

Citation for published version:
Peterson, A & Sankaran, G 2010, 'On some lattice computations related to moduli problems', Rendiconti del
Seminario Matematico. Università e Politecnico Torino, vol. 68, no. 3, pp. 289-304.

Publication date:
2010

Document Version
Peer reviewed version

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161909297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/on-some-lattice-computations-related-to-moduli-problems(353cb776-ffec-424b-8ccf-859493a83e3b).html

On some lattice computations related to moduli

problems

A. Peterson and G.K. Sankaran, with an appendix by V. Gritsenko

September 2, 2010

Abstract

The method used in [GHS1] to prove that most moduli spaces of K3
surfaces are of general type leads to a combinatorial problem about
the possible number of roots orthogonal to a vector of given length
in E8. A similar problem arises for E7 in [GHS2]. Both cases were
solved partly by computer methods. We use an improved computation
and find one further case, omitted from [GHS1]: the moduli space F2d

of K3 surfaces with polarisation of degree 2d is also of general type
for d = 52. We also apply this method to some related problems. In
Appendix A, V. Gritsenko shows how to arrive at the case d = 52 and
some others directly.

Many moduli spaces in algebraic geometry can be described as locally sym-
metric varieties, i.e. quotients of a Hermitian symmetric domain D by an
arithmetic group Γ. One method of understanding the birational geometry
of such quotients is to use modular forms for Γ to give information about
differential forms on Γ\D. In [GHS1] this method was used to prove that
the moduli space F2d of polarised K3 surfaces of degree 2d is of general type
in all but a few cases. The method works if there exists a modular form
of sufficiently low weight with sufficiently large divisor. In [GHS1], and
again in [GHS2] where a similar method was applied to certain moduli of
polarised hyperkähler manifolds, the required modular form is constructed
by quasi-pullback of the Borcherds form Φ12.

A suitable quasi-pullback exists if a combinatorial condition is satisfied:
there should exist a vector l in the root lattice E8 (or E7 in the hyperkähler
case) of square 2d, orthogonal to very few roots. This is evidently the case
if d is large, but for small d the search for such an l invites the use of a
computer. This was done in both [GHS1] and in [GHS2] by a randomised
search, relying on the large Weyl group to ensure that in practice no cases
would be missed.

Here we present an exhaustive search carried out by the first author.
For the hyperkähler case the exhaustive search confirmed the results of the
earlier randomised search, but in the K3 case one previously overlooked

1

value of d with a suitable vector was found, namely d = 52. In fact it
turned out that the randomised search had indeed found this value, and the
omission of the case d = 52 from [GHS1] happened because the output had
been interpreted incorrectly. 1

Nevertheless the following result is true and has not previously appeared
in the literature.

Theorem 1 The moduli space F2·52 of K3 surfaces with polarisation of de-
gree 104 is of general type.

The paper is organised as follows. In Section 1 we explain briefly what
the combinatorial problem is and how it arises, and give some more general
combinatorial problems of the same nature. In Section 2 we describe the
theoretical and computational methods used to solve it, along with some
other results obtained in the same way. In Appendix A, Valery Gritsenko
explains explains how the case d = 52 could have been foreseen without the
help of a computer. Some of the computer code is given in Appendix B.
Acknowledgements: Part of this paper forms part of A. Peterson’s Masters’
thesis. He would like to thank Gerard van der Geer for his supervision, and
the University of Amsterdam for the nice environment it provides. The sec-
ond author would like to thank the Fondazione Bruno Kessler in Trento and
the Max-Planck-Institut für Mathematik in Bonn for support, and Valery
Gritsenko for helpful conversations.

1 Combinatorial problems and moduli

In this section we first give a list of combinatorial questions and then explain
the geometry that originally motivated them. First we fix some terminology.
We say that L is a lattice of signature (a, b) if L ∼= Za+b and we fix a bilinear
form (,) : L × L → Z of signature (a, b). If x ∈ L we refer to (x, x) as x2

and call it the length of x. If the length of x is 2 then x is called a root. If
the roots of L generate L as an abelian group then L is called a root lattice.
A lattice L is unimodular if it is equal to its dual L∨ = Hom(L,Z) ⊇ L. We
do not assume that L is always unimodular but for simplicity we do assume
that L is even, i.e. that x2 is always an even integer.
E8 denotes the unique even unimodular positive-definite lattice of rank

8, i.e. with signature (8, 0): this is the sign convention of [Bou] and is also
used in [GHS1]. If n ∈ 2Z then 〈n〉 is the rank 1 lattice spanned by a
vector of length n, and U denotes the integral hyperbolic plane Ze + Zf
with e2 = f2 = 0 and (e, f) = 1. The symbol ⊕ denotes the orthogonal
direct sum of lattices. If Λ is a lattice and n ∈ Z, then Λ(n) denotes the
same lattice with the quadratic form multiplied by n. In particular, E8(−1)
is the negative-definite even unimodular lattice of rank 8.

