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Abstract

Controlling cognitive systems like domestic robots or intelligent as-

sistive environments requires striking an appropriate balance between

responsiveness and persistence. Basic goal arbitration is an essential

element of low-level action selection for cognitive systems, necessar-

ily preceding even deliberate control in the direction of attention. In
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natural intelligence, chemically-regulated motivation systems focus an

agent’s behavioural attention on one problem at a time. Such simple

durative decision state can improve the efficiency of artificial action se-

lection by avoiding dithering, but taken to extremes such systems can

be inefficient and produce cognitively-implausible results. This arti-

cle describes and demonstrates an easy-to-implement, general-purpose

latching method that allows for a balance between persistence and flex-

ibility in the presence of interruptions. This appraisal-based system

facilitates automatic reassessment of the current focus of attention by

existing action-selection mechanisms. We propose a mechanism, flexi-

ble latching, and demonstrate that it drastically improves efficiency in

handling multiple competing goals at the cost of a surprisingly small

amount of extra code (or cognitive) complexity. We briefly discuss im-

plications of these results to understanding natural cognitive systems.

Keywords: Action selection; drives; modularity; cognitive architec-

tures

1 Introduction1

The term action selection might seem to imply cognition, but this is merely2

due to anthropomorphic labelling. If we take cognition to be a process re-3

quiring time (probably a form of on-line search; [42]), and action selection4

to be any mechanism for determining the present course of action [11], then5
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much of action selection is really non-cognitive. Action choices in animals6

are limited both by evolution and individual skill learning; for adult animals7

many actions may be essentially reflexive [5, 7]. Such limiting is necessary if8

action selection is to be achieved in a timely manner [37, 15, 21]. However,9

there is no question that animals (including humans) do engage in cognition10

in some contexts. This article examines one such context: the arbitration11

between different goals. Even here, basic arbitration must necessarily be12

automatic. However, functional and efficient behaviour requires that the13

automated system can in some situations be interrupted and controlled cog-14

nitively [39]. Here we present a way to efficiently facilitate this capacity in15

artificial cognitive systems.16

Budgeting time and pursuing multiple conflicting goals is a key aspect17

of any cognitive system [17, 22]. In the simulation of real-time animal-like18

intelligence considered in this paper, artificial agents must carry out a set19

of tasks, essential to their survival, while also interacting with dynamic sur-20

roundings, including other agents. Other-agent interactions in particular21

may include activities that are potentially essential to the species as a whole22

but not necessarily in the interest of the performing individual’s viability.23

This characterisation might suggest rather dramatic activities, e.g. fending24

off attack, but it can also apply to ordinary duties. In some sense, the tasks25

that the system was originally designed to carry out (e.g. mating in nature,26

or perhaps tea making for an office robot) are of lower immediate priority27

than making certain that the system maintains working order, since working28
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order (e.g. the ability to move and manipulate) is a precondition of any29

other activity. Nevertheless, it is clear that we require an agent to devote30

considerable time to the goals that motivated its construction. Such critical31

but non-urgent goals are common amongst animals, such as maintaining a32

social network, reproducing or keeping clean. All these behaviours require33

both time and energy, and it follows that agents possessing more efficient be-34

haviour management should, in general, fare better than other agents with35

less efficient behaviour selection.36

In this article, we demonstrate our goal-arbitration system using a simple37

artificial life task environment. Our agents must ensure they have the ability38

to store excess energy in order to pursue auxiliary behaviours. We discov-39

ered the need for an improved arbitration mechanism during the course of40

research on the evolution of primate social structures, so our examples de-41

rive from these models. The immediately urgent goals concern feeding, while42

the ultimately-important goals are social networking and exploration. Note43

that in nature such goals could also be considered survival-oriented, since44

socialising promotes long-term survival by facilitating group living [17, 25].45

However, their payoff is more diffuse — it is seldom knowable when addi-46

tional goodwill or information gathered may become critical, in contrast to47

starvation which has clear endogenous indicators. Thus we place essential48

behaviours at a high priority, but design an action-selection mechanism to49

ensure they are executed as efficiently as possible.50

In this article we present a comparative study of three variants of a simple51
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action-selection mechanism designed to improve the agent’s capacity for goal52

arbitration. Our primary motivation is a potential inefficiency that may53

occur when an agent attempts to acquire a buffer of excess satisfaction before54

pursuing its next goal. We propose that if an agent is interrupted at any stage55

during this period, a choice needs to be made concerning whether to continue56

with the current goal or whether to attend to other, possibly more relevant57

behaviours. Persistence avoids the inefficiency of dithering between multiple58

goals. Dithering is inefficient because there is typically a significant start-59

