constants assigned to each such name, and
names for actions and fluents. The fluents are partitioned into statics, inertial
fluents, and defined fluents. The truth values of statics cannot be changed by
actions. Inertial fluents can be changed by actions and are subject to the law
of inertia. Defined fluents are non-static fluents which are defined in terms of
other fluents. They can be changed by actions but only indirectly. An atom is a
string of the form p(x̄) where p is a fluent and x̄ is a tuple of primitive objects.
A literal is an atom or its negation. Depending on the type of fluent forming a
literal we will use the terms static, inertial, and defined literal. We assume that
for every sort s and constant c of this sort the signature contains a static, s(c).
Direct causal effects of actions are described in ALd by dynamic causal laws –
statements of the form:

a causes l if p (1)

where l is an inertial literal, a is an action name, and p is a collection of arbitrary
literals. (1) says that if action a were executed in a state satisfying p then l would
be true in a state resulting from this execution. Dependencies between fluents
are described by state constraints — statements of the form:

l if p (2)

where l is a literal and p is a set of literals. (2) says that every state satisfying
p must satisfy l. Executability conditions of ALd are statements of the form:

impossible a1, . . . , ak if p (3)

Yet Another Modular Action Language 65

The statement says that actions a1, . . . , ak cannot be executed together in any
state which satisfies p. We refer to l as the head of the corresponding rule and to
p as its body. The collection of state constraints whose head is a defined fluent
f is referred to as the definition of f . As in logic programming definitions, f is
true in a state σ if the body of at least one of its defining constraints is true in
σ. Otherwise, f is false. Finally, an expression of the form

f ≡ g if p (4)

where f and g are inertial or static fluents and p is a set of literals, will be
understood as a shorthand for four state constraints:

f if p, g ¬f if p,¬g g if p, f ¬g if p,¬f
An ALd axiom with variables is understood as a shorthand for the set of all its
ground instantiations.

2.2 Semantics of ALd

To define the semantics of ALd, we define the transition diagram T (D) for every
system description D of ALd. Some preliminary definitions: a set σ of literals is
called complete if for any fluent f either f or ¬f is in σ; σ is called consistent if
there is no f such that f ∈ σ and ¬f ∈ σ. Our definition of the transition relation
〈σ0, a, σ1〉 of T (D) will be based on the notion of an answer set of a logic program.
We will construct a program Π(D) consisting of logic programming encodings
of statements from D. The answer sets of the union of Π(D) with the encodings
of a state σ0 and an action a will determine the states into which the system
can move after the execution of a in σ0.

The signature of Π(D) will contain: (a) names from the signature of D; (b)
two new sorts: steps with two constants, 0 and 1, and fluent type with constants
inertial, static, and defined ; and (c) the relations: holds(fluent, step) (holds(f, i)
says that fluent f is true at step i), occurs(action, step) (occurs(a, i) says that
action a occurred at step i), and fluent(fluent type, fluent) (fluent(t, f) says
that f is a fluent of type t). If l is a literal, h(l, i) will denote holds(f, i) if l = f
or ¬holds(f, i) if l = ¬f . If p is a set of literals h(p, i) = {h(l, i) : l ∈ p}; if e is a
set of actions, occurs(e, i) = {occurs(a, i) : a ∈ e}.
Definition of Π(D)

(r1) For every constraint (2), Π(D) contains:

h(l, I)← h(p, I). (5)

(r2) Π(D) contains the closed world assumption for defined fluents:

¬holds(F, I)← fluent(defined, F),
not holds(F, I). (6)

66 M. Gelfond and D. Inclezan

(r3) For every dynamic causal law (1), Π(D) contains:

h(l, I + 1)← h(p, I),
occurs(a, I). (7)

(r4) For every executability condition (3), Π(D) contains:

¬occurs(a1, I) v . . . v ¬occurs(ak, I)← h(p, I). (8)

(r5) Π(D) contains the Inertia Axiom:

holds(F, I + 1)← fluent(inertial, F),
holds(F, I),
not ¬holds(F, I + 1).

(9)

¬holds(F, I + 1)← fluent(inertial, F),
¬holds(F, I),
not holds(F, I + 1).

(10)

(r6) and the following rules:

fluent(F)← fluent(Type, F). (11)

← fluent(F),not holds(F, I),not ¬holds(F, I). (12)

← fluent(static, F), holds(F, I),¬holds(F, I + 1). (13)

← fluent(static, F),¬holds(F, I), holds(F, I + 1). (14)

(The last four encodings ensure the completeness of states – (11) and (12) – and
the proper behavior of static fluents – (13) and (14)). This ends the construction
of Π(D). Let Πc(D) be a program constructed by rules (r1), (r2), and (r6) above.
For any set σ of literals, σnd denotes the collection of all literals of σ formed
by inertial and static fluents. Πc(D, σ) is obtained from Πc(D) ∪ h(σnd, 0) by
replacing I by 0.

Definition 1 (State). A set σ of literals is a state of T (D) if Πc(D, σ) has a
unique answer set, A, and σ = {l : h(l, 0) ∈ A}.
Now let σ0 be a state and e a collection of actions.

Π(D, σ0, e) =def Π(D) ∪ h(σ0, 0) ∪ occurs(e, 0) .

Definition 2 (Transition). A transition 〈σ0, e, σ1〉 is in T (D) iff Π(D, σ0, e)
has an answer set A such that σ1 = {l : h(l, 1) ∈ A}.
To illustrate the definition we briefly consider

Example 1 (Lin’s Briefcase). ([11])
The system description defining this domain consists of: (a) a signature contain-
ing the sort name latch, the sorted universe {l1, l2}, the action toggle(latch),
the inertial fluent up(latch) and the defined fluent open, and (b) the following
axioms:

Yet Another Modular Action Language 67

toggle(L) causes up(L) if ¬up(L)
toggle(L) causes ¬up(L) if up(L)
open if up(l1), up(l2) .