1By me. – GKS

2

1.1 Combinatorial problems

Let Λ be a root lattice (usually it will be E8 or E7) and denote by R(Λ) the
set of its roots, i.e. R(Λ) = {r ∈ Λ | r2 = 2}. The combinatorial questions
arising in [GHS1] and [GHS2] are special cases of the following.

Question 1 Given integers p > q ≥ 0, what are the values of d for which
every vector of length 2d that is orthogonal to at least 2q roots is orthogonal
to at least 2p roots?

More generally we may ask about all possibilities.

Question 2 Given an even natural number 2d, what are the possible num-
bers of roots orthogonal to a vector of length 2d?

If l ∈ Λ we denote by R(l⊥) the system of roots of Λ orthogonal to l. We
denote the answer to Question 2 by P (Λ, d): that is

P (Λ, d) := {m ∈ Z | ∃l ∈ Λ l2 = 2d, #R(l⊥) = m}. (1)

Thus P (Λ, d) is a finite set of even non-negative integers. We call this the
root type of the non-negative even integer 2d for the lattice Λ

There are some immediate restrictions on what the root type can be:
for example, if Λ = E8 then the largest m that can occur is 126, when
R(l⊥) ∼= E7; but in that case l ∈ (E7)⊥E8

∼= A1, so d must be a square.
Especially for Λ = E8, the value of m0(d) = minP (E8, d) is of interest as

it determines the lowest weight of modular form obtained by quasi-pullback
(see Equation (2) below). If m0(d) = 0 then this form will not be a cusp
form, so the value of m1(d) = minP (E8, d)∩N is also significant. We should
also like to know whether this form is unique. So we also have the following
questions.

Question 3 For given d and Λ, how can we compute m0(d)?

Question 4 For given m, what is the smallest value d(m) of d for which
m1(d) ≤ m?

If in Question 4 we replace m1 by m0, then the case m = 0 asks for the
length of shortest vectors in the interior of a Weyl chamber: these are the
Weyl vectors, which are well known.

If m ∈ P (Λ, d) there is a further natural refinement.

Question 5 How many Weyl group orbits of vectors l with l2 = 2d and
#R(l⊥) = m are there?

3

Some values of m are of particular interest for geometric reasons: for in-
stance, if 14 ∈ P (E8, d) then quasi-pullback of Φ12 gives a canonical form
on F2d (see Section 1.2 below). This leads us to the following variant of
Question 1.

Question 6 For given m and Λ, what are the values of d such that m ∈
P (Λ, 2d)?

We can compute the answers to some cases of these questions by the methods
described in Section 2.

1.2 Moduli

The following construction describes several moduli spaces in algebraic ge-
ometry, including the moduli of polarised K3 surfaces.

Let L be an even lattice of signature (2, n). The Hermitian symmetric
domain associated with L is DL, one of the two connected components of

DL ∪ DL = {[w] ∈ P(L⊗ C) | w2 = 0, (w,w) > 0}.

The group O(L) of isometries of L acts on this union and we denote by
O+(L) the index 2 subgroup preserving DL. The action is discontinuous,
with finite stabilisers, so if Γ is any finite index subgroup of O+(L) then

FL(Γ) := Γ\DL

is a complex analytic space. In fact it is a quasi-projective variety, hav-
ing a minimal projective compactification, the Baily-Borel compactifica-
tion FL(Γ)∗, obtained by adding finitely many curves (called 1-dimensional
cusps) meeting at finitely many points (0-dimensional cusps). It is of-
ten preferable to work with a toroidal compactification FL(Γ), which is
a modification of FL(Γ)∗ depending on some combinatorial choices at the
0-dimensional cusps.

A modular form for Γ of weight k and character χ : Γ→ C∗ is a holomor-
phic function F on the affine cone D•L ⊂ L⊗ C such that

F (tZ) = t−kF (Z) ∀t ∈ C∗ and F (gZ) = χ(g)F (Z) ∀g ∈ Γ.

F is a cusp form if it vanishes at every cusp. For the cases we shall consider
the only possible characters are 1 and det(g), and the order of vanishing at
a cusp is an integer: see [GHS3].