up cost to pursuing new goals before consummatory actions can take place.60

However, some degree of flexibility avoids the inefficiency of pursuing a goal61

which is no longer urgent and has locally become excessively costly.62

We look to biological motivation systems for inspiration because these63

have presumably evolved to manage this trade off. However, here we do not64

attempt a perfect or neurological model nature. Rather, our emphasis in this65

article is engineering. We present and evaluate a simple control mechanism66

that achieves the requisite level of flexibility at minimal cost. In fact, two67

types of costs are kept minimal: both the advance, coding-time costs for68

the agent’s designers and the real-time, cognitive-processing costs for the69

agents. We use a basic latching system augmented with the ability to detect70

potentially relevant interruptions. This threshold-based addition triggers a71

reevaluation of priorities already present in the agents’ overall action-selection72

system.73
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2 Methods74

In this section we first describe the particular agent architectures we use75

to test our new goal arbitration system. Although we use a single system76

here, it is an example of a common type of action-selection system, and we77

describe the augmentation in general terms so that it may be applied on78

other systems as well. We then describe the specific goals to be manipu-79

lated in the experiments, and define the metrics of success in terms of these.80

Next, we describe the various latching mechanisms we have implemented for81

comparison. Finally, we describe the testing scenarios, including the agents’82

operating environment, followed by the presentation and discussion of our83

results.84

2.1 Basic Action Selection85

The agents are specified using the behaviour-oriented design (BOD) method-86

ology [12], a system that produces complete, complex agents consisting of (a)87

modules that specify details of their behaviour and (b) dynamic plans that88

specify agent-wide, cross-modular priorities. Actions are produced by the89

modules; action selection (where there is contention) is carried out using90

the Parallel-rooted, Ordered Slip-stack Hierarchical (POSH) dynamic plan91

system [10].92

We chose BOD as a fairly simple example of an architectural consensus93

achieved in the late 1990s for real-time, situated systems: That AI is best94
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constructed using a combination of modularity, for providing intelligent prim-95

itives, and structured hierarchical plans, for encoding priorities [24, 26, 8].96

Even mainstream cognitive architectures such as Soar and ACT-R can be97

described in this way [28, 38]. Such approaches have been somewhat ne-98

glected in the academic literature in the last decade due to an emphasis on99

machine learning approaches to action selection. However, in applied human-100

like AI such as games programming and cognitive robotics, such modular,101

hand-coded approaches are still very much the norm [23, 31].102

The details of the structured action-selection system are unimportant to103

the mechanism presented in this paper. All that is assumed is104

• some mechanism for storing temporary values of long-term state105

(e.g. learning),106

• some mechanism of expressing a variety of goals and their associated107

actions, and108

• the notion of a trigger or precondition as part of the mechanism for109

choosing between goals and actions.110

A single POSH plan was used to specify the priorities of all the agents111

tested here. That is, all the agents have the same priorities and therefore112

the same dynamic plan, though of course their expressed behaviour will vary113

due to their environment and their previous experience. What differs between114

conditions in the experiments described below are only the action-selection115

mechanisms and the testing environments.116
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The plan, shown in Figure 1, assumes four basic behaviours (drives): B1117

to B4. In POSH, the top level of a plan hierarchy (the drive collection) is118

checked on every cycle of the controller. Control is passed to the highest-119

priority drive element whose trigger (line-labels in Figure 1) is true. All120

but behaviour B4 further contain a sub-plan, in POSH called a competence.121

Competences also contain elements each with their own trigger, but these122

are plans for the purpose of pursuing a single goal, and as such require less123

sophisticated scheduling than the drive collection. Competences maintain124

decision memory and control behaviour until they either terminate, pass125

control to a child competence of their own, or the main drive collection takes126

control back for a higher-priority problem. Their execution is similar to teleo-127

reactive plans [32] or indeed to the generalised plans created by STRIPS [18].128

The first two behaviours, which are of the highest (and equal) priority,129

fulfil consumption-related needs, such as eating or drinking, the neglect of130

which would cause the agent to die. Behaviours B3 and B4 are of lower131

priority and are only considered for potential execution if B1 and B2 are132

not triggered. It should be noted that these behaviours are of lower priority133

simply because behaviours B1 and B2 are essential to the agent’s immediate134

survival. This does not imply, however, that lower-priority behaviours are135

not important, they could be critical to the agent’s mission. Since our experi-136

mental environment represents primate social behaviour, these behaviours in137

fact relate to increasing the probability of longer life. As such, behaviour B3138

represents social networking through grooming, which requires two agents to139
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explore

Drive Collection: Agent

B3: groom

B1: drinkwants to drink

locate drink

move to drink

drink

has no drink

has located drink

is at drink

B2: eat

locate food

move to food

eat

B4: explore

locate mate

move to mate

groom

wants to groom

default behaviour

wants to eat

has no food

has located food

is at food

has no mate

has located mate

is at mate

p
ri
o
ri
ty

always true

secondary actions

primary actions

drive

competence

Figure 1: The POSH plan that determines priorities for the agents: the
drive collection (SDC) is called at every time step and its elements checked
in order: {B1=eat, B2=drink}, {B3=groom}, {B4=explore}. The highest-
priority element whose trigger is true is executed. Equal priority elements
(i.e., B1 and B2) are checked in random order.

