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Abstract 

An extensive programme of work has been undertaken to assess the potential benefits of 
modulating the properties of both engine and transmission lubricating oils to achieve lower fuel 
consumption. The performance of the engine lubricants was evaluated on a production Diesel 
engine on a transient test bed. The main engine lubricating oil viscometric properties investigated 
were cold cranking shear (CCS), kinematic viscosity at 100°C (KV100) and high temperature 
high shear (HTHS). Up to 3.5% fuel economy improvement was observed over the New 
European Drive Cycle (NEDC), relative to current production lubricants. A model relating fuel 
consumption to oil properties was developed and verified using an experimental programme 
conducted on a chassis dynamometer. 

In a related study, the effects of changes in transmission lubricant properties were evaluated 
using a standard five speed manual transmission fitted to a light goods vehicle and tested on a 
chassis dynamometer. The lubricant was heated using an external energy source to simulate the 
effect of a more rapid warm up, this reduced the viscosity of the lubricant and a fuel consumption 
improvement of 0.7% was demonstrated over the NEDC from a 25°C start. In addition, a lower 
viscosity lubricant blend was evaluated, which delivered a 1% improvement in fuel economy 
over the standard blend from a cold start, and a further 0.4% improvement if heated. 



List of Symbols and Units


ACEA Association of European car 
manufacturers 

BSFC Brake Specific Fuel Consumption 
(g/kWh) 

CCS Cold Cranking Simulator ­ a device used 
to measure the apparent viscosity of oils 
under cold (between ­5 and ­35°C) 
cranking conditions representative of 
those found within engines, the 
abbreviation CCS is commonly used to 
prefix the resulting viscosity value and 
often referred to as ‘cold cranking shear’ 
(Cp) 

CO Carbon Monoxide 
CO2 Carbon Dioxide 
DoE Design of Experiments 
DTI Department of Trade and Industry 
ECE Also known as UDC – Urban Drive Cycle 
ECU Engine Control Unit 
EU European Union 
EUDC Extra Urban Drive Cycle 
EURO3 European emissions limit January 2001 
FC Fuel Consumption 

of 120g/km by 2012 proposed by the association 
of European car manufacturers (ACEA) [2], to 
100g/km by 2020 outlined in the King review in 
March 2008 [3]. However, with the adoption of 
the new car CO2 regulation within the EU in 
December 2008, reducing the fleet average target 
to 130g/km by 2015, the automotive industry 
faces a stiff challenge in the coming years. 
Manufactures which fail to achieve the necessary 
CO2 reductions will face substantial penalties of 
up to 95 euro per excess gram per vehicle 
produced [4]. An even more stringent target of 
95g/km has been earmarked for 2020 dependant 
on the findings of an impact assessment [4]. 
In addition to proposed efficiency savings, an 
extra 10g/km reduction in CO2 is required by 
2015 through the use of ‘complementary 
measures’ [4] such as the use of biofuels and 
wider adoption of ‘eco­driving’ principles. 
The average UK new car CO2 emissions over the 
period 1997­2006 is shown in Figure 1 and these 
data are further expanded in Table 1. 
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1997 2006 
Average new 
car 
CO2 emissions 

189.8 g/km 167.2 g/km 
(­11.9%) 

New car sales 2,170,725 2,344,864 
(+8.0%) 

CO2 emissions 
­ all cars 

72.2 Mt 68.7 Mt 
(­4.8%) 

Total UK on­

road cars 
25.6 million 29.9 million 

(+16.8%) 

NOx Oxides of Nitrogen 
PM Particulate Matter 
THC Total Hydrocarbons 

Introduction 
The average CO2 for new UK car registrations 
during 2009 was 158g/km [1], down from 190g/km 
in 1997. CO2 reduction proposals and 
recommendations have changed frequently over 
the last few years ranging from a voluntary target 

Table 1 ­ UK car trends 1997­2006 [1] 



Although the total vehicle parc has increased over 
the period 1997­2006 by 16.8%, a combination of 
CO2 levels from new car registrations falling by 
11.9%, the increasing proportion of diesel­powered 
vehicles on the road and the use of alternative fuels 
has resulted in an overall reduction in CO2 

emissions from all cars of 4.8% [1]. There is a 
direct correlation between CO2 production and 
vehicle weight. Regulatory requirements relating to 
crashworthiness and pollution control, combined 
with a consumer appetite for larger, more powerful 
cars, have generally had an adverse effect on CO2 

emissions. Interestingly, a study conducted by 
Ricardo Consulting Engineers in 2005 concluded 
that UK CO2 savings from cars have been 
countered by up to 50% as a result of vehicle 
weight increases [5]. 