The aim of [GHS1] is to show that the moduli space F2d of polarised K3
surfaces of degree 2d is of general type for most values of d ∈ N. Using the
Torelli theorem for K3 surfaces one can show that

F2d = FL2d
(Õ

+
(L2d)),

4

where Õ
+

(L) is the finite index subgroup of O+(L) that acts trivially on the
discriminant group L∨/L and

L2d := 2U ⊕ 2E8(−1)⊕ 〈−2d〉.

Modular forms of suitable weight can be interpreted as differential forms on
the moduli space provided that they have sufficiently large divisor. There-
fore, to prove that the moduli space is of general type it is enough to give a
sufficient supply of such modular forms. There are several technical difficul-
ties here, one of which is the presence of singularities. A sufficient condition,
however, was given in [GHS1].

Theorem 2 Suppose that n ≥ 9 and that there exists a nonzero cusp form
Fa of weight a < n and character χ ≡ 1 or χ(g) = det(g), vanishing along
any divisor H ⊂ DL fixed by reflections in Γ. Then FL(Γ) is of general type.

The form Fa is then used to give many forms of high weight with suf-
ficiently large divisor, of the form F = F k

a F(n−a)k, and these in turn give
pluricanonical forms on a smooth model of FL(Γ).

To apply this in specific cases such as F2d one must therefore construct Fa.
The method used in [GHS1] to do this is quasi-pullback of the Borcherds
form Φ12. This construction first appeared in [BKPS]. The Borcherds form
itself was constructed in [Bor] by means of a product expansion, whereby
its divisor is evident. It is a modular form (not a cusp form) of weight 12
and character det for the group O+(II2,26). The lattice II2,26 of signature
(2, 26) is 2U ⊕ N(−1), where N is any one of the 24 Niemeier lattices,
positive definite unimodular lattices of rank 24: see [CS]. For our purposes
the correct choice of N is 3E8. A choice of a (not necessarily primitive)
vector l ∈ E8 of length 2d gives an embedding

L2d = 2U ⊕ 2E8(−1)⊕ 〈−2d〉 ↪→ II2,26 = 2U ⊕ 3E8(−1)

which in turn gives an embedding

D•L2d
↪→ D•II2,26

.

Denote the images of these embeddings by L2d[l] and D•[l] respectively.
If r ∈ L is a root it determines a Heegner divisor H•r ⊂ D•L, given by

the equation (Z, r) = 0. The Borcherds form vanishes (to order 1) along all
the Heegner divisors for L = II2,26 and in particular its restriction to D•[l]
vanishes, as needed to apply Theorem 2. However, Φ12|D•[l] may well be
zero, since if r is a root of II2,26 orthogonal to L2d[l] then D•[l] ⊂ H•r .

Instead we take the quasi-pullback, simply dividing by the equation of
each such H•r , noting that H•−r = H•r . We put

Rl = {r ∈ R(II2,26) | (r, L2d[l]) = 0} ∼= {r ∈ R(E8) | (r, l) = 0}

5

and define the quasi-pullback to be

F [l] =
Φ12∏

±r∈Rl
(r, Z)

∣∣∣∣∣
D•[l]

. (2)

This is a nonzero modular form, and one can show that it is a cusp form pro-
vided Rl 6= ∅. It vanishes along all the Heegner divisors fixed by reflections
in O+(L2d).

The weight, however, goes up by 1 every time we divide, so the weight of
F [l] is 12 + 1

2#Rl. We can therefore show that F2d is of general type if we
can find an l ∈ E8 of length 2d with 2 ≤ #Rl < 2(n− 12) = 14. Moreover,
if we can find a cusp form of weight precisely n = 19 then, by a result of
Freitag [Fr], F2d has pg > 0 and in particular is not uniruled.

This leads us to Question 1, with q = 1 and p = 7 or p = 8, for Λ = E8.
In [GHS2], similar considerations about the moduli of some hyperkähler
manifolds with a certain type of polarisation lead to Question 1 with q = 1
and p = 6 or p = 7, for Λ = E7.