interact with one another. The final behaviour (B4) is exploration, possibly140

to find new food sources. In a POSH plan, the lowest-priority goal serves as141

a default behaviour and should always be triggerable. Thus if an agent with142

this plan is efficiently arbitrating between goals, it should be able to spend143

most of its time exploring new space.144

9



2.2 Metrics of Efficient Behaviour145

The primary focus of our investigations then is on behaviours B3 and B4.146

Lower priority behaviours may only be executed if all higher priority be-147

haviours are managed efficiently and for artificial agents, the ‘lower’ be-148

haviours are typically the ones that define and justify the agent’s mission.149

Despite their significance these behaviours are necessarily of lower priority150

than those that facilitate the survival of the agent so it can perform these151

tasks. It is therefore paramount that these higher-level behaviours are man-152

aged efficiently enough to allow agents to pursue other behaviours as well.153

Each behaviour is composed of numerous elements, some of which may be154

classified as secondary actions. In the case of feeding, the secondary actions155

would be ‘locating food source’ and ‘move towards food source’. The primary156

action would correspond to ‘eat’. For all behaviours, executing the primary157

action with a high frequency relative to the secondary actions determines158

the degree of efficiency with which the behaviour is executed. Dithering, the159

rapid switching between goals, results in secondary actions being performed160

excessively in proportion ton primary ones. In our example, each behaviour161

Bi has one such primary action which will be denoted as Bα
i . The frequency162

at which primary actions are executed determines the degree to which all163

behaviours may be executed and thus defines the metric of success at the164

centre of our investigation.165
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2.3 Agents and State166

Each behaviour Bi is associated a single-valued internal state Ei. Here, for167

the sake of clarity and without loss of generality, we use the concept of energy168

to denote the internal state of the agent: each behaviour Bi has a current169

level of energy Ei. The agents live in a toroidal, discrete-time world with170

dimensions of 600 × 600 pixels. Time is considered to be discrete and at171

every time step, all agents in the environment are updated simultaneously.172

In particular, at every time-step, all energy states Ei are decreased by e−i .173

If a given behaviour is vital to the agent’s survival, death is imminent once174

Ei ≤ 0. For each behaviour, we define a threshold δi such that Bi is trig-175

gered once Ei < δi. Once Bi is triggered, the agent will execute the actions176

associated with that particular behaviour. The behaviours B1 and B2 in our177

example correspond to sustenance activities (eating or drinking): The agent178

first locates an energy source, moves towards the energy source (at a speed179

of 2 pixels/time step) and consumes the source once in close proximity. This180

consumption raises the agent’s internal state by e+i . Clearly we must ensure181

that e+i � e−i , ∀i as otherwise an agent would never be able to satisfy a182

need (and in the case of essential behaviours, the agent would eventually183

die). Here we have chosen the same values for all behaviours: e+ = 1.1184

and e− = 0.1 and hence drop the behaviour-dependent subscript i from here185

on. Since we are interested in the execution of lower-priority behaviours, an186

individual choice of energy gain/loss across the different behaviours would187

require the adjustment of the individual thresholds (which are tightly related188
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to the net energy gain), unnecessarily complicating the model. Overall, this189

gives a net energy gain of e± = 1 for any primary action.190

Lower-priority behaviours (i.e. B3 and B4) may only be executed if B1191

and B2 are satisfied. What it means for a behaviour to be ‘satisfied’ depends192

upon the implementation of the agents’ action selection — the basis of this193

article which we describe next.194

2.4 Conditions195

We use three different action selection mechanisms and evaluate their impact196

on the efficiency of the agent: unlatched, strict latch and flexible latch.197

2.4.1 Unlatched198

As mentioned in the previous section, a behaviour Bi is triggered if Ei < δi.199

In the basic unlatched model, the drive terminates as soon as Ei ≥ δi and the200

time spent at the energy source is expected to be relatively short (although201

this depends strictly on δi −Ei which may vary depending on the number of202

equal-priority behaviours). Furthermore, no excess energy is stored and the203

behaviour is triggered again very shortly after it is satisfied1. When there204

are multiple such behaviours, the agent will continue to oscillate between205

them (dithering). Even if there is only a single top-priority behaviour, the206

agent will spend its entire time in close proximity to the energy source as the207

1The theoretical maximum possible excess energy in this case given the values of e+

and e− is 0.9 which will last for 9 time steps.
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acquired energy is always insufficient to pursue anything else.208

2.4.2 Strict latch209

In the latched models, the agent only terminates the drive once Ei ≥ φi210

where φi ≥ δi. Now the agent has an energy reserve of (φi − δi)/e
− time211

steps before the behaviour is triggered again. If all high-priority drives are212

latched in this way and the latch is sufficiently large (see next section), the213

agent is able to eventually follow lower-priority drives. This form of latching214

is very inefficient, however, if the agent inhabits a world where unexpected215

interruptions may occur. If an agent is almost finished with one activity but216

gets interrupted, the agent will continue to pursue this activity independent217

of other, lower-or-same priority needs. For example, an agent that is groom-218

ing and whose partner has left, might pursue another partner for five minutes219

when only another five seconds of grooming would have satiated it. This is220

true even if Ei = φi − ε where ε� φi − δi and hence this form of latching is221

referred to as strict.222

2.4.3 Flexible latch223

If the agent is able to detect interruptions, the interruption could trigger224

a decision that determines it subsequent activities. Such a decision might225

be conscious, but here we simply relax the latching by using yet another226

threshold, ψi, that is situated in-between the previously two established ones,227

