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ABSTRACT   

We present a combined quantum-chemical and Monte Carlo approach for calculating exciton transport properties in 
disordered organic materials starting from the molecular scale. We show that traps and energetic disorder are the main 
limitations for exciton diffusion in conjugated polymers. An analytical model for exciton hopping in a medium of sites 
with uncorellated energetic disorder gives a quantitative description on the dependence of the diffusion length to both the 
energetic disorder strength and temperature. We demonstrate how traps and energetic disorder can pin down the 
diffusion length in conjugated polymers to values below 10 nm. 
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1. INTRODUCTION  
During the last decade, conjugated materials have found a plethora of applications in solar cells1,2, field effect 
transistors3, light emitting diodes4 and sensing devices5, some of which have reached already the commercial stage. 
However, improving the efficiencies of those devices depends critically on the control of charge and exciton transport 
properties in such media. Polymeric materials are disordered in nature, either due to the preparation technique and 
packing or due to the presence of extrinsic chemical defects with a consequence that the transport properties of charges 
and excitons have not been fully understood yet. The value of the exciton diffusion length LD, is critical as for example in 
solar cells determines the effective area over which exciton dissociation is efficient while in light emitting diodes the 
value of LD will control the color of the device. Until now, there is a clear distinction between molecular and polymeric 
solids on the magnitude of the diffusion length with molecular materials6-8 displaying LD values at least one order of 
magnitude higher than the values found in conjugated polymers9,10 that are typically below 10 nm.  

Here we will argue that the limited exciton diffusion length found in polymers is not an intrinsic property but rather a 
physical consequence of the large values of disorder that are found in these materials. We will show that even within the 
weak coupling regime, where exciton transport proceeds via hoping between localized units, the diffusion length could 
be rather high, in the absence of trapping events and if energetic disorder is low. The aim of this paper is twofold: first to 
introduce a Monte Carlo (MC) model based on quantum-chemical calculations and investigate the dynamics of the 
motion of singlet excitons in the presence of traps and energetic disorder and secondly to apply a physical model, based 
on a simple analytical approach that validates the above results.  

 

2. MOLECULAR SCALE MODELLING 
 

The necessary ingredients for a theoretical model that has as a starting point the molecular scale, are the molecular 
packing and the intermolecular interactions. In our case we will present and employ such a model in a typical rigid rod 
fluorene polymer, polyindenofluorene (PIF) of which the photophysical properties have been extensively studied 
experimentally11. Since we are not interested here on providing exact values of the exciton diffusion length in the 
material, we will use simplified chain-like morphologies. A detailed description of the molecular packing via atomistic 



 
 

 
 

Molecular Dynamics simulations goes beyond the scope of this paper and will be discussed elsewhere for the case of IF3 
oligomers forming liquid crystalline mesophases12. Here we treat the polymer as a macromolecule, consisting of a 
number of segments of different lengths. Such assumptions on the morphology are supported by X-ray diffraction data 
on crystalline samples of a similar rigid rod like polymer, polyfluorene (PFO)13, that showed hexagonal like packing of 
the chains. The distribution of segments is extracted by converting the absorption energy distribution of PIF to a length 
distribution and includes oligomers of indenofluorene of increasing size from 3 to 8 repeat units.  

 

 
Figure 1. From microscopic transfer rates to exciton trajectories.  

 

2.1 Energy trasfer rates 

For singlet excitons in conjugated polymers, the electronic coupling between the individual subunits is much weaker 
than the electron-nuclear interactions. Therefore, exciton transport takes place in the weak coupling regime with excitons 
localised in single molecular units14 (chromophores), transferring their excitation energy to neighboring molecules, that 
are in their ground electronic state, via resonant energy transfer. The rate for energy transfer between a donor D molecule 
and an acceptor A molecule that are separated by a distance r can be expressed on it’s simple form according to Förster15 
as: 
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Where  is the donor’s radiative lifetime  and rF is the Förster radius, defined as the value of intermolecular distance at 
which the hopping rate is equal to the decay rate. rF is a spectroscopically accessible quantity, that depends on the 
fluorescence quantum yield, the acceptor’s absorption and donor’s emission spectrum and the refractive index. Strictly 
speaking, the above equation is exact in the limit where the donor and acceptor molecules can be considered as point 
dipoles. However, for polymers this approximation might break down when the intermolecular distance is small 
compared to the size of the chromophores16, which is the typical case as interchain distances of the order of nm are 
comparable to the molecular dimensions. A generalised Förster model that goes beyond the point dipole approximation 
will take into account the spatial extent of the excited state wavefunction17. Using first order perturbation theory, the 
transfer rate, expressed in   ps-1, between a donor D and an acceptor A molecule reads: 

21.18DA DA DAk V J                                                                          (2) 

with VDA the excitonic coupling, in cm-1, and JDA the spectral overlap between the simulated, at the INDO/SCI level, 
donor emission FD() and acceptor absorption spectra AA() , given by:  
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The simulated spectra have been obtained within the Franck-Condon approximation and a two mode displaced harmonic 
oscillator model. In what follows, we have calculated the excitonic coupling between all donor D molecules and each of 



 
 

 
 

the fifty nearest neighbor acceptor A oligomers in an assembly of 507 PIF chains (having 11 chromophores each) using 
the distributed monopole approximation17,18 that expresses VDA as a Coulomb interaction term (ie neglecting orbital 
overlap mechanisms): 
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where the sum runs over the donor 
iDr


 and acceptor 
jAr
 atomic positions,  are the atomic transition charge densities for 

the S0 to S1 excitation and 0 the vacuum permittivity. The transition charges have been computed through single 
configuration interaction (SCI) calculations, using the intermediate neglect of differential overlap INDO Hamiltonian19. 

 

2.2 Monte Carlo 

To compute the transport properties we use a kinetic Monte Carlo simulation20 that treats the diffusion of the exciton as a 
stochastic process of discrete random walk steps with each step being independent of previous events and having a rate 
calculated via equation (2). The Monte Carlo procedure is as follows: Initially, an exciton is placed at a random 
molecular site in the assembly, or at a site of given length in the case of site selective excitations. The exciton