2 Solving the combinatorial problems

The specific combinatorial problems encountered in [GHS1] and [GHS2] can
be solved in principle by first bounding d. It is clear that for sufficiently
large d an l will exist orthogonal to a number of roots in the required range:
indeed, for sufficiently large d we can find l orthogonal to exactly two roots.
An explicit bound, followed by a finite calculation, will solve the problem.
Neither is entirely straightforward, though. In [GHS1] a counting argument
is used to show that an l ∈ E8 with l2 = 2d, orthogonal to at least two and
at most 12 roots, exists (and therefore F2d is of general type) unless

28NE6(2d) + 63ND6(2d) ≥ 4NE7(2d), (3)

where NL(2d) is the number of ways of representing 2d by the quadratic
form L. The inequality (3) certainly fails for large d, but to obtain an
effective bound on d one must bound NE6(2d) and ND6(2d) from above and
NE7(2d) from below by explicit functions. This is a non-trivial problem
in analytic number theory but it can be done, and after some refinements
it gives a reasonable bound of around d = 150. It would be possible to
resort to direct computation at that point, but there is no need yet. Some
integers in that range are excluded from the list of possibly non-general
type polarisations because the inequality (3) (or another similar inequality)
in fact fails. Others can be excluded by inspection, actually producing a
vector l by guessing the root system R(l⊥E8

). The root systems used in this
way in [GHS1] were 4A1, 2A1 ⊕ A2, A3 and A1 ⊕ A2. The root systems
3A1 ⊕A2 and 2A2 were not tried: see Appendix A.

6

In [GHS2] a similar procedure was used, although there is an extra dif-
ficulty caused by the opposite parity of the rank: working in E7, one needs
to estimate NR(2d) from above for some odd-rank root systems R, and this
problem is not so well studied as in the even rank case.

In either case, eventually one is left with a residual list of values of d
for which the problem has not been settled. In [GHS1] it consists of most
integers between 15 and 60 (for very small d the moduli space is known to
be unirational). The residual problem in the hyperkähler case considered in
[GHS2] is much smaller.

Now, if we want to be (reasonably) sure that no cases have been missed,
we do need a computer. Moreover, the methods we now use to solve this
problem can also be used to give answers to question such as those posed in
Section 1.1.

2.1 Algorithms

We begin by representing E8 in the usual way, as the set of points l =
(l1, . . . , l8) ∈ R8 such that the li are either all integers or all strict half-
integers (i.e. either li ∈ Z for all i or 2li is an odd integer for all i) and∑
li ∈ 2Z, with the standard Euclidean quadratic form on R8.
We need a very rough upper bound on NE8(2d), because we want to know

whether NE8(2d) is small enough to allow a brute-force search for l ∈ E8

with l2 = 2d having 2 ≤ #R(l⊥) ≤ 12. We can easily find such a bound
by noting that if l2 = 2d then each of the 8 components li of l must have
l2i ≤ 2d, so −

√
2d ≤ li ≤

√
2d, and must be a half-integer: that gives

NE8(2d) ≤ (2b2
√

2dc+ 1)8 (4)

For d = 52, this bound is about 8 · 1012.
If we are a bit more precise, and note that the components of l are either

all integers, or all proper (i.e. non-integer) half-integers, we save a factor
27, giving a bound of about 5 · 1010. This is within reach of a brute-force
search, but it is still high, especially considering that we have to do some
substantial work for each candidate (compute the inner product with 240
different vectors2).

Thus an exhaustive search of all vectors in E8 of length ≤ 60 is not
computationally impossible but it would be cumbersome and would not
extend to even slightly larger problems such as other cases of Question 1.
The Weyl group W (E8) has order 214 · 35 · 52 · 7 = 696729600 and should be
used to reduce the size of the problem. There are two approaches to doing
this.

2We can be a lot more efficient than that, and skip most of these inner products, but
even then we still have to compute dozens of inner products per candidate vector.

7

A. Randomised search. This is what was actually done in [GHS1] and
[GHS2]. Since the non-existence of a vector l gives no information about
the moduli space, we are willing to accept a very small probability of failing
to detect such a vector. We therefore choose a large number of vectors of
length less than 2 · 61 at random and expect that, as the Weyl group orbits
are large, every orbit will be represented.

This approach worked very fast, using only a laptop computer and imme-
diately available software (Maple). A search of twenty thousand randomly
chosen vectors found all the pairs (d,#R(l⊥)) in the ranges wanted within
the first two thousand iterations, in approximately two minutes. That is
fairly convincing practical evidence that there are no more. Unfortunately
the output was then mistranscribed, leading to the omission of the case
d = 52 and the erroneous (but not really misleading) statement in [GHS1]
that “an extensive computer search for vectors orthogonal to at least 2 and
at most 14 roots for other d has not found any”.

It is noteworthy that a similar search in the case Λ = E7 did find some
cases not discovered analytically, and for which a constructive method of
finding l is still not known. In other words, some cases of the main theorem
of [GHS2] still have only a computer proof, although once l has been found
it is easy enough to verify its properties by hand.