δi ≤ ψi ≤ φi. This gives rise to two different scenarios. If the interruption228
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occurs when:229

1. δi < Ei < ψi, the drive remains ‘unsatisfied’230

2. ψi < Ei < φi, then the drive is considered ‘satisfied’231

Note that for δi < Ei < φi the status of any latch is path or history dependent232

— if Ei was more recently below δ the drive is now unsatisfied, if it was more233

recently satiated (about φ) than it is not. What is new for the flexible latch is234

that if an interruption occurs in the third scenario, where Ei had been below235

δ but has now been raised above ψi, this path dependency is dismissed.236

2.5 Threshold Selection237

The previous section has discussed different thresholds that require initialisa-238

tion and the choice of parameters is crucial to the outcome of the simulation.239

First, it should be noted that the flexible latch is simply a generalisation of240

the strict latch, which in turn is a generalisation of the unlatched technique:241

Flexible latch δ ≤ ψ ≤ φ

Strict latch δ ≤ ψ = φ

Unlatched δ = ψ = φ

In this investigation, we have two primary points of interest, which are closely242

related: Survival and efficiency. The survival of the agent crucially depends243

on the choice of δ. Efficiency, on the other hand, refers to the agent’s ability244
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to pursue all its behaviours, not just high-priority ones, and depends on the245

choice of φ and ψ. In order for an agent to survive, any vital behaviour must246

be triggered such that the agent has enough energy to approach the energy247

source (locating an energy source can be done in a single time-step and is248

subsequently excluded from the following discussion):249

δi ≥ E
r
i (1)

where Er
i is the energy required to reach the source: (dmax/dmov)×e

−, where250

dmov is the distance an agent can move in a single time step and dmax is the251

maximum possible distance an agent can travel2. If there are n equally vital252

behaviours, δi has to be adjusted accordingly:253

δi ≥

n−1
∑

j=1

(

E
r
j + E

c
j

)

+ E
r
j (2)

where E
c
i is the energy required to raise the energy level to the appropriate254

level:255

E
c
i =

δi −Ei

e±
(3)

2The theoretical maximum in this case is simply
√

(width/2)2 + (height/2)2 ≈ 424
and it would take the agent a maximum of 424/2=212 time steps to reach the target,
consuming 212× 0.1 = 21.2 units of energy.
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The value of φ, on the other hand, has to be set such that enough energy is256

stored to pursue all vital needs:257

φi ≥ δi +
n

∑

j=1

(

E
r
j + E

c
j

)

(4)

Any excess energy is subsequently devoted to the other, lower-priority be-258

haviours. This choice of φi necessarily affects Ec as now more time is spent at259

the energy source (a difference of φi − δi). Interruptions drastically alter Ec260

and the energy required to satisfy a latched behaviour given m interruptions261

is simply:262

E
c
i =

m
∑

j=1

(

E
r
ij + E

c
ij

)

(5)

At each interruption, the agent should, in theory, decide whether it is worth263

pursuing the currently executed behaviour (i.e. if there is a positive or neg-264

ative energy ratio). Usually there is insufficient knowledge available to make265

an informed decision due of the complexity or indeterminacy of the environ-266

ment. Consequently, heuristic values must be used. Nature selects for agents267

with appropriate or at least adequate thresholds; here we test a range of268

values for ψ to find which is appropriate for our particular simulations.269

2.6 Experiment and Simulation Details270

Our experiments are organised into two sets. The first set uses sim1, a very271

well defined setup that allows a great degree of control over all aspects in-272
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Figure 2: The two simulation environments used to test the overall efficiency
of the agents: a completely controlled scenario (a) where energy sources are
maximum distance apart, all agents are initially grouped at the centre and
interruptions are externally induced, and a more realistic scenario (b) where
agents and energy sources are placed randomly.

vestigated, particularly the frequency of interruption (see Figure 2(a)). The273

second set use sim2 (Figure 2(b)), a more realistic simulator where inter-274

ruptions are caused by the dynamics of the environment itself. For our275

experiments we consider two types of interrupts. The first type occurs when276

the source of satisfaction is depleted or otherwise removed (e.g., an agent277

looses his current grooming partner). The second type of interrupt is caused278

by higher priority drives that are triggered.279

In both simulations, there are 5 identical agents. Furthermore, sim1280

positions the energy sources such that they are maximum distance from one281

another3. In this simulation, we exactly control the number of interruptions282

an agent is exposed to throughout the execution of a single behaviour. Once283

3The simulation is toroidal and agents are able to move, for example, from the far left
to the far right in one move.
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an agent is interrupted, it is forced to consider an alternative energy source284