Reducing the carbon footprint of automotive 
powertrains is a key R&D focus with many 
different avenues being explored to reduce fuel 
consumption (FC). One area that has received 
relatively little attention in open literature is the 
potential to re­formulate the lubricating oil and/or 
to improve thermal management of the lubricant to 
achieve low fuel consumption. The main 
opportunity here is for improvements concerning 
the engine lubricating oil. Shayler et al [6] show 
that engine oil viscometrics have a direct effect on 
engine friction but the impact on fuel usage is not 
presented. There are also potential savings from 
modifications to the transmission lubrication 
system. In a paper by Farrant et al [7], a thermal 
model was developed that could simulate the 
baseline powertrain and predict the potential 
improvements of alternative transmission thermal 
management strategies. The model, based on a 
naturally aspirated, 3.0L V6 engine with six­speed 
automatic transmission, indicated that a potential 
3% improvement in fuel economy could be 
achieved over the NEDC for a constant 
transmission oil temperature of 94°C compared to 
a cold start from a 25°C ambient temperature. 
Matsuzaki et al [8] showed that reduced viscosity 
transmission oil can reduce friction by 10­20% in 

bench tests using a six­speed manual transmission 
operating at 2000rpm, but did not comment on 
the effect on whole vehicle performance. 
Kurashina et al [9] demonstrated that a 30% 
reduction in the kinematic viscosity of a manual 
transmission lubricant improved fuel 
consumption by around 1% over the NEDC, 
although no details were given as to the vehicle or 
transmission used. 

This paper presents the results of a large 
experimental investigation to assess the potential 
benefits of modulating the properties of both 
diesel engine and transmission lubricating oil to 
achieve lower fuel consumption. The paper is 
divided into two parts. Part 1 considers the effect 
of lubricating oil viscometrics on the fuel 
consumption of a current Euro3 diesel engine 
while Part 2 investigates changes to the 
transmission oil properties, which were assessed 
on­vehicle. 

Part 1 – Modulation of Lubricating Oil 
Properties 

This part of the research programme was carried 
out in 2 phases. Phase 1 investigated the main 
viscometric properties that were considered to 
influence fuel consumption. Phase 2 was 
concerned with fuel consumption influences due 
to different additives with the same base oil. This 

nd 
2 activity will be reported in a later publication. 
The three main lubricating oil viscometric 
properties investigated were cold cranking shear 
(CCS), kinematic viscosity at 100°C (KV100) 
and high temperature high shear (HTHS). A brief 
description is given below. 

Cold Cranking Shear (CCS) 
CCS is measured using a Cold Cranking 
Simulator Test and provides a measure of the 
viscosity of the lubricating oil under conditions of 
low temperature and high shear rates. In general, 
a reduction in the CCS value of the lubrication oil 
lowers the viscosity under cold start conditions 



and results in reduced engine friction and, in turn, 
lower fuel consumption. 

High Temperature High Shear (HTHS) 
HTHS is a measure of the lubricant’s minimum 
dynamic viscosity when subjected to high 
temperature and shear conditions similar to those 
typically experienced during in­engine use. A 
higher HTHS value would suggest a higher 
dynamic viscosity within engine bearings resulting 
in increased fuel consumption but potentially 
reduced wear. 

Kinematic Viscosity at 100°C (KV100) 
KV100 gives the lubricating oil’s resistance to shear 
or flow caused by intermolecular friction exerted 
when layers of molecules within the fluid attempt 
to slide over past each other, measured at 100°C. 
Specifically, the kinematic viscosity is the ratio of 
dynamic viscosity to density. The greater the KV100 

value, the greater the fluid’s resistance to flow 
resulting in increased engine friction and fuel 
consumption. 