It is not so easy to estimate the probability a priori that a Weyl orbit
might be missed. The Weyl group of R(l⊥), which is a subgroup of the
Weyl group of E8, obviously stabilises l and has order no more than 24 if
#R(l⊥) ≤ 12, but in principle the stabiliser of l in W (E8) could be much
larger. In that case the Weyl group orbit would be small and more easily
missed. In practice the randomised method seems to find all the orbits.

B. Exhaustive search. The first author organised an exhaustive search,
exploiting the Weyl group by searching a fundamental domain for the sub-
group H < W (E8) generated by permutations of the eight components li
and sign changes of an even number of components. This subgroup H has
size 27 · 8!, so index 135 in W (E8): it gives us most of the symmetries, with
very little effort.

We say that l ∈ E8 is in normal form if its components are all nonneg-
ative (except possibly the first, l1) and the squares of the components are
nondecreasing from low index to high index. By acting with an element
of H, we can translate any l ∈ E8 to one in normal form: first permute
the components, so their squares are in order; then make them all (but l1)
nonnegative, by changing the sign of every negative component (except l1),
and flipping the sign of l1 once for every such change.

It is straightforward to enumerate the elements of length 2d in E8 that
are in normal form. For brevity, we will describe this only for the ones
having integer components (one can get the ones with proper half-integer
components in a very similar manner).

8

Step 1. For every index i 6= 1, in descending order, we consider all the
possible values of li: we require li to be a non-negative integer such that

• its square, added to the sum of the squares of the coordinates that
have been chosen (i.e. the l2j with j > i), does not exceed 2d (otherwise
l2 > 2d, for any further choice of coordinates); and

• (unless i = 8) it is not greater than li+1 (otherwise l would not be in
normal form).

In other words, we let li take any value s ∈ Z such that

0 ≤ s ≤ min
{
li+1,

√
2d−

∑
j>i

l2j

}
. (5)

Step 2. See if 2d −
∑8

j=2 l
2
j is a perfect square m2. If so, let l1 take values

−m and m; if not, discard this choice of coordinates.
Step 3. Check whether the l so obtained are in E8, i.e. whether

∑8
j=1 lj ∈ 2Z.

Discard any that are not in E8.
We must then filter these enumerated l ∈ E8 to find the ones with #R(l⊥)

in the required range (2 ≤ #R(l⊥) ≤ 12 for the case considered in [GHS1]):
this part of the procedure is exactly the same as for the randomised version.
Since the roots come in pairs ±r it is enough to take inner products with
a prepared list of positive roots (120 or them), and of course we can stop
examining l as soon as we find a seventh pair of roots orthogonal to it.

The first author implemented this search in a high-level programming
language (Haskell). Without spending much time optimising, this runs fast
enough (a second or so on commercial hardware, for each of the low values
of d we are interested in, namely d ≤ 60). The partial use of the symmetries
of E8 is crucial, though: to go through all the vectors of given length 2d
would have taken weeks or months for a single value of d.

This program discovered the lost case d = 52 and therefore Theorem 1.
A variant of it for E7 reconfirmed the results obtained by the randomised
method in [GHS2]. The code used for the E8 case is given in Appendix B.

2.2 Further results

The exhaustive algorithm (B) from Section 2.1 can be modified to compute,
in reasonable time, answers to some of the questions from Section 1.1 for
small values of the parameters. We investigated Question 2 and and Ques-
tion 6 for small m and d with Λ = E7 and Λ = E8. For Λ = E8 we also
investigated Question 5 for the particular case m = 14, corresponding to
canonical forms on F2d.

Specifically, we have so far computed the root type P (Λ, 2d) for Λ = E7

and Λ = E8 and d ≤ 150, and the first part of the root type (whether
m ∈ P (Λ, 2d) for 2 ≤ m ≤ 20, say) for larger d, up to about 300 (further

9

for some values of d). This part of the computation is fairly fast and only
minor changes to the program are needed.

A little more work, and more computer time, is needed for Question 5. We
must work now with W (E8), not with H, and we first compute a transversal
for W (E8) : H (representatives for each of the 135 left cosets of H) and then
reduce each of the 135 translates of each l to standard form before comparing
them.