(it is not allowed to remain at the current one). The second simulation is285

somewhat more realistic and is used to verify the results obtained from the286

first set of experiments. In sim2, energy sources are scattered randomly287

across the world. Each energy source has a certain load that depletes as an288

agent consumes it. Once depleted, the energy source vanishes, but, at the289

same time, a new energy source appears elsewhere in the world. The load290

of any energy source has a maximum of 50 units and depletes by 2 units if291

consumed. All energy sources gain 1 unit per time step.292

The experiments are executed over 15 distinct trials. Each trial executes293

the simulation for 5000 time steps. All internal states are initialised such that294

Ei = δi, thus all behaviours are triggered immediately once the simulation295

begins. At each time step, the agent may execute a single action. The296

results are simply the number of times each primary action has been executed,297

averaged over all agents and trials. In all cases, a two-tailed t-test is used to298

test for significance with a confidence of 0.995. We chose the same threshold299

settings across all behaviours and again, we drop the subscripts from here300

on. Furthermore, we set δ = 200 in all experiments, giving an agent sufficient301

energy for 200/e− = 2000 time steps before E falls to zero after a behaviour302

has been triggered.303
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no latch latched significance
action φ = δ 10 50 100 0-10 10-50 50-100

Bα
1 443 452 478 494 * * *

Bα
2 443 452 479 498 * * *

Bα
3 0 0 454 468 *

Bα
4 0 0 1414 2037 * *

total 886 903 2824 3498

Table 1: Comparing latched and unlatched behaviours. The latches are
chosen to be φ− δ ∈ {0, 10, 50, 100}.

3 Results304

3.1 Controlled Environment: Sim1305

The first experiment compares the unlatched version with the strictly latched306

one. The results are shown in Table 1. The data confirms that in the307

unlatched case, dithering prevents the agent from pursuing any of the lower308

priority behaviours. The latch effectively solves this problem, although only309

if the latch is sufficiently large. A latch of size 10 does increase the activity of310

the primary actions for behaviours B1 and B2 but still does not allow for the311

lower-priority behaviours B3 and B4 to be executed. Once the latch increases312

sufficiently in size, so does the activity of the lower-priority behaviours. This313

result is not surprising. Note though that too large a latch might also lead to314

neglect of lower-priority behaviours, since the highest-level goals might never315

be satisfied.316

The next experiment investigates the efficiency of strict latching once317

an agent is confronted with interruptions. The data for this experiment318
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10 50 100 significance
action 1 3 5 1 3 5 1 3 5 0-1 0-3 0-5 1-3 3-5

Bα
1 458 442 420 478 481 462 519 504 508 * * *

Bα
2 454 441 429 474 481 455 521 512 519 * *

Bα
3 0 0 0 277 1 0 468 421 1 * * * *

Bα
4 0 0 0 95 0 0 1119 57 0 * * * * *

total 912 882 850 1324 962 917 2627 1493 1028

Table 2: The performance of the agents given φ − δ ∈ {10, 50, 100} and 1,
3 or 5 interruptions. Significance is checked for φ = 100. Cases without
interruptions (0) are taken from the results shown in table 1 (not shown in
this table).

is summarised in Table 2. Even in the case of a single interruption, the319

frequency of primary actions executed drops significantly. The right-most320

column in the table compares the performance of a latch of size 100 with 0,321

1, 3 and 5 interruptions and the differences for the lower-priority actions are322

almost always significant.323

The final experiment using sim1 determines the performance of the flexi-324

ble latch using the same settings as in the experiment before. Here, different325

values for the intermediate threshold ψ are tested. The value of ψ is denoted326

as the percentage of the latch itself. If, for example, δ = 100 and φ = 120, a327

value of 25% would indicate that ψ = 105. The results are shown in Table 3328

and a setting of ψ = δ seems most successful. However, as shown in Table 4,329

the differences are usually not significant. In the absence of significant differ-330

ence, the zero setting is still to be preferred as it also allows us to simplify the331

action-selection mechanism. We can effectively eliminate ψ altogether but332

always reconsider priorities when interrupted. Comparing the flexible latch333
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1 3 5
action 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

Bα
1 499 491 489 501 490 491 496 496 482 487 482 495

Bα
2 492 490 496 503 483 487 491 496 488 485 493 497

Bα
3 481 476 479 481 475 479 469 455 474 470 462 437

Bα
4 1723 1689 1528 1312 1458 1342 1059 651 1222 1150 880 495

total 3195 3146 2991 2797 2906 2799 2516 2098 2666 2592 2318 1923

Table 3: The performance of the agents with flexible latching. ψ = δ+p(φ−δ)
where p ∈ {0, 0.25, 0.5, 0.75}, δ = 200, φ = 300 and frequency of interruptions
equal to 1, 3 and 5. Significance of results shown in table 4.