The experimental design is shown in Table 2. 
Initially, it was intended to only vary oil properties 
within generally accepted ranges seen in 
production oils but an additional oil was 
formulated with an exceptionally low CCS value in 
order to assess and quantify the impact this 
extreme would have on drive cycle fuel 
consumption. 

Oil 
# 

Oil Grade CCS 
@ ­
25°C 
(cP) 

KV100 

(cSt) 
HTHS 
@ 

150°C 
(cP) 

1 SAE 10W­40 6600 14.20 3.9 
2 SAE 5W­40 4774 14.93 3.9 
3 SAE 10W­20 6601 8.20 2.71 
4 SAE 5W­20 4800 8.55 2.70 
5 SAE 0W­30 196 9.57 2.69 

Table 2 ­ Oil Properties – DoE design 

Test procedure 
The experimental study was performed on a 
modern 2.4l diesel engine mounted on a dynamic 
AC engine dynamometer. The New European 
Drive Cycle (NEDC) was the experimental datum 
with a thermally stable start condition of 
approximately 20°C. The experimental procedure 
was developed taking into account the influence 
of oil aging on fuel economy. Fuel consumption 
was measured via a carbon balance using an 
Horiba MEXA 7000 exhaust gas analyser. 
Fuel consumption was evaluated with both fresh 
and aged engine oil to allow the effect of initial 
ageing mechanisms on vehicle fuel consumption 
to be considered. 

Results 
The fresh and aged oil properties are shown in 
Table 3. It should be noted that Table 2 outlines 
the DoE design values with fresh oil 
measurements carried out at BP’s own labs for 
formulation purposes. Testing of used oil was 
outsourced with the fresh oil analysis repeated to 
ensure that fresh and aged viscometric values 
were comparable for modelling purposes. The 
discrepancies between values in Tables 2 and 3 
are due to lab­to­lab variability. 
Preliminary trials had confirmed that 30 hours of 
aging were required to stabilise the oils such that 
repeatable and consistent results were obtained. 
In general the oils held their grade quite well 
during testing. The notable exception to this is oil 
5, which although blended aggressively to give 
superior fuel consumption, was unable to 
maintain this performance over the test 
programme. The CCS in particular rose by over 
100% during the 30 hours of testing. 



Oil Property 

Oil # Oil Condition 

CCS 
@ 

­30°C 
(cP) 

HTHS 
@ 

150°C 
(cP) 

KV100 

@ 
100°C 
(cSt) 

1 

Fresh 

Aged 

Change (%) 

7180 

7100 

­1.1 

4.01 

3.71 

­7.5 

14.53 

13.61 

­6.3 

2 

Fresh 

Aged 

Change (%) 

4720 

4280 

­9.3 

4.07 

3.72 

­8.6 

15.33 

14.32 

­6.6 

3 

Fresh 

Aged 

Change (%) 

7340 

7040 

­4.1 

2.89 

2.73 

­5.5 

8.12 

8.28 

2.0 

4 

Fresh 

Aged 

Change (%) 

4720 

4350 

­7.8 

2.77 

2.75 

­0.7 

8.45 

8.41 

­0.5 

5 

Fresh 

Aged 

Change (%) 

657 

1330 

102.4 

2.69 

3.43 

27.5 

9.57 

12.18 

27.3 

Table 3 ­ Oil Sample Analysis 

Figure 2 shows the average BSFC for all 5 oil 
formulations over the whole NEDC drive cycle 
with error bars showing the 95% confidence 
interval of multiple repeat tests. Of the 4 oils 
falling within generally accepted viscometrics (oils 
1­4), the oil with low values of CCS, KV100 and 
HTHS performed the best both when fresh and 
when aged. The high values of CCS, KV100 and 
HTHS seen in oil 1 resulted in approximately a 
10g/kWh (3.2%) increase in BSFC compared with 
oil 4 regardless of oil age. 

Oil 5 exhibited a much reduced BSFC when fresh 
compared with the other oils manifesting as a 
3.2% reduction in BSFC over oil 4. However, oil 
5 did not display the characteristic reduction in 
fuel consumption normally seen with increasing 
oil age, instead demonstrating a marked rise. The 
reason for this is evident in Table 3. CCS, HTHS 
and KV100 values for oil 5 significantly increased 
with age by 102.4, 27.5 and 27.3%, respectively, 
in agreement with the observed increase in BSFC, 
thus adding confidence in this trend as a real 
result. This trend of increasing CCS, HTHS and 
KV100 values with age was likely to be caused by 
lighter, more volatile organic compounds within 
the oil evaporating off over time and causing the 
oil to thicken. Oil 5 would be particularly 
susceptible to this effect due to it containing a 
higher than normal proportion of these volatile 
fractions in order to achieve the much­reduced 
CCS value. 