The outcome counts the number of ways of obtaining a canonical form
on F2d by quasi-pullback of Φ12. There is no assurance either that the forms
so obtained are linearly independent or that there are not more canonical
forms that do not arise this way. The results are nevertheless intriguingly
unpredictable. There are no such vectors for d < 40. There is such a vector
for d = 40, and also for d = 42, 43, 48 (two orbits), 49, 51–54, 55 and 56
(two orbits each), 57 and 59. There is no such vector for d = 60, but for
61 there are three orbits and thereafter the number of orbits drifts upwards
irregularly. Without further comment, we tabulate below the number ν14 of
W (E8) orbits of length 2d vectors in E8 orthogonal to exactly 14 roots for
61 ≤ d ≤ 150.

d ν14 d ν14 d ν14 d ν14 d ν14 d ν14

61 3 76 1 91 5 106 2 121 4 136 8
62 1 77 2 92 3 107 6 122 5 137 7
63 2 78 1 93 2 108 3 124 5 138 5
64 2 79 4 94 4 109 6 124 3 139 11
65 0 80 2 95 3 110 0 125 6 140 5
66 2 81 2 96 4 111 6 126 8 141 6
67 1 82 2 97 2 112 6 127 6 142 8
68 2 83 3 98 3 113 5 128 6 143 3
69 2 84 5 99 2 114 3 129 7 144 8
70 1 85 4 100 4 115 7 130 4 145 8
71 2 86 4 101 5 116 6 131 9 146 7
72 2 87 3 102 5 117 2 132 2 147 11
73 1 88 2 103 5 118 6 133 8 148 5
74 3 89 3 104 4 119 9 134 9 149 10
75 3 90 2 105 4 120 8 135 5 150 6

A Appendix: d = 46, 50, 52, 54, 57, by V. Grit-
senko

In this appendix we find a vector l ∈ E8 of square 2d orthogonal to exactly
12 roots in E8, where d is as in the title of the appendix. (See [GHS1]
and [GHS2] for the general context of this question.) We use below the
combinatorics of the Dynkin diagram of E8. We take the Coxeter basis of

10

simple roots in E8 as in [Bou]:

tα1
-tα3

-tα4

?t
α2

-tα5
-tα6

-tα7
-tα8

where (e1, . . . , e8) is a Euclidean basis in the lattice Z8 and

α1 =
1
2

(e1 + e8)− 1
2

(e2 + e3 + e4 + e5 + e6 + e7),

α2 = e1 + e2, αk = ek−1 − ek−2 (3 ≤ k ≤ 8).

The lattice E8 contains 240 roots. We recall that any root is a sum of simple
roots with integral coefficients of the same sign. The fundamental weights
ωj of E8 form the dual basis in E8 = E∨8 , so (αi, ωj) = δij . The formulae
for the weights are given in [Bou, Tabl. VII]. The Cartan matrix of the dual
basis is

((ωi, ωj)) =



4 5 7 10 8 6 4 2
5 8 10 15 12 9 6 3
7 10 14 20 16 12 8 4
10 15 20 30 24 18 12 6
8 12 16 24 20 15 10 5
6 9 12 18 15 12 8 4
4 6 8 12 10 8 6 3
2 3 4 6 5 4 3 2


. (6)

We consider the two following cases when the orthogonal complement of a
vector l in E8 contains exactly 12 roots: R(l⊥E8

) = A2 ⊕ 3A1 or A2 ⊕ A2.
(We note that #R(A1) = 2 and #R(A2) = 6.)

I: d = 46, 50, 54, 57. There are four possible choices of the subsystem
A2⊕3A1 inside the Dynkin diagram of E8 according to the choices of simple
roots of A2, namely A(1,3)

2 = 〈α1, α3〉, A(2,4)
2 = 〈α2, α4〉, A(5,6)

2 = 〈α5, α6〉 or
A

(7,8)
2 = 〈α7, α8〉. If A2 is fixed then the three pairwise orthogonal copies of

A1 in the Dynkin diagram are defined automatically.
First, we consider A(5,6)

2 = 〈α5, α6〉. Then 3A(5,6)
1 = 〈α2〉 ⊕ 〈α3〉 ⊕ 〈α8〉.

Moreover A(5,6)
2 ⊕ 3A(5,6)

1 is the root system of the orthogonal complement
of the vector l5,6 = ω1 +ω4 +ω7 ∈ E8. In fact, if r =

∑8
i=1 xiαi is a positive

root (xi ≥ 0) then (r, l5,6) = x1 + x4 + x7 = 0. Therefore x1 = x4 = x7 = 0
and r belongs to A

(5,6)
2 ⊕ 3A(5,6)

1 . Using the Cartan matrix (6) we obtain
that l25,6 = 2 · 46. Doing similar calculations with the other three copies of
A2 given above we find

l1,3 = ω4 + ω6 + ω8, l2,4 = ω3 + ω5 + ω7, l7,8 = ω1 + ω4 + ω6

11

with l21,3 = 2 · 50, l22,4 = 2 · 54 and l27,8 = 2 · 57.