1 3 5 vs. strict
0-25 25-50 50-75 0-25 25-50 50-75 0-25 25-50 50-75 1-1 3-3 5-5

Bα
1 * *

Bα
2 * * *

Bα
3 * *

Bα
4 * * * * * * * *

Table 4: Significance results for table 3. Increasing p has the most impact on
the lowest-priority behaviour. The right-most column compares the strictly
and flexibly latched implementation for the different frequencies of interrup-
tions.

to the strict latch shows a significant improvement in at least one behaviour’s334

primary action for any number of interruptions tested (compare Table 2 with335

Table 3; significance is indicated in the right-most column of Table 4).336

Figure 3 shows graphically how the ability to detect interruptions im-337

proves the agent’s overall efficiency. The graph plots the number of time338

steps spent executing the actions of interest given different frequencies of339

interruption. Furthermore, as a reference value, the unlatched and uninter-340

rupted latched cases are also shown. It is evident that the performance of341

the strict latch degrades very quickly while the flexible latch substantially342
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Figure 3: A graphical comparison of strict and flexible latching (
∑

4

i=1
Bα

i ).
The top and bottom lines are shown for reference, indicating the latched but
uninterrupted and unlatched cases. For uninterrupted latches, the strict and
flexible cases are indistinguishable.

reduces the impact of interruptions.343

3.1.1 Death Rates344

In the previous experiments, efficiency was judged by the capacity to devote345

time to all behaviours. For these experiments, the value of δ has been set346

such that agents would always survive. In nature, such a threshold would347

evolve in species like primates that invest a great deal in individual survival348

and life histories. Nevertheless, exceptionally extreme environments or other349

unusual circumstances may cause a threshold setting to become (temporarily)350

insufficient.351

In the present experiment, we set δ such that survival in an uncertain352

environment is no longer guaranteed (δ = 40). We then compare death353
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strict latch flexible latch significance
action 0 1 2 3 1 2 3 1-1 2-2 3-3

Ba
1 478 423 34 34 475 387 360 * *

Ba
2 477 415 37 32 475 390 360 * * *

Ba
3 460 256 0 0 444 324 255 * * *

Ba
4 1402 90 0 0 750 295 140 * * *

Total 2816 1185 71 66 2144 1397 1115
dead 0 601 4551 4551 0 861 1143 * * *

Table 5: A comparison of death rates for agents with lower values of δ than
are entirely sustainable in the environmental context. Tests are run with
strict or flexible latching and with from 0–3 interruptions. Note again that
without interruptions, whether the latch is flexible is irrelevant.

rates between strict and flexible latches. The latch is also set at a relatively354

low level of φ = 45. The results are shown in Table 5. The flexible latch355

shows a significantly reduced death rate in all three relevant conditions (as356

determined by the number of interruptions). Furthermore, it is interesting357

to note that now, even with the smaller latch, the flexible implementation358

performs significantly better in almost all cases when compared to the strictly359

latched version.360

Finally, it is possible to reduce the death rate even further. In another sce-361

nario we utilise the agents’ ability to deal with interruptions: Equal-priority362

behaviours are allowed to interrupt one another if they reach a critical thresh-363

old ψ. We set ψ = 20, as per the calculations described in Section 2.5 above.364

This critical threshold essentially corresponds to the minimum energy re-365

quired to satisfy a single need. The addition of the threshold changes the366

death rates from 0, 861, 1143 to 60, 417, 472. Interestingly, the death rate367
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is actually slightly higher in the first case but noticeable lower in the other368

two cases. The differences are relatively weakly significant for this N , with369

a confidence of p < 0.05 for both the two- and three-interrupt conditions.370

3.2 Random Environment: Sim2371

The previous results showed that in sim1, latching is necessary to allow372

an agent to execute lower-priority behaviours, and that it is best to abort373

a latched behaviour immediately upon interruption. We now examine these374

results in a system with a more “natural” setup using sim2, where the timing375

and frequency of interruption depends on the dynamics of the environment376

itself.377

Table 6 compares all three implementation on sim2. The overall results378

are similar to before although there are some striking differences. Now, a379

latch of size 10 is sufficient to generate at least some frequency of execution380

for behaviours B3 and B4 whether or not it is flexible and indeed the flexi-381

bility makes no significant difference at this size latch. The change is due to382

the random environment providing more opportunities, which either imple-383

mentation is able to exploit. Once the size of the latch increases, flexibility384

creates a noticeable (as well as significant) difference for behaviour B4, but385

no difference for B3. This indicates B3’s primary action is already executed386

sufficiently even without the flexibility in the latch — the flexibility in the387

environment provides sufficient opportunities for it to satiate at the threshold388

levels we’ve specified. Nevertheless, the massive increase of opportunity for389
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unlatched strict latched flexible latched significance
action 0 10 50 100 10 50 100 10-10 50-50 100-100