Oil 2 provides an interesting comparison to oil 5 
as it too displayed an increase in fuel 
consumption with time, however fully aged data 
for oil 2 were subject to a larger­than­normal 
degree of experimental scatter resulting in 
reduced confidence in the sample mean 
representing a true population mean. Looking 
again at Table 3, it can be seen that CCS, HTHS 
and KV100 all decrease (9.3%, 8.6% and 6.4%, 
respectively) as oil 2 is aged, which would be 
expected to cause a reduction in fuel 
consumption, thus implying that the slight 
increase in observed BSFC can be attributed to 
experimental error. 
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Figure 2 ­ NEDC Oil Performance (BSFC) 
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Figure 3 ­ ECE Oil Performance (BSFC) 
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Figure 4 ­ EUDC Oil Performance (BSFC) 
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Figure 5 ­ Oil Performance (BSFC) Comparison 

The effect of the differing oil formulations on 
BSFC during the initial ECE portion of the NEDC 
can be seen in Figure 3. As would be expected 
from the oil CCS values, oil 4 exhibits a 3.4% 
reduction in BSFC compared with oil 1 when aged, 
while oil 5 reduces the BSFC by an additional 
4.1%. 

Results for the EUDC given in Figure 4 correlate 
exceptionally well with the high temperature oil 
viscometrics, HTHS and KV100 values, with the 
measured rank order of oils 1 and 2 having the 
highest fuel consumption with oils 3, 4 and 5 
performing better. Once the oils are fully aged, the 
increase in HTHS and KV100 for oil 5 (due to 
evaporation of volatile fractions) causes a rise in 
BSFC to a level greater than oils 3 and 4 but still 
less than that of oil 1 and 2. This trend is as 

NEDC 

ECE15 
425 

435 

445 

455 

465 

475 

Oil 2 Oil 3 Oil 4 Oil 5 
0 10 30 0 10 30 0 10 30 0 10 30 0 10 30 

Oil 1 

EUDC 

expected based on aged oil sample property 
analysis. 

EUDC data suggests a maximum BSFC 
improvement of 3.1% (between oils 2 and 4) can 
be obtained for aged oil by varying the high 
temperature viscometric properties. 

Figure 5 shows the impact of oil viscometrics on 
fuel consumption for each section of the NEDC 

1
cycle in boxplot form . It should be noted that the 

1 
In descriptive statistics, a boxplot (also known as a box­

and­whisker diagram or plot) is a convenient way of 
graphically depicting groups of numerical data through 
their five­number summaries (the smallest observation, 
lower quartile (Q1), median (Q2), upper quartile (Q3), and 
largest observation). A boxplot may also indicate which 
observations, if any, might be considered outliers. The 
boxplot was invented in 1977 by the American statistician 
John Tukey. 
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no  predictive  ability.  If  lubricants  are  used  in 

other engines or the engine is tested over different 

cycles it should not be expected that the model is 

able to predict accurately the result. Nevertheless, 

the  overall  trends  may  be  indicative  of 

performance  in  other  situations.  For  example,  a 

programme of work was undertaken on a chassis 

dynamometer using an engine of the same general 

type  but  of  2l  displacement  rather  than  2.4  used 

on the engine test stand. The engine was installed 

in  a  light  goods  vehicle.  The  test  procedure  was 

identical  to  that  employed  on  the  dynamic  test 

cell. While the performance characteristics of the 

engine were similar it would be expected that the 

performance  over  the  drive  cycle  would  be 
 

       
Boxplots can be useful to display differences between 

populations without making any assumptions of the 

underlying statistical distribution. The spacings between the 

different parts of the box help indicate the degree of 

dispersion (spread) and skewness in the data, and identify 

outliers. 

measurably  different  due  to  the  reduced 

displacement. The effect of engine friction will be 

a  smaller  proportion  of  overall  work  performed 

by  a  smaller  engine  subject  to  similar  loads, 

reducing  the  effect  of  oil  improvements.  It  was, 

however, considered that the same general trends 

in  response  to  engine  oil  viscometrics  would  be 

evident.  Two  lubricant  blends  were  tested,  a 

4 



current production blend and a revised blend 
designed to improve fuel consumption based on the 
results of the engine tests. 