II: d = 52. We consider the sublattice M = A2⊕A2 = 〈α3, α4〉⊕〈α6, α7〉 in
E8. Then M is the root system of the orthogonal complement of the vector
lM = ω1 + ω2 + ω5 + ω8 with l2M = 2 · 52.

V.A. Gritsenko, Université Lille 1, Laboratoire Paul Painlevé, F-59655 Vil-
leneuve d’Ascq, Cedex, France
valery.gritsenko@math.univ-lille1.fr

B Appendix: Computer code

Below is the code used to check the combinatorial problem from [GHS1],
and thus to find Theorem 1. The programs were written in the functional
programming language Haskell (http://www.haskell.org). The web page
http://people.bath.ac.uk/masgks/Rootcounts contains links to further
code and output.

{-# LANGUAGE TypeSynonymInstances,NoImplicitPrelude #-}
module E8 where

import qualified Algebra.Ring
import Control.Applicative ((<$>),(<*>))
import qualified Data.Vector as V
import Data.List (intercalate,nubBy)
import qualified Data.MemoCombinators as Memo
import Data.Ratio

(Ratio,numerator,denominator,(%))
import qualified Data.Set as Set
import Data.Typeable (Typeable)
import Math.Combinatorics.Species

(ksubsets,set,ofSize,enumerate,Set(getSet,Set),Prod(Prod))
import MyPrelude hiding (numerator,denominator,(%))
import qualified Prelude
import System.Environment (getArgs)
import qualified Algebra.Additive

-- Some types and helper functions for dealing with
-- "vectors" (implemented as arrays of rational numbers).

type Coordinate
= Ratio Int

type Vector
= V.Vector Coordinate

12

-- Inner product.
inp :: Vector -> Vector -> Coordinate
inp a b = V.sum (V.zipWith (*) a b)

half :: Coordinate
half = 1 % 2

-- Product of scalar with vector.
l :: Coordinate -> Vector -> Vector
l = V.map . (*)

instance Algebra.Additive.C Vector where
(+) = V.zipWith (+)
(-) = V.zipWith (-)
negate = l (-1)
zero = V.fromList [0,0,0,0,0,0,0,0]

-- Some data regarding E_8

delta :: (Eq a,Algebra.Ring.C b) => a -> a -> b
delta i j = if i == j then 1 else 0

-- ’e i’ gives the i’th standard basis vector of R_8.
e :: Int -> Vector
e i = V.fromList $ map (delta i) [1 .. 8]

-- This is the usual integral basis of the lattice E_8.
basis :: [Vector]
basis =

[
l half $ (e 1 + e 8) - (sum $ map e [2 .. 7])

, e 1 + e 2
] ++ map (\ i -> e (i - 1) - e (i - 2)) [3 .. 8]

roots :: [Vector]
roots = d8 ++ x118 where

d8 = concatMap ((\ [a,b] ->
[a + b,a - b,b - a,negate a - b]) . map e . getSet) $
enumerate (ksubsets 2) [1 .. 8]

x118 = map (\ (Prod (Set neg) (Set pos)) ->
l half $ sum (map (negate . e) neg) + sum (map e pos)) $
enumerate ((set ‘ofSize‘ even) * set) [1 .. 8]

13

-- ’posRoots’ contains exactly one of every pair
-- (a,-a) of roots.
posRoots :: [Vector]
posRoots = nubBy (\ a b -> a == b || a == negate b) roots

-- Generate elements l of the E_8 lattice with the property
-- that l^2 = 2 d. We need only one element of each orbit
-- under the action of the Weyl group. In particular, we
-- may assume that all coordinates but one (say, the first)
-- are nonnegative, and that the successive coordinates are
-- nondecreasing. We generate exactly one element of each
-- H-orbit, where H is the subgroup of permutations and even
-- sign changes.

gen :: Int -> [Vector]
gen d = genInt d ++ genHalfInt d

genInt :: Int -> [Vector]
genInt d = map (V.fromList . map fromIntegral) $ go [] 0 where