One can use our definitions to check that the system contains transitions
〈{¬up(l1), up(l2),¬open}, toggle(l1), {up(l1), up(l2), open}〉,
〈{up(l1), up(l2), open}, toggle(l1), {¬up(l1), up(l2),¬open}〉, etc.

Note that a set {¬up(l1), up(l2), open} is not a state of our system.

System descriptions of ALd not containing defined fluents are identical to those
of AL. For such descriptions our semantics is equivalent to that of [12], [13].
(To the best of our knowledge, [12] is the first work which uses ASP to describe
the semantics of action languages. The definition from [1],[13] is based on rather
different ideas.) Note that the semantics of ALd is non-monotonic and hence, in
principle, the addition of a new definition could substantially change the diagram
of D. The following proposition shows that this is not the case. To make it precise
we will need the following definition from [14].

Definition 3 (Residue). Let D and D′ be system descriptions of ALd such
that the signature of D is part of the signature of D′. D is a residue of D′ if
restricting the states and actions of T (D′) to the signature of D establishes an
isomorphism between T (D) and T (D′).

Proposition 1. Let D be a system description of ALd with signature Σ, f 6∈ Σ
be a new symbol for a defined fluent, and D′ be the result of adding to D the
definition of f . Then D is a residue of D′.

3 Syntax of ALM
A system description, D, of ALM consists of the system’s declarations (a non-
empty set of modules) followed by the system’s structure.

system description name
declarations of name

[module]+

structure of name
structure description

A module can be viewed as a collection of declarations of sort, fluent and action
classes of the system, i.e.

module name
sort declarations
fluent declarations
action declarations

If the system declaration contains only one module then the first line above can
be omitted. In the next two subsections we will define the declarations and the
structure of a system description D.

68 M. Gelfond and D. Inclezan

3.1 Declarations of D
(1) A sort declaration of ALM is of the form

s1 : s2

where s1 is a sort name and s2 is either a sort name or the keyword sort1. In
the latter case the statement simply declares a new sort s1. In the former, s1 is
declared as a subsort of sort s2.

The sort declaration section of a module is of the form

sort declarations
[sort declaration]+

(2) A fluent declaration of ALM is of the form

f(s1, . . . , sk) : type fluent
axioms

[state constraint .]+

end of f

where f is a fluent name, s1, . . . , sk is a list of sort names, and type is one of the
following keywords: static, inertial, defined. If the list of sort names is empty
we omit the parentheses and simply write f . The remaining part – consisting of
the keyword axioms followed by a non-empty list of state constraints of ALd

and the line starting with the keywords end of – is optional and can be omitted.
The statement declares the fluent f with parameters from s1, . . . , sk respectively
as static, inertial, or defined.

The fluent declaration section of a module is of the form

fluent declarations
[fluent declaration]+

(3) An action declaration of ALM is of the form

a1 : a2

attributes
[attr : sort]+

axioms
[law .]+

end of a1

where a1 is an action name, a2 is an action name or the keyword action, attr is
an identifier used to name an attribute of the action, and law is a dynamic causal
law or an executability condition similar to the ones of ALd

2. If a2 = action,
1 Syntactically, names are defined as identifiers starting with a lower case letter.
2 Due to space limitations, we only allow executability conditions of ALM for single

actions, i.e. statements of the form impossible a1 if p.

Yet Another Modular Action Language 69

the first statement declares a1 to be a new action class. If a2 is an action name
then the statement declares a1 as a special case of the action class a2. The two
remaining sections of the declaration contain the names of attributes of this
action, and causal laws and executability conditions for actions from this class.
Both the attribute and the axiom part of the declaration are optional and can be
omitted. With respect to axioms, the difference between ALM and ALd is that
in ALd actions are understood as action instances while here they are viewed
as action classes. Also, in ALM in addition to literals, the bodies of these laws
can contain attribute atoms: expressions of the form attr = c, where attr is the
name of an attribute of the action and c is an element of the corresponding sort.
The action declaration section of a module is of the form

action declarations
[action declaration]+

The set of sort, fluent and action declarations from the modules of the system
description D will be called the declaration of D and denoted by decl(D). In
order to be “well-defined” the declaration of a system description D should
satisfy certain natural conditions designed to avoid circular declarations and
other unintuitive constructs. To define these conditions we need the following
notation and terminology:
Sort declarations of decl(D) define a directed graph S(D) such that 〈sort2, sort1〉 ∈
S(D) iff sort1 : sort2 ∈ D. Similarly, the graph A(D) is defined by action dec-
larations from decl(D). We refer to them as the sort and action hierarchies of
D.

Definition 4. The declaration, decl(D), of a system description D is called
well-formed if

1. The sort and action hierarchies of D are trees with roots sort and action
respectively.

2. If decl(D) contains the declarations of f(s1, . . . , sk) and f(s′
1, . . . , s

′
k) then

si = s′
i for every 1 ≤ i ≤ k.

3. If decl(D) contains the declaration of action a with attributes attr1 : s1,
. . ., attrk : sk and the declaration of action a with attributes attr′

1 : s′
1, . . .,

attr′
m : s′

m then k = m, and attri = attr′
i and si = s′

i for every 1 ≤ i ≤ k.

From now on we only consider system descriptions with well-formed declarations.

3.2 Structure of D
The structure of a system description D defines an interpretation of the sorts,
fluents, and actions declared in the system’s declaration. It consists of the defi-
nitions of the sorts and actions of D, and truth assignments for the statics of D.
The sorts are defined as follows:

sorts
[constants ∈ s]+

70 M. Gelfond and D. Inclezan

where constants is a non-empty list of identifiers not occurring in the declara-
tions of D and s is a sort name. We will refer to them as objects of D. The
definition of the sorts is followed by the definition of actions:

actions
[instance description]+

where an instance description is defined as follows:

instance a1(t1, . . . , tk) where cond : a2

attr1 := t1
. . .
attrk := tk

where attr1, . . . , attrk are attributes of an action class a2 or of an ancestor of a2

in A(D), t’s are objects of D or variables – identifiers starting with a capital letter
–, and cond is a set of static literals. An instance description without variables
will be called an action instance. An instance description containing variables
will be referred to as an action schema, and viewed as a shorthand for the set
of action instances, a1(c1, . . . , ck), obtained from the schema by replacing the
variables V1, . . . , Vk by their possibles values c1, . . . , ck. We say that an action
instance a1(c1, . . . , ck) belongs to the action class a2 and to any action class
which is an ancestor of a2 in A(D). Finally, we define statics as:

statics
[state constraint .]+

where the head of the state constraint is an expression of the form f(c1, . . . , ck)
(where f is a static fluent and c1, . . . , ck are properly sorted elements of the
universe of D), and the body of the state constraint is a collection of similar
expressions. As usual, if the list is empty the keyword statics should be omitted.