The fresh and aged viscometric data are presented 
in Table 4. The candidate oil is less viscous 
throughout the operating range, both fresh and 
aged. The fresh viscosity profiles are presented in 
Figure 9 as a function of oil temperature. The 
response model predicted that the candidate oil 
would be 2% better in fuel economy (FE) terms 
than the production oil when fresh. 
The experimental validation results are presented 
in Figure 10 in boxplot form. The data for fresh oil 
demonstrated a 1.7% improvement, which, when 
compared with the 2% improvement predicted, 
suggests good model accuracy. In addition, it is 
evident from Table 4 that the production oil HTHS 
value reduced by approximately 5% during the test 

while remaining almost constant for the candidate 
blend. The decrease in HTHS for the production 
blend with age lead to a reduction in the predicted 
specific FE saving between the two aged oils. 

In terms of drive cycle BSFC reported in Table 4, 
the model predicted a 2.3% reduction between the 
aged candidate and production blends compared 
to a measured reduction of 1.5%. 

It should be noted that the stated accuracy of CCS 
and HTHS measurements is approximately ±1% 
of full scale, which equates to 50cP for CCS and 
0.03cP for HTHS. These inaccuracies will 
introduce additional errors into the model 
predictions. 
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Figure 9 – viscosity of production and candidate oils across working temperature range 
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Figure 10 – Chassis dynamometer tests to validate viscometric response model. 

Production Blend Candidate Blend 

Fresh 
Aged 
30hrs 

Fresh 
Aged 
10hrs 

Aged 
30hrs 

CCS @ ­30°C (cP) 3740 3800 1910 1950 1970 

HTHS @ 150°C (cP) 3.07 2.92 2.59 2.57 2.6 

KV100 @ 100°C (cSt) 8.452 9.353 8.476 8.301 8.227 

Predicted NEDC fuel 
usage (g/kWh) 

310.1 308.8 301.4 301.2 301.6 

Measured NEDC fuel 
usage (g/kWh) 

320.9 318.5 314.6 315.4 313.7 

Table 4 – Oil properties during chassis dynamometer testing 



Part 2 – Modulation of transmission oil properties


The aim of this aspect of the study was to 
investigate the effects on fuel economy of using 
waste heat from the engine to reduce the 
transmission oil viscosity from a cold start. In 
order to evaluate the maximum potential gain, an 
electrical heating system was developed to emulate 
the effect of such a waste heat recovery system. 
This had the dual benefits of being more 
controllable and flexible whilst allowing the effect 
of transmission heating to be isolated from any 
detrimental effect on the engine performance that 
may result from sharing the available thermal 
energy. 

In addition to the heating study, the effect of a 
reduced­viscosity transmission oil was 
investigated. This measure could be implemented 
either in isolation or in combination with the 
heating in a production solution. The investigations 
were conducted on a light goods vehicle equipped 
with a 2 litre High Pressure Common Rail (HPCR) 
diesel engine and manual transmission. 

Vehicle and transmission modifications. The 5­

speed manual transmission was modified to 
incorporate bulkhead fittings to accept five 
cylindrical induction heaters. Figure 11 shows the 
location of these heaters, indicated here by wooden 
dowels. The fittings were located such that the 
heaters are adjacent to the gear cluster with 
maximum heated length immersed in the oil. The 
heated length and thus the wattage of each heater 
varies according to the penetration into the oil. The 
power density of the heaters was limited to 
eliminate the possibility of localised overheating of 
the oil. The total power output from the 5 heaters 
was initially 495W, which was subsequently 
uprated to 1080 W to achieve a higher oil operating 
temperature. Each heater was fitted with an internal 
thermocouple mid­way along its heated length. The 
electrical power to run the heaters was drawn from 
the mains to avoid affecting the fuel consumption 
by increasing the load on the alternator. This 

allows the effect of the heating to be viewed in 
isolation. 