-- Given the length of a partial vector, compute the maximal
-- new coordinate which does not increase the length of the
-- vector beyond 2 d.
maxCoord :: Int -> Int
maxCoord s = floor (sqrt (fromIntegral $ dD - s) :: Double)

dD :: Int
dD = 2 * d

-- We maintain a list of coordinates chosen so far, every
-- one together with the sum of squares of the coordinates
-- up to and including that coordinate.
-- The generated vectors are elements of E_8, because the
-- sum of the squares of their components is even, hence
-- the sum of the components as well.
go :: [(Int,Int)] -> Int -> [[Int]]
-- We have fixed all eight coordinates.
go fixed@((_,sq) : ps) 8
-- The vector has the right length; add the relevant
-- solutions (using ’vary’), and continue searching.
| sq == dD = vary (map fst fixed) ++ lower ps 7
-- The vector has the wrong length, continue searching.
| otherwise = lower ps 7

go fixed n = let
(m,s) = case fixed of

14

[] -> (maxCoord 0,0)
(c,s) : _ -> (Prelude.min (maxCoord s) c,s)

in
go ((m,s + m ^ 2) : fixed) (n + 1)

-- Lexicographically decrease the given vector, and continue
-- the generation from there.
lower :: [(Int,Int)] -> Int -> [[Int]]
lower [] _ = []
lower ((x,s) : ps) n
| x == 0 = lower ps (n - 1)
| otherwise = go ((x - 1,s + 1 - 2 * x) : ps) n

vary :: [Int] -> [[Int]]
vary (x : xs) = if x == 0
then [0 : xs]
else [x : xs,negate x : xs]

-- For vectors with all coordinates half-integers, we work
-- with the doubles of the coordinates.
genHalfInt :: Int -> [Vector]
genHalfInt d = map (V.fromList . map (% 2)) $ go [] 0 where

maxCoord :: Int -> Int
maxCoord = Memo.integral m where
m s = f $ floor (sqrt (fromIntegral $ dE - s) :: Double)
f k = if odd k then k else k - 1

dE :: Int
dE = 8 * d

go :: [(Int,Int)] -> Int -> [[Int]]
go fixed@((_,sq) : ps) 8
| sq == dE = filter e8 (vary $ map fst fixed)

++ lower ps 7
| otherwise = lower ps 7

go fixed n = let
(m,s) = case fixed of
[] -> (maxCoord 0,0)
(c,s) : _ -> (Prelude.min (maxCoord s) c,s)

in
go ((m,s + m ^ 2) : fixed) (n + 1)

-- Decides whether a given vector is an element of E_8
e8 :: [Int] -> Bool

15

e8 = (== 0) . flip rem 4 . sum

lower :: [(Int,Int)] -> Int -> [[Int]]
lower [] _ = []
lower ((x,s) : ps) n
| x == 1 = lower ps (n - 1)
| otherwise = go ((x - 2,s + 4 - 4 * x) : ps) n

vary :: [Int] -> [[Int]]
vary (x : xs) = [x : xs,negate x : xs]

References

[Bor] R.E. Borcherds, Automorphic forms on Os+2,2(R) and infinite prod-
ucts. Invent. Math. 120 (1995), 161–213.

[BKPS] R.E. Borcherds, L. Katzarkov, T. Pantev, N.I. Shepherd-Barron,
Families of K3 surfaces. J. Algebraic Geom. 7 (1998), 183–193.

[Bou] N. Bourbaki, Groupes et algèbres de Lie. Chapitres IV à VI.
Éléments de mathématique. Fasc. XXXIV. Actualités Scientifiques
et Industrielles, No. 1337 Hermann, Paris, 1968.

[CS] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups.
Grundlehren der mathematischen Wissenschaften 290. Springer-
Verlag, New York, 1988.

[GHS1] V. Gritsenko, K. Hulek & G.K. Sankaran, The Kodaira dimension
of the moduli of K3 surfaces. Invent. Math. 169 (2007), 519–567.

[GHS2] V. Gritsenko, K. Hulek & G.K. Sankaran, Moduli spaces of irre-
ducible symplectic manifolds. Compos. Math. 146 (2010), 404–434.

[GHS3] V. Gritsenko, K. Hulek & G.K. Sankaran, Abelianisation of or-
thogonal groups and the fundamental group of modular varieties. J.
Algebra 322 (2009), 463–478.

[Fr] E. Freitag, Siegelsche Modulfunktionen. Grundlehren der mathema-
tischen Wissenschaften 254. Springer-Verlag, Berlin, 1983.

A. Peterson, Korteweg de Vries Instituut voor Wiskunde, Universiteit van
Amsterdam, P.O. Box 9424, 1090 GE Amsterdam, The Netherlands
ariep@xs4all.nl

G.K. Sankaran, Department of Mathematical Sciences, University of Bath,
Bath BA2 7AY, England
gks@maths.bath.ac.uk

16