Bα
1 451 454 470 500 454 466 468 *

Bα
2 452 454 475 490 455 466 469 * *

Bα
3 0 178 365 452 154 423 471

Bα
4 0 71 264 689 22 704 1289 * *

total 903 1156 1574 2131 1084 2058 2697
dead 0 0 0 0 0 0 0

Table 6: Comparing the unlatched, strictly and flexibly latched implementa-
tions in sim2 using latch sizes of φ − δ ∈ {10, 50, 100} and ψ = φ. All cases
have frequent interruptions (see main text).

expressing the exploratory behaviour shows the power of flexible latching.390

4 Discussion391

We have considered three variants of a simple threshold-based action selec-392

tion mechanisms. The completely unlatched condition may seem unrealistic,393

but several well-known reactive architectures have added latching only as an394

afterthought, handled with rather inelegant exception mechanisms [35, 16].395

Others assume latching can be handled by intelligent planning [6, 39]. This,396

however, requires a high cognitive load and in general, reasoning about time397

and distant rewards is difficult even for cognitive, symbolic systems [1].398

The basic latched approach is inspired by theories of affect and action399

selection, as well as basic control theory. LeDoux [29] for example promotes400

the theory that emotions place the brain in a cognitive context appropriate401

for a particular course of action. Neuroscience tells us that interrupting such402

emotional responses is a cognitive capacity requiring frontal-lobe inhibition403
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of the emotional response [14]. Of course, the frontal-lobe inhibition system404

must itself be a fairly automatic gating mechanism. But this mechanism405

provides an opportunity for an alternative plan to become most salient [34].406

Our system for determining appropriate thresholds for the flexible latches407

is also inspired by animal mechanisms through ethology. In particular, Dun-408

bar’s time-budget theory [17, 25] suggests that animal drives have evolved409

to ensure individuals are likely to spend the appropriate amount of time in410

behaviours, where appropriate is determined by what is adaptive. Our work411

here can be seen both as support for this theory and possibly as an elabora-412

tion, to the extent that our mechanism helps connect the time budget to the413

underlying neuroscience others have proposed (e.g. [34].)414

In AI in contrast, there have been surprisingly few recent attempts to pro-415

pose general-purpose architectural features for homeostatic control. Those416

that exist tend to create detailed biomimetic representations of hormone lev-417

els [41, 27]. Gadanho [20] has a similar perspective to our work, using emo-418

tions to control the temporal expression of behaviour. However, she focuses419

on modelling specific emotions and their impact on reinforcement learning420

systems, rather than focusing directly on control mechanisms. In contrast,421

our flexible latch is simple to implement and incorporate into any standard422

module-based agent architecture. Also, she uses rising levels of emotions as423

the source of interruptions, rather than dealing with inefficiencies caused by424

interruptions generated by the external environment.425

Interestingly, several established models of consciousness are similar to426
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our new model of flexibly-latched drives. Norman and Shallice [33] describe427

consciousness as a higher-cost attentional system which is brought on line428

whenever the more basic, reliable, low-cost action-sequencing mechanism is429

unable to proceed. Our system of flexible latching also operates by recogniz-430

ing interruptions. It would be plausible in a system with modules capable431

of deliberation to have interruptions trigger these rather than the simple re-432

assesment of existing goals demonstrated above. More recently, Shanahan433

[36] proposes a model of mutually-inhibiting motives in a global workspace.434

We do not agree with Shanahan that such models can account for all of435

action selection. Tyrrell [40] provides provides an extensive critique of a436

very similar spreading-activation architecture, The Adaptive Neural Archi-437

tecture [30] (more commonly referred to as Maes’ Nets [19]), explaining why438

spreading-activation models cannot scale to a full action-selection mecha-439

nism. The problem is simple combinatorics — a problem that architectures440

like ACT-R and IDA address by focussing on just one plan subset of the full441

network [19, 2]. This focussing makes these architectures functionally simi-442

lar to script-based dynamic-planning systems, although their actual action-443

selection mechanisms are far more complex. However, as this paper makes444

clear, we do think that a system like Shanahan’s or Maes’ could well account445

for high-level goal arbitration.446

IDA is a cognitive architecture specifically designed to implement a the-447

ory of consciousness [3]. IDA is not only a model, but also a working AI448

architecture which has been used to create recommender systems for the US449
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Navy. Its newest version, LIDA provides the functionality of flexible latches450

through “timekeeper codelets” [4, p. 30] which keep a proposed action salient451

long enough for a variety of options to be debated. This system could well452

be effective, and is certainly more conducive to human-like meta cognition453

than the system proposed here. However, our flexible latches are simpler and454

probably sufficient for most autonomous AI applications.455

The problems Tyrrell identified with spreading activation models are to456

some extent addressed by [22], who recommend generating a system of attrac-457

tors in the networks. This achieves an effect similar to the latching shown458

here. However, again the mechanism and architecture presented here are459

much simpler than spreading activation, even without the attractor system460

[9].461

The difficulties in scaling spreading activation networks draw attention462

to an important limit of our work. Although we have shown substantial463

efficiency improvements, temporal costs still increase linearly with the num-464

ber of interruptions. Further, some forms of interruptions will necessarily465

increase with the number of potential behaviours — in particular those that466

are generated by the action-selection mechanism itself as higher priorities467

trigger. What this implies is that agents should have a limited number of468

high-level motivations which are contested this way.469

What we present here is a cognitively-minimal mechanism which makes470

substantial improvements to an otherwise reactive action-selection system.471

Elsewhere, we explore in more detail the earlier suggestion that due to472
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LeDoux that the psychological entities called drives and emotions may be473