Figure 11 – Location of heating elements in 
transmission 

Experimental approach. 
The NEDC was used as the benchmark evaluation 
of the results. The standard bag approach was 
used to determine the fuel consumption with 
sufficient repeat tests performed to achieve an 
acceptable repeatability (+/­1%) at the 95% (4 
standard deviations) confidence limit. The vehicle 
remained undisturbed on the chassis 
dynamometer for the entire experimental 
programme. 

The testing was split into five phases. For each 
phase a baseline test sequence was performed 
together with a modified configuration as 
described below. All tests were performed at a 
standard ambient temperature of 25oC except for 
phase 2, which was conducted at an ambient 
temperature of ­7°C. Each configuration was 
tested at least five times from a fully conditioned 
state to allow statistical evaluation of the results. 
Phases 1 to 4 were conducted with the production 
blend of transmission oil. Phase 5 investigated the 
effect of a reduced viscosity formulation. 

Details of the experimental phases are given 
below: 



Phase 1 – Effect of heaters. A set of conditioned 
cycles were performed in a baseline configuration. 
A series of tests were then conducted with a heat 
input of 495W delivered from engine start 
onwards. 

Phase 2 – Investigation of the effect of ­7oC 
ambient temperature. The baseline test sequence 
was repeated without heat input to the oil followed 
by a set of tests conducted with 495W of heat input 
delivered from engine start onwards. 

Phase 3 – Investigation of the effect of increased 
heater power. The baseline test sequence was 
repeated without heat input to the oil followed by a 
set of tests conducted with 1080W of heat input 
delivered from engine start onwards. 

Phase 4 – Investigation of the effect of pre­
heating. The baseline testing sequence was 
followed by an evaluation of the effect of pre­

heating the oil (via the cartridge heaters) to a 
temperature of 70

o
C, switching off the heaters 

before engine start. 

Phase 5 – Evaluation of a reduced viscosity 
transmission oil. Following a repeat of the 
baseline tests, a flushing cycle was performed 
before filling the transmission with the reduced 
viscosity blend. The effect of this oil with no 
heating was investigated, followed by an 
evaluation of the effect of the higher heat input 
(1080W) from engine start onwards. 

Results and Discussion 
Table 5 summarises the results of the test 
programme. Figure 12 shows these results 
graphically, together with an indication of the 
95% confidence interval associated with each 
result. Figure 13 shows typical temperature 
profiles of the transmission oil during the drive 
cycles in the various configurations. 



Phase Test Condition 
Average NEDC Fuel Consumption 

(g/test) (Reduction %) 

1 
Baseline 
Heated 495W 

654.9 
651.6 

­

0.5 

2 
Cold Baseline (­7°C) 
Cold (­7°C), Heated 495W 

752.9 
748.4 

­

0.6 

3 
Baseline 
Heated 1080W 

655.2 
650.6 

­

0.7 

4 
Baseline 
Pre heated to 70°C 

655.4 
646 

­

1.4 

5 
Baseline 
Reduced Viscosity 
Reduced Viscosity, Heated 1080W 

655.4 
648.2 
645.8 

­

1.1 
1.5 

Table 5 – Effect of transmission oil heating on fuel consumption. 

Phase 1 ­ At an ambient temperature of 25°C it can 
be seen from Figure 13 that the transmission oil 
temperature naturally rises by about 20°C (from 
+24°C to 44°C) over the 20 minute NEDC, 
primarily due to the churning of the oil in the 
transmission. The addition of 495W of electrical 
heating from engine start causes the transmission 
oil to rise by an extra 12oC over the NEDC, (i.e. 
from +24°C at start to +56°C at end of NEDC). As 
expected, this results in a 0.5% reduction in fuel 
consumption attributable to the electrical heating. 

Phase 2 – Figure 13 shows that at an ambient 
temperature of ­7

o
C the transmission oil 

temperature naturally rises by 31
o
C (from ­7°C, to 

24°C) over the NEDC without any additional 
heating. The increased warming over that seen at 
the 25°C tests is most likely attributable to the 
increased work done to shear the highly viscous oil 
at the very low temperatures. This increased work 
is a significant proportion of the extra parasitic 
load that, when combined with thermodynamic 
effects on engine combustion, and temperature­

dependant fuelling maps, give a fuel consumption 
increase of 15% when compared with the results at 
25°C. Another significant factor in this increased 

parasitic load is the increased rolling resistance of 
the cold tyres at ­7°C. 