Example 2. [Basic Travel]
Let us now consider an example of a system description of ALM.

system description basic travel

declarations of basic travel

module basic geometry

sort declarations

areas : sort

fluent declarations

within(areas, areas) : static fluent
axioms

within(A1, A2) if within(A1, A), within(A,A2).
¬within(A2, A1) if within(A1, A2).
¬within(A1, A2) if disjoint(A1, A2).

Yet Another Modular Action Language 71

end of within

disjoint(areas, areas) : static fluent
axioms

disjoint(A2, A1) if disjoint(A1, A2).
disjoint(A1, A2) if within(A1, A3), disjoint(A2, A3).
¬disjoint(A,A).

end of disjoint

module move between areas

sort declarations

things : sort
movers : things
areas : sort

fluent declarations

loc in(things, areas) : inertial fluent
axioms
loc in(T,A2) if within(A1, A2), loc in(T,A1).
¬loc in(T,A2) if disjoint(A1, A2), loc in(T,A1).

end of loc in

action declarations

move : action
attributes
actor : movers
origin, dest : areas

axioms
move causes loc in(O,A) if actor = O, dest = A.

impossible move if actor = O, origin = A, ¬loc in(O,A).
impossible move if origin = A1, dest = A2, ¬disjoint(A1, A2).

end of move

structure of basic travel

sorts
michael, john ∈ movers
london, paris, rome ∈ areas

actions

instance move(O,A1, A2) where A1 6= A2 : move

actor := O
origin := A1

dest := A2

statics

disjoint(london, paris). disjoint(paris, rome). disjoint(rome, london).

72 M. Gelfond and D. Inclezan

4 Semantics of ALM
The semantics of a system description D of ALM is defined by mapping D into
the system description τ(D) of ALd.

1. The signature, Σ, of τ(D):
The sort names of Σ are those declared in decl(D). The sorted universe of Σ is
given by the sort definitions from D’s structure. We assume the domain closure
assumption [15], i.e. the sorts of Σ will have no other elements except those
specified in their definitions. An expression f(c1, . . . , ck) is a fluent name of Σ
if s1, . . . , sk are the sorts of the parameters of f in the declaration of f from
decl(D), and for every i, ci ∈ si. The set of action names of Σ is the set of all
action instances defined by the structure of D.

2. Axioms of τ(D):

(i) The state constraints of τ(D) are the result of grounding the variables of
state constraints from decl(D) and of static definitions from the structure of D
by their possible values from the sorted universe of Σ. Already grounded static
definitions from the structure of D are also state constraints of τ(D).

(ii) To define dynamic causal laws and executability conditions of τ(D) we do
the following: For every action instance ai of Σ and every action class a such
that ai belongs to a do:

For every causal law and executability condition L of a:

(a) Construct the expression obtained by replacing occurrences of a in L by ai.
For instance, the result of replacing move by move(john, london, paris) in the
dynamic causal law for the action class move will be:

move(john, london, paris) causes loc in(O,A) if actor = O,
dest = A.

(b) Ground all the remaining variables in the resulting expressions by properly
sorted constants of the universe of D.
The above axiom will turn into the set containing:

move(john, london, paris) causes loc in(john, paris) if actor = john,
dest = paris.

move(john, london, paris) causes loc in(michael, london) if actor = michael,
dest = london.

etc.

(c) Remove the axioms containg atoms of the form attr = y where y is not the
value assigned to attr in the definition of instance ai. Remove atoms of the form
attr = y from the remaining axioms.

This transformation turns the first axiom above into:

move(john, london, paris) causes loc in(john, paris).

and eliminates the second axiom.

Yet Another Modular Action Language 73

It is not difficult to check that the resulting expressions are causal laws and
executability conditions of ALd and hence τ(D) is a system description of ALd.

5 Representing Knowledge in ALM
In this section we illustrate the methodology of representing knowledge in ALM
by way of several examples.

5.1 Actions as Special Cases

In the introduction we mentioned the action carry, defined as “to move while
supporting”. Let us now declare a new module containing such an action. The
example will illustrate the use of modules for the elaboration of an agent’s knowl-
edge, and the declaration of an action as a special case of another action.

Example 3. [Carry]
We expand the system description basic travel by a new module, carrying things.

module carrying things

sort declarations

areas : sort
things : sort
movers : things
carriables : things

fluent declarations

holding(things, things) : inertial fluent

is held(things) : defined fluent
axioms
is held(O) if holding(O1, O).

end of is held

loc in(things, areas) : inertial fluent
axioms
loc in(T,A) ≡ loc in(O,A) if holding(O, T).

end of loc in

action declarations

move : action
attributes
actor : movers
origin, dest : areas

axioms
impossible move if actor = O, is held(O).

end of move

74 M. Gelfond and D. Inclezan

carry : move

attributes
carried thing : carriables

axioms
impossible carry if actor = O, carried thing = T, ¬holding(O, T).

end of carry

grip : action
attributes
actor : movers
patient : things

axioms
grip causes holding(C, T) if actor = C, patient = T.
impossible grip if actor = C, patient = T, holding(C, T).

end of grip
Similarly for action release.