seen as a chemically-based latching system, evolved to provide persistence474

and coherence to the otherwise electrically-based action selection provided475

by the central nervous system [13]. We hypothesise that in nature, each476

drive or emotion — with its associated pattern of hormonal regulators and477

species-typical actions — might be viewed as serving one such high-level goal478

or need. We recommend that a system such as our flexible latch should simi-479

larly be used for each high-level goal an agent has that requires a time budget480

in an artificial cognitive system.481

5 Conclusions482

In this paper we have presented a relatively simple way to introduce flexible483

latching into an autonomous system and presented an analysis of how to de-484

termine appropriate thresholds that govern the execution of lower-priority be-485

haviours. The agents we considered have been specified using the behaviour-486

oriented design methodology: each agent consists of a set of modules that487

specify specific behaviours as well as a dynamic plan that prioritises amongst488

these behaviours. We take this as a fairly standard modular architecture us-489

ing scripted dynamic plans for action selection, and then demonstrate how490

to extend that action selection to improve its efficiency.491

We demonstrate our system using four behaviours derived from a tool for492

modelling primate social behaviour. Two behaviours — eating and drinking493
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— are essential to the immediate survival of the agent and are of highest (and494

equal) priority. The third, grooming, represents a mission-critical behaviour495

though it is not essential for immediate survival. This and the fourth, default496

behaviour (exploring) can only be executed if the higher priority behaviours497

are managed efficiently. Each behaviour is composed of a number of indi-498

vidual actions and we distinguish between primary and secondary actions.499

Secondary actions are those required to perform the primary action; the pri-500

mary action is the core consumatory action of the behaviour and satisfies501

the agent’s need that triggers the behavioural module. Efficient execution502

of behaviours requires the agents to (a) minimise the execution of secondary503

actions, and (b) acquire sufficient satisfaction (energy in our case) to be able504

to carry out lower-priority behaviours.505

The behaviour- (or action-) selection mechanism we have introduced con-506

sists of three thresholds: A lower threshold δ that triggers the behaviour507

depending on the agent’s internal state, an intermediate threshold, ψ, that508

acts in case the agent is interrupted and an upper threshold, φ, that causes509

the behaviour to terminate. The addition of these thresholds does not al-510

ter the priorities of the behaviours (which are still governed by the dynamic511

plan) but may delay (or not) the execution of lower-priority behaviours and512

may have a significant impact on the ratio of secondary to primary actions513

performed by the agent. We demonstrated their efficacy in two experimental514

settings. Without latching (i.e., only a lower threshold), the agent dithers515

between food sources, leaving no time to execute lower-priority behaviours.516
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Latching (i.e., lower and upper threshold) allows for persistence but may be517

hugely inefficient in the presence of interruptions. The persistent pursue of518

unsatisfied behaviours may lead to an unsustainable frequency of secondary519

task executions.520

The experiments allowed us to determine the most useful setting for the521

intermediate threshold, above which an interrupted agent may reconsider its522

behaviour priorities. The results show that the utility of latching, as long523

as the latch is sufficiently large, where there is a significant cost of switch-524

ing between goals. Flexible latching addresses a reduction in performance of525

latches when there are interruptions. We found however that the interme-526

diate threshold is usually not required, or more precisely, can be set to be527

equal to the lower threshold. In our experiments, it was optimal for agents528

to reconsider priorities whenever interrupted. This result may not hold if529

interuptions are more frequent and/or the size of the latch is smaller, since530

either case would increase the probability that persistance is needed. Finally,531

we also explored the case where the agent may die if essential behaviours are532

carried out inefficiently. We found that latching significantly improves the533

rate of survival of the agent.534

We have discussed how this mechanism, despite its simplicity, or because535

of it, may be relevant to numerous existing artificial cognitive architectures,536

and we have drawn parallels to animal-like decision making processes. Al-537

though the validation presented here is admittedly limited, these results do538

match expectations derived from our observations in nature concerning the539

31



life-history strategies for species that tend to be correlated with more cog-540

nitive ability. At the same time, the work presented here also allows for541

extremely simple implementations such as hand-coding heuristic indicators542

of interruption.543

There are numerous possible avenues to be explored in the near future.544

In our experiments, we chose the same thresholds for all behaviours, allowing545

a centralised approach that involves little overhead. However, it would be546

interesting to highlight potential differences in the efficiency of an agent’s547

action selection when all behaviours have individual threshold settings. Fur-548

thermore, the thresholds may be adjusted dynamically over time (e.g., using549

a simple feedback control loop) or in artificial life contexts might be individ-550

ually evolved.551
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