Interestingly, the impact of the additional heating 
at ­7°C is very similar to that observed at 25°C in 
terms of temperature rise and fuel consumption 
reduction, with a 0.6% saving observed over the 
cycle. 

A major aspect not considered in detail is the 
additional electrical loading which would be 
required to power the heaters if an electrical 
solution was to be considered. By way of 
comparison, the heaters consumed approximately 
the same power as the heated front screen which, 
on the test vehicle, was always active under cold­

start conditions. However, due to the fuel 
consumption penalty which would be incurred if 
the transmission oil were to be electrically heated 
at start­up, it is envisaged that that additional 
heating would be provided from exhaust gas 
waste heat while ensuring no impact on catalyst 
light­off time. 



Phase 3 – As expected, doubling the electrical 
heating to 1080W approximately doubles the 
temperature rise of the transmission oil with the oil 
temperature increasing by an extra 30°C over the 
NEDC, (i.e. from +24°C at start to 74°C at end of 
NEDC). This increase in temperature results in a 
0.7% reduction in FC. 

Phase 4 – Pre­heating the transmission oil to 70°C 
immediately prior to the test yielded a 1.4% 
reduction in FC compared with the baseline. 
Examining Figures 14 & 15, it can be seen that, as 
expected, pre­heating significantly reduced the 
predicted transmission oil viscosity during the 
cycle, in particular through the ECE. It is highly 
probable that the reduction in FC is due to the 
reduced viscosity of the oil at the elevated 
temperature leading to reduced churning losses in 
the transmission. Preheating the oil should have no 
impact on any other engine­related systems which 
would affect fuel consumption. 

The preheated tests show a temperature overshoot 
at the start of the cycle (Figure 13) where locally 
hot oil is mixed with the bulk oil as the gearbox 
components begin to rotate. 

The intended outcome of preheating was to 
identify the ultimate potential benefit available via 
thermal management of the existing transmission 
oil. As previously stated, electrically preheating the 
oil is not considered a production­viable solution 
but does demonstrate the potential benefits of 
reducing the oil’s viscosity. For this reason, a 
reduced viscosity oil was evaluated to demonstrate 
the FC benefits without the need for heating. 

Phase 5 – Use of a lower viscosity oil gave a 1.1% 
reduction in FC when compared with the 

‘production’ transmission oil if neither are heated 
over the NEDC. As with the preheated oil 
investigated during Phase 4 testing, FC benefits 
are attributed entirely to the lower oil viscosity 
and reduced churning losses in the transmission. 

Heating the lower viscosity oil during the cycle 
resulted in a further 0.4 % reduction in FC over 
the NEDC, giving a total improvement of 1.5% in 
FC compared to the un­heated ‘production’ oil. 
Figure 14 shows the predicted effect of 
temperature on oil viscosity over the cycle, 
showing that the reduced viscosity oil with 
1080W of heating (dotted line) achieves a lower 
viscosity by the end of the cycle than all other 
combinations examined. 

Figure 15 presents cumulative or integrated 
kinematic viscosity plot. While having no 
“physical” meaning, this measure represents a 
combination of the effects of base oil viscosity 
and heater performance over the test and is 
analogous to the mean oil viscosity over the 
cycle. This metric is useful to allow direct 
comparison between the effect of less viscous oils 
and transmission thermal management measures. 

Figure 16 plots fuel consumed over the test cycle 
against the integrated viscosity metric. The linear 
correlation between the viscosity and FC is 
clearly evident for tests at 25°C. Tests performed 
at ­7°C are expected to show a similar correlation 
but would not be expected to lie on the same line 
as the warmer data due to other effects on fuel 
consumption, such as changes in rolling 
resistance of the colder tyres, increased engine 
friction and changes to the fuelling rates 
controlled by temperature­dependant warm­up 
strategies 
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Figure 12 – Effect of transmission oil heating and reduced viscosity on fuel consumption 
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Figure 13 – Temperature rise over NEDC with heaters on and heaters off at ­7°C and +25°C, also showing effect of 


preheat to 70°C 
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Figure 14 – Predicted transmission oil viscosity based on bulk oil temperatures during the NEDC 
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Figure 15 – Integrated kinematic viscosity over NEDC showing cumulative effect of oil type and heater 

performance 
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Figure 16 – Correlation between integrated kinematic viscosity and fuel consumption during the NEDC 

Conclusions 

Due to the distinct nature of the two parts of this 
study, the conclusions for each will be discussed 
separately: 

Engine oil viscometrics – An experimental 
programme has been conducted to evaluate the 
effect of engine oil viscometrics on the fuel 
consumption of a EURO3 common rail diesel 
engine­powered vehicle. 