Let us add this module to the declarations of basic travel and update the struc-
ture of basic travel by the definition of sort carriables:

suitcase ∈ carriables
and a new action

instance carry(O, T,A) : carry

actor := O
carried thing := T
dest := A

It is not difficult to check that, according to our semantics, the signature of
τ(travel) of the new system description travel will be obtained from the signa-
ture of τ(basic travel) by adding the new sort, carriables = {suitcase}, new
fluents like holding(john, suitcase), is held(suitcase) etc., and new actions like
carry(john, suitcase, london), carry(john, suitcase, paris), etc.

In addition, the old system description will be expanded by axioms:

carry(john, suitcase, london) causes loc in(john, london)

loc in(suitcase, london) ≡ loc in(john, london) if holding(john, suitcase)

Using Proposition 1 it is not difficult to show that the diagram of travel is a
conservative extension of that for basic travel.

5.2 Library Modules

The modules from the declaration part of travel are rather general and can be
viewed as axioms describing our commonsense knowledge about motion. Obvi-
ously, such axioms can be used for problem solving in many different domains.
It is therefore reasonable to put them in a library of commonsense knowlege.

Yet Another Modular Action Language 75

A library module can be defined simply as a collection of modules available for
public use. Such modules can be imported from the library and inserted in the
declaration part of a system description that a programmer is trying to build.
To illustrate the use of this library let us assume that all the declarations from
travel are stored in a library module motion, and show how this module can be
used to solve the following classical KR problem.

Example 4. [Monkey and Banana]
A monkey is in a room. Suspended from the ceiling is a bunch of bananas, beyond
the monkey’s reach. On the floor of the room stands a box. How can the monkey
get the bananas? The monkey is expected to take hold of the box, push it under
the banana, climb on the box’s top, and grasp the banana.

We are interested in finding a reasonably general and elaboration tolerant declar-
ative solution to this problem. The first step will be identifying sorts of objects
relevant to the domain. Clearly the domain contains things and areas. The things
move or are carried from one place to another, climbed on, or grasped. This
suggests the use of the library module motion containing commonsense axiom-
atization of such actions. We start with the following:

system description monkey and banana

declarations of monkey and banana

import motion from commonsense library

An ALM compiler will simply copy all the declarations from the library module
motion into our system description. Next we will have:

module main

% The module will contain specific information about the problem domain.

sort declarations

things : sort boxes : carriables
movers : things bananas : things
monkeys : movers areas : sort
carriables : things places : areas

fluent declarations

under(places, things) : static fluent

is top(areas, things) : static fluent

can reach(movers, things) : defined fluent
axioms
can reach(M,Box) if monkeys(M),

boxes(Box),
loc in(M,L),
loc in(Box,L).

76 M. Gelfond and D. Inclezan

can reach(M,Banana) if monkeys(M),
bananas(Banana),
boxes(Box),
loc in(M,L1),
is top(L1, Box),
loc in(Box,L),
under(L,Banana).

end of can reach

action declarations

grip : action
attributes
actor : movers
patient : things

axioms
impossible grip if actor = C, patient = T, ¬can reach(C, T).

end of grip

structure of monkey and banana

sorts
m ∈ monkeys
b ∈ bananas
box ∈ boxes
floor, ceiling ∈ areas
l1, l2, l3, l4 ∈ places

actions

instance move(m,L) where places(L) : move

actor := m
dest := L

instance carry(m, box, L) where places(L) : carry

actor := m
carried thing := box
dest := L

instance grip(m,O) where O 6= m : grip

actor := m
patient := O

statics
disjoint(L1, L2) if places(L1), places(L2), L1 6= L2.
disjoint(floor, ceiling).
within(L, floor) if places(L),¬is top(L, box).
under(l1, b). is top(l4, box).

One can check that the system description defines a correct transition diagram
of the problem. Standard ASP planning techniques can be used together with
the ASP translation of the description to solve the problem.

Yet Another Modular Action Language 77

6 Conclusions

In this paper we introduced a modular extension, ALM, of action language AL.
ALM allows definitions of fluents and actions in terms of already defined flu-
ents and actions. System descriptions of the language are divided into a general
uninterpreted theory and its domain dependent interpretation. We believe that
this facilitates the reuse of knowledge and the organization of libraries. We are
currently working on proving some mathematical properties of ALM and im-
plementing the translation of its theories into logic programs. Finally, we would
like to thank V. Lifschitz for useful discussions on the subject of this paper.

References

1. Turner, H.: Representing Actions in Logic Programs and Default Theories: A Situ-
ation Calculus Approach. Journal of Logic Programming 31(1-3), 245–298 (1997)

2. Baral, C., Gelfond, M.: Reasoning Agents in Dynamic Domains. In: Workshop on
Logic-Based Artificial Intelligence, pp. 257–279. Kluwer Academic Publishers, Nor-
well (2000)

3. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press (2003)

4. Lifschitz, V., Ren, W.: A Modular Action Description Language. In: Proceedings of
AAAI-06, pp. 853-859. AAAI Press (2006)

5. Erdoǧan, S.T., Lifschitz, V.: Actions as Special Cases. In: Proceedings of the 10th
International Conference on Principles of Knowledge Representation and Reasoning,
pp. 377–387 (2006)

6. Giunchiglia, E., Lifschitz, V.: An Action Language Based on Causal Explanation:
Preliminary Report. In: Proceedings of AAAI-98, pp. 623–630. AAAI Press (1998)

7. Hayes, P.J., McCarthy, J.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4,
pp. 463–502. Edinburgh University Press, Edinburgh (1969)

8. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–386 (1991)

9. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic Causal
Theories. Artificial Intelligence 153, 105–140 (2004)

10. Gustafsson, J., Kvarnström, J.: Elaboration Tolerance Through Object-
Orientation. Artificial Intelligence 153, 239–285 (2004)

11. Lin, F.: Embracing Causality in Specifying the Indirect Effects of Actions. In:
Proceedings of IJCAI-95, pp. 1985–1993. Morgan Kaufmann (1995)

12. Baral, C., Lobo, J.: Defeasible Specifications in Action Theories. In: Proceedings
of IJCAI-97, pp. 1441–1446. Morgan Kaufmann Publishers (1997)