It was found that the CCS is the dominant factor 
on fuel consumption during the early stages (ECE) 
of the NEDC drive cycle when the engine oil 
temperature is still low. 
A reduction in CCS of approximately 30% 
resulted in a fuel economy improvement of 5.5% 
over the cycle. However, this benefit is not 
observed during the later, hot portions of the cycle 
(EUDC). As the majority of fuel is consumed 
during the ‘hot’, high speed portion of the cycle, 
the benefit observed for the NEDC as a whole is 
slight at 1.5%. 

While having little impact early in the drive 
cycle, HTHS and KV100 become more dominant 
with increasing oil temperature during the 
EUDC portion of the NEDC cycle. Reducing the 
values of HTHS and KV100 were found to 
improve fuel consumption by 3.1% over the 
‘hot’ EUDC for fully aged oil. 

A combination of low CCS, HTHS and KV100 

values reduced total cycle BSFC, for fully aged 
oil, by a maximum of 3.2% compared with the 
baseline. However, oil formulated with 
exceptionally low CCS values performed well 
when fresh but suffered from an increase in 
viscosity (and hence BSFC) with age as volatile 
compounds were lost via evaporation, negating 
potential in­service benefits. 
DoE analysis confirmed the expected trends in 
fuel consumption based on oil viscometric 
properties and quantified the magnitude of their 
impact. The derived DoE model showed good 
agreement with experimental validation data and 
could be used to predict changes in fuel 



consumption over the new European drive cycle 
for given oil viscometric properties. 

Transmission oil viscometrics – The use of 
electric heating cartridges within the transmission 
oil allowed a useful fuel saving to be realised. 

It was found that 495W of heating applied from 
the start of the drive cycle resulted in a 0.5% 
reduction in fuel consumption, while 1080W of 
heating yielded a 0.7% reduction. In order to 
demonstrate the maximum achievable benefit of 
heating the current production transmission oil, 
the oil was preheated to 70°C prior to the start of 
the cycle resulting in a 1.4% reduction in fuel 
consumption. 

This electrical configuration demonstrated the 
potential benefits of transferring waste heat from 
the engine to the transmission oil, however, the 
additional complexity of engine modifications 
required to transfer heat from the engine to the 
transmission using engine coolant or exhaust as 
the heat transfer medium would be significant, 
costly and therefore unlikely to be production 
feasible. 

The fuel saving achieved by using an un­heated, 
reduced viscosity, transmission oil was found to 
be 1.1% compared with the baseline, which is 
greater than was achieved when applying 1080W 
of heating to the current production oil. Providing 
the reduced viscosity oil can satisfy durability and 
other production criteria, its use would be a less 
complex solution to reducing transmission 
churning losses and drive cycle fuel consumption 
than heating the current production oil. 

Heating the lower viscosity oil during the cycle 
yielded a further 0.4 % reduction in fuel 
consumption over the NEDC, giving a total 
improvement of 1.5% compared with the un­

heated ‘production’ oil. Despite the additional 
benefit of heating the lower viscosity oil, it is 
unlikely that the small fuel consumption reduction 

would justify the additional complexity of 
providing heating. 
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Appendix 

European emissions limits for diesel­powered

light commercial vehicles.

(1760kg < Curb weight < 3500kg) :


Tier Date CO NOx HC+NOx Particulate Matter 
g/km g/km g/km g/km 

EURO1 October 1994 6.90 ­ 1.70 0.25 
EURO2 January 1998 1.50 ­ 1.20 0.17 
EURO3 January 2001 0.95 0.78 0.86 0.10 
EURO4 January 2006 0.74 0.39 0.46 0.06 
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