13. McCain, N., Turner, H.: A Causal Theory of Ramifications and Qualifications.
Artificial Intelligence 32, 57–95 (1995)

14. Erdoǧan, S.T.: A Library of General-Purpose Action Descriptions. PhD thesis, The
University of Texas at Austin (2008)

15. Reiter, T.: On Closed World Data Bases. In: Gallaire, H., Minker, J. (eds.) Logic
and Data Bases, pp.119–140. Plenum Press, New York (1978)

78 M. Gelfond and D. Inclezan

A Visual Tracer for DLV

Francesco Calimeri, Nicola Leone, Francesco Ricca, and Pierfrancesco Veltri

Dipartimento di Matematica, Università della Calabria, 87030 Rende, Italy
{calimeri,leone,ricca,pf.veltri}@mat.unical.it

Abstract. In software engineering, tracing is a specialized way for recording in-
formation about the execution of a program for debugging purposes. The more
complex the system, the more difficult is developing a manageable, and thus prac-
tically useful, tracer. Answer Set Programming (ASP) systems represent no ex-
ception in this respect: the intrinsic complexity of reasoning required the design
of elaborated evaluation algorithms.
In this paper, we present a suitable solution to the problem of tracing the execution
of an ASP system and its implementation into the ASP system DLV. The tool
herein presented features a graphical user interface and anon-line tracing method
that puts it on the way between tracing and debugging. The range of applicability
counts: bug fixing, system optimization, ASP-developing aids, and educational
purposes.

1 Introduction

In software development, tracing is a specialized use of logging in order to record in-
formation about the execution of a program. This information is typically used by pro-
grammers for debugging purposes or (depending on the type and detail of information
provided by the tracing system) by experienced system developers to diagnose problems
or optimize implementations. Information provided by a tracing mechanism is usually
employed by developers only, since usually there is not a standard output syntax, and
the produced result might be either noisy (it might contain alot of information which
is useless for a specific purposes) or very long. Indeed, a common problem with trac-
ing consists on the impossibility of isolating in a generic mechanism the information
which is needed for detecting a specific problem, and thus a lot of useless information
is inexorably printed.

Since the day of its first release theDLV system [1] is equipped with a simple tracing
mechanism that is available to the developers; tracing instructions are instead removed
by official release versions ofDLV , for obvious optimization purposes. When enabled,
this simple mechanism prints to the standard output a log of all internal system events
and the value of some (relevant) internal variables. However, the unavoidable complex-
ity of the algorithms employed for evaluating an ASP-program, and exploited byDLV ,
makes it quite difficult, or even impossible, to store and analyze such tracing output.
It is worth noting that the evaluation of (non-ground) disjunctive ASP programs is a
NEXPTIMENP task [1, 2]; thus, the execution of an ASP system might produce a trace
that is both inexorably large and difficult to handle, even inthe case of small inputs.

In order to cope with this situation, we designed a general architecture for control-
ling and tracing the execution; we implemented such proposal into DLV , thus coming
out with an advanced tracing system that has two important features: the execution of
each task can be controlled (started, paused, or restarted), and the information produced
can be set dynamically during the execution.

Our advanced tracer combines a graphical user interface andan on-line tracing
method that puts it on the way between a tracing and a specialized system debug-
ging tool.1 The user can control the execution of theDLV system by means of suitable
commands, and also ask the system to display some specific information, like e.g., the
content of the internal data structures or the status of the system.

The resulting tool enjoys a wide range of applicability: bugfixing, system opti-
mization, ASP-developing aids, and also educational purposes. Indeed, by following
the trace of system execution, a program developer might analyze the behavior of the
system and detect bugs or inefficient branches of the computation (as a by-product,
a developer can be given an error-detection in the input specification). Moreover, by
following the evaluation of a given encoding step-by-step,an ASP program developer
might understand the reason for an inefficient evaluation, and tune its encoding for ob-
taining a more efficient of evaluation .

As already mentioned, the system features a graphical interface, that eases the inter-
action with the advanced tracing techniques; such interface makes the system suitable
also for didactic purposes. Indeed, ASP systems act as a “black-box”, and it is not pos-
sible to see what is really happening inside. Conversely, professors can explain evalua-
tion techniques by preparing and showing a live-demo of their actual implementation.
Students might follow the execution, step-by-step, on their own machines; moreover,
“playing” with the system, they can gain a more direct understanding of the working
principles, which is facilitated by a clear image of what is going on “under the hood”.

Remark. It is worth noting that controlling and tracing the execution of an ASP sys-
tem is quite a different task from debugging an ASP program. Indeed, the first task
-the one addressed by the present work- aims at finding bugs and analyzing/controlling
the behavior of an ASP system (which is a piece of software usually written in some
imperative language); whereas, on the other hand, debugging an ASP program has the
purpose of finding bugs in an logic program (which consists ofASP-language code to
be then evaluated by means of an ASP system). While scanning the trace produced by
the ASP system, the developer could also find errors within the logic program in in-
put; but this kind of error-detection in the input specification is not the main purpose of
our tracer. Techniques and tools specifically devised for debugging ASP programs (see
e.g., [4–8]), are more appropriate than the tool herein presented for the second task.
Note also that analogous considerations do not hold for the tracing-based debuggers
for Prolog systems (see, e.g., [9]), where, due to the operational nature of the seman-
tics of the supported language, tracing the execution results to be very useful also for
debugging the logic program in input.

1 This tool provides a method for tracing and debugging ASP-systems; the interested reader can
find details on debugging techniques for ASP programs in [3].

80 F. Calimeri, N. Leone, F. Ricca, and P. Veltri

Fig. 1. DLV architecture.

The remainder of the paper is organized as follows: in Section 2 we describe the
architecture of theDLV system; in Section 3 we describe our advanced tracing system;
finally, we describe the system usage and the graphical user interface in Section 4.

2 The DLV System Architecture

We now outline the general architecture ofDLV , which is schematically reported in Fig-
ure 1. Upon startup, the input specified by the user is parsed and transformed into the
internal data structures of the system. In general, an inputprogramP contains variables,
and the first step of a computation of an ASP system is to eliminate these variables, gen-
erating a ground instantiationground(P) of P . This variable-elimination process is
calledinstantiationof the program (orgrounding), and is performed by theInstantiator
module (see Figure 1). A naı̈ve Instantiator would produce the full ground instantiation
Ground(P) of the input, which is, however, undesirable from a computational point
of view, as in general many useless ground rules would be generated.DLV therefore
employs sophisticated techniques which are geared towardskeeping the instantiated
program as small as possible. A necessary condition is, of course, that the instantiated
program must have the same answer sets as the original program. Moreover, if the in-
put program is normal and stratified, theDLV Instantiator is able to directly compute
its stable model (if it exists). The subsequent computations, which constitute the non-
deterministic part of an ASP system, are then performed onground(P) by both the
Model Generatorand theModel Checker. Roughly, the former produces some “can-
didate” answer set, whose stability is subsequently verified by the latter. The Model
generator ofDLV implements a backtracking search algorithm, similar to a DPLL pro-
cedure of SAT solvers, which works directly on the ground instantiation of the input
program. As previously pointed out, theModel Checkerverifies whether an answer set
candidate at hand is an answer set for the input program. Thistask is solved inDLV by
calling a specialized procedure, since it is as hard as the problem solved by the Model
Generator for disjunctive programs, while it is trivial fornon-disjunctive programs.2

Finally, once an answer set has been found,DLV prints it in text format, and possibly
theGround Reasonerresumes in order to look for further answer sets. Note that, other

2 However, there is also a class of disjunctive programs, called Head-Cycle-Free programs [10],
for which the task solved by the Model Checker is provably simpler, which is exploited in the
system algorithms.

A Visual Tracer for DLV 81

traditional ASP-systems basically agree on the same general architecture even if they
employ different techniques for implementing the same system components.

In sum, the evaluation of an ASP program inDLV can be divided in threemain
tasks:Instantiation, Model Generation, and Model Checking. Eachof them requires to
be traced for debugging purposes, and in the following Section we describe how our
advanced tracing mechanisms deals with this requirement.

3 Advanced Tracing for DLV

The oldDLV tracing mechanism is simple: it prints to standard output a log of all the
internal system events, followed by the value of some relevant internal variables (e.g.
current partial interpretation, current rule to be processed, etc.). More in detail, each
module ofDLV has a specialized set of traced variables and events, and thedetail of
the information produced can be set statically, for each module, to a given level ranging
from 0 to 3 (minimum and maximum level roughly correspond to tracing-disabled and
full information, respectively). This information allowsfor reconstructing an entireDLV
execution, and/or to focus on the details of a single (or some) task, like e.g. Instantiation.

The main problem of this tracing system is however very easy to be seen: even
small inputs can produce a huge tracing output, which might be either very difficult
to be handled or even impossible to be stored in the file system. Indeed, tracing in-
formation is noisy, in the sense that the developer cannot isolate in a generic tracing
mechanism the information which is needed for detecting a specific problem, and a lot
of useless information is inexorably printed. Moreover, the unavoidable complexity of
the algorithms employed for solving each single task of ASP-program evaluation can
make even impossible to store and analyze the tracing output. Note that, Instantiation
is in general EXPTIME-hard (the produced ground program being potentially of ex-
ponential size with respect to the input program), and both the Model Generator and
the Model Checker implements a backtracking procedure thatmight require to exe-
cute (and, thus trace) an exponential number of operations (w.r.t. the size of the ground
instantiation of the program!).

In order to cope with this situation, we designed and implemented in theDLV system
a general architecture for controlling and tracing the execution, that has two important
features: the execution of each task can be controlled (started, paused, or restarted) and
the information to be printed can be set dynamically during the execution.

In Figure 2 is depicted the general architecture of our tracing method. In particular,
the system is able to receive and recognize a sequence of commands in XML format
from the standard input (or from a given file); those commandsare recognized by the
command parsermodule and inserted in acommand queue. Each evaluation task of the
system has been modified in order to stop periodically its normal execution in some pre-
definedbreakpoints, pick-up a new command from the queue and execute it. Commands
might require to: set the system events to be printed, print the value of some status vari-
able or the content of some internal data structure (e.g. onemight ask whether some
atom is true or false in the current partial interpretation); to continue the execution up
to the next breakpoint; to undo the execution of some task; toterminate the process;

82 F. Calimeri, N. Leone, F. Ricca, and P. Veltri

Fig. 2. Tracing Architecture.

etc.3 The result of each command, together with the output generated by the system are
printed to the standard output according to a specifically designed XML format. In this
way, one can control dynamically the execution, and select the information it needs.
Thus, the information to be printed is dramatically reduced, and the user can focus on
the information regarding a specific moment of the execution. It is worth noting that,
we carefully placed several breakpoints in the evaluation algorithms; breakpoints, that
can be enabled of disabled by setting thegrain level of execution, e.g. in the Model
Generator one can decide to stop the execution at each choicepoint (lowest level of
grain) or at the end of each propagation rule (finest level of control). The level of grain
itself can be set dynamically by exploiting a specific command.

TheDLV system enriched with this advanced tracing can be controlled either man-
ually (by writing the commands from the console) or by exploiting a graphical user
interface that is described in the next Section.

4 System Usage and Graphical User Interface

This section describes the usage of the herein presented system, then illustrates the
Graphical User Interface (GUI) that has been conceived in order to ease interaction.

Commnad line interface.The tracing system is embedded into theDLV system, thus
it features a command-line interface; data are exchanged through standard input/output

3 For a complete listing of the available commands see Appendix 4.

A Visual Tracer for DLV 83

streams. The tracer can be started by invokingDLV with ”−control” option, and an
optional XML input file containing a list of commands:

\$./dl -control [commandFile]

If input file is not provided, then the system awaits for commands on the standard
input. We now report the snapshots of the command-line debugger while running on an
example program.

Suppose now that we want to trace the Model Generator, initially, we start theDLV
system with the option - control:

The logic program we will give in input toDLV is stored in the fileprova.dl, and
contains the following rules:a ∨ b. c ∨ d. e :− a.. The image below shows how to set
this program as input forDLV : just type the<files> tag.

Obviously, one might set more than one file by repeating the same command. Once
the input is set, we can start the parser and then the Instantiator as follows:

To enable tracing we set the tracing mode by inserting the<sbsw/> command. The
tag has two attributes: detail and grain. The detail level determines (as in the old tracing
method) the quantity of information to be printed; whereas,the grain level determines
the number of active breakpoints, respectively. In the following we set both Trace and
Grain levels to two:

84 F. Calimeri, N. Leone, F. Ricca, and P. Veltri

Then, we run the Model Generator, the system executes a part of the computation
and thenDLV stops at the first breakpoint (enabled for this level of grain) and prints the
tracing log. Then, we go to the next breakpoint with the command <sbsn/>. In this
case we will see the answer sets found written between braces(see Figure 3)

At each breakpoint we can modify the tracing configuration byadding or remov-
ing the information to be printed. In this example we requireto add some additional
information to the log (see Figure 4).

Going forward, Model generator finishes, andDLV waits for commands. In this
example we reset the grounding of the program and then we restart both Grounding
and Model Generator requiring to visualize the answer sets of the program without any
tracing (see Figure 5).

Alternatively, the user might start the debugging session by exploiting the graphic
interface.

Graphical User Interface.The GUI allows the user to exploit the full power ofDLV
Controller and Advanced Tracer in a simpler and more intuitive fashion. In the follow-
ing, we describe how he interface is structured.

On the left of the main window is the management area forDLV input. On top of
this area, a tree structure represents the part of the file system of the machine running
DLV (Figure 7). The user can choose the root of such tree while starting the application,
but if it can also be modified later.

Below the tree structure there is the list of the files given asinput toDLV for current
session (Figure 8).

A sessionis initialized when the system starts and it closes when theDLV process
ends; a session can also be forced to close by the user throughan appropriate button.

The central area of the main window is divided into two parts:the main available
commands and a tracing management area are placed in the upper side, while the lower
consists of a “Console”.

The tracing management area features some fields that remember the overall status
of the application.

Fields are in charge of showing: the current status ofDLV (Figure 10), the last com-
mand given by the user (Figure 11),DLV options that are currently enabled (Figure 12),
and the grain and detail levels set during the last tracing analysis (Figure 13).

Under these fields a table, initially empty, is placed which show all the information
printed by the Advanced Tracer during the session (Figure 14).

A Visual Tracer for DLV 85

As described above, the information printed at each breakpoint changes according
to the detail level; however, the user can also customize thecurrent configuration by
means of appropriate buttons.

In order to facilitate a better understanding of what is happening during the session,
the part of the information displayed which is updated by theTracer at each breakpoint
is highlighted in red; the rest is gray (Figure 15).

For each piece of information name and current value are available. If a value is too
long, it can be entirely displayed by clicking the “Enlarge”button.

The “Manage Info” button allows to customize the current display configuration for
the information printed by the Tracer.

The GUI will show only the pieces of information explicitly included in the first list
of Figure 16; nevertheless, such list can be customized by adding other pieces of infor-
mation from the second list, or by removing currently selected pieces of information.

Finally, a “Console” is showed in the lowest area of the window (Figure 17). This
text-area shows the output of the Controller as it is released; thus, when a command is
invoked, the user can view the results.

5 Conclusion

In this paper we have presented an advanced tracing methodology which has been es-
pecially conceived for controlling and monitoring the execution of an ASP system.4 We
have implemented it on theDLV system, and developed a Graphical User interface that
allows to manage tracing operations in a friendly environment.

The advanced tracing technique herein presented can be fruitfully exploited by sys-
tem developers, with the purpose of finding bugs or optimizing the execution of internal
algorithms. Moreover, tracing can be exploited by ASP program developers in order to
optimize (and, in some cases, fix) input ASP programs: indeed, by following the trace
of system execution, the ASP program developer might betterunderstand the behavior
of the exploited ASP system when a specific encoding is evaluated, and thus provide an
alternative (hopefully more-efficiently-evaluable) encoding, or fix an incorrect one.

Thanks to its friendly interface, the advanced tracer mightalso be employed for
didactic purposes; indeed, students can discover what is going on “under the hood”,
thus better understand underlying techniques and evaluation algorithms.

References

1. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3) (2006) 499–562

2. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys33(3) (2001) 374–425

4 Even though each ASP system features its own algorithms and techniques (and thus, also
peculiar variables an data structures), the idea of controlling the execution by means of proper
breakpoints and an external graphical interface which deals with the system by means of an
XML syntax can be easily adapted and implemented into ASP systems different from DLV.

86 F. Calimeri, N. Leone, F. Ricca, and P. Veltri

3. De Vos, M., Schaub, T., eds.: SEA’07: Software Engineering for Answer Set Programming.
Volume 281., CEUR (2007) Online athttp://CEUR-WS.org/Vol-281/.

4. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set
semantics. TPLP9(1) (2009) 1–56

5. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A Meta-Programming Technique for De-
bugging Answer-Set Programs. In: AAAI’08, AAAI Press (2008) 448–453

6. Perri, S., Ricca, F., Terracina, G., Cianni, D., Veltri, P.: An integrated graphic tool for devel-
oping and testing DLV programs. In: Proceedings of the Workshop on Software Engineering
for Answer Set Programming (SEA’07). (2007) 86–100

7. Syrjänen, T.: Debugging Inconsistent Answer Set Programs. In: Proceedings of the 11th
International Workshop on Non-Monotonic Reasoning, Lake District, UK (2006) 77–84

8. Brain, M., De Vos, M.: Debugging Logic Programs under the Answer Set Semantics. In:
Proceedings ASP05 - Answer Set Programming: Advances in Theory and Implementation,
Bath, UK (2005)

9. Roychoudhury, A., Ramakrishnan, C.R., Ramakrishnan, I.V.: Justifying proofs using memo
tables. In: PPDP. (2000) 178–189

10. Ben-Eliyahu, R., Dechter, R.: Propositional Semanticsfor Disjunctive Logic Programs.
AMAI 12 (1994) 53–87

A Appendix: Tracing Commands

In the following we report some of the most important tracingcommands that allow to
customize the tracing.

Customizing the Configuration Once the tracing mode has been set, or during the
analysis phase, the information to be printed can be customized according the user’s
need. This is done by means of the following statements.

– <show_info_tracer/>

shows all information concerning current configuration; this will be printed ev-
ery time an active breakpoint is reached. The short version of this statement is
<show_t/>.

– <add_info_to_tracer>"infoName1; . . .; infoNameN"</add_info_to_tracer>

add a piece of information to the current tracing configuration; information will
be printed at each step from now on. The information to be added must be writ-
ten between start tag and end tag. A hort version of this statement is available as
<a_to_t>"infoName1. . . infoNameN"</a_to_t>.

– <delete_info_of_tracer>"infoName1; . . .; "infoNameN</delete_info_of_tracer>

removes a piece of information from the current tracing configuration. The short
version is<d_of_t>"infoName1 . . . infoNameN"</d_of_t>.

– <empty_info_of_tracer/>

empties the current tracing configuration; this will force the tracer to print no infor-
mation at all. The short version is<e_of_t/>.

A Visual Tracer for DLV 87

Breakpoints Commands WhenDLV stops, at any breakpoint, the user can inspect and
trace the execution by means of the following commands:

– <step_by_step_next/>

allows to exit the current breakpoint and go forward to the next one. Short version
is <sbs_n/>.

– <step_by_step_continue/>

allows to leave the Tracing mode; hence,DLV goes ahead until the end of com-
putation with no stops (thus ignoring any other breakpoint). The short version is
<sbs_c/>.

– <step_by_step_view>"InfoName"</step_by_step_view>

this command prints information “on-demand”. Indeed, the user can ask the Tracer
to print some pieces of information which are not contained in the current configu-
ration. Short version is<sbs_v>"InfoName"</sbs_v>.

There are also some commands which are defined as “special”; these can be invoked
by the user only at some specific breakpoints.

– <step_by_step_go_back>"X"</step_by_step_go_back>

or
<sbs_gb>"X"</sbs_gb>

forcesDLV to go back ofX level; if L is the current level, the computation starts
over from level:L−X . This command can be invoked only while the Model Gen-
erator is being traced; in particular, only at a breakpoint whereDLV checks the
stability of the current model, or when it is waiting for the next choice.

– <step_by_step_stop_when>"X"</step_by_step_stop_when>

or
<sbs_sw>"X"</sbs_sw>

forcesDLV to go ahead without any stop while the atomX is not true; once the
atomX becomes true, the system will stop at next breakpoint. This command can
be executed at any breakpoint, both during the Grounding or the Model Generation
phases.

– <step_by_step_go_component>"X"</step_by_step_go_component>

or
<sbs_gc>"X"</sbs_gc>

forces the system to go ahead and stop just before the evaluation of the component
X has to start. It can be executed only during while the Grounding is traced, in
particular only during the evaluation of the components of the input program.

– <step_by_step_go_rule>"X"</step_by_step_go_rule>

or
<sbs_gr>"X"</sbs_gr>

forces the system to go ahead and stop just before the evaluation of the ruleX has
to start. It can be executed only while the Grounding is beingtraced, in particular
during the evaluation of the components of the input program. This command has
effect only if the grain level is set to2: indeed, there are no stops at rule level with
a lower grain level.

88 F. Calimeri, N. Leone, F. Ricca, and P. Veltri

– <step_by_step_go_constraint>"X"</step_by_step_go_constraint>

or
<sbs_gcn>"X"</sbs_gcn>

force the system to go ahead and stop just before the evaluation of the constraint
X has to start. It can be executed only during while the Grounding is being traced,
in particular during the evaluation of the components or theconstraints of the input
program. This command has effect only if the grain level is set to 2: indeed, there
are no stops at constraint level with a lower grain level.

– <step_by_step_go_wconstraint>"X"</step_by_step_go_wconstraint>

or
<sbs_gwcn>"X"</sbs_gwcn>

forces the system to go ahead and stop just before the evaluation of the weak con-
straintX has to start. It can be executed only while the Grounding is being traced,
in particular during the evaluation of the weak constraints. This command has ef-
fect only if the grain level is set to2: indeed, there are no stops at weak constraint
level with a lower grain level.

A Visual Tracer for DLV 89

Fig. 3. Run the Model Generator.

Fig. 4. Add tracing information.

90 F. Calimeri, N. Leone, F. Ricca, and P. Veltri

Fig. 5. End tracing.

Fig. 6. GUI: Starting interface.

A Visual Tracer for DLV 91

Fig. 7.GUI: Current State of DLV. Fig. 8. GUI: Last Command Executed.

Fig. 9.GUI: Main Area of the Window.

Fig. 10.GUI: Current State of DLV. Fig. 11.GUI: Last Command Executed.

Fig. 12.GUI: DLV Options Enabled. Fig. 13.GUI: Grain and Detail Levels.

92 F. Calimeri, N. Leone, F. Ricca, and P. Veltri

Fig. 14.GUI: Tracing Table at the Beginning.

Fig. 15.GUI: Tracing Table during Analysis.

Fig. 16.GUI: Dialog for Information Management.

Fig. 17.GUI: Console.

A Visual Tracer for DLV 93

Author Index

Brain, M. 49
Calimeri, F. 79
Cliffe, O. 49
Confalonieri, R. 19
De Vos, M. 49
Faber, W. 34
Gelfond, M. 64
Inclezan, D. 64

Leone, N. 79

Nieves, J. C. 19

Ricca, F. 79

Son, Tran Cao 3

Vázquez-Salceda, J. 19

Veltri, P. 79

Woltran, S. 34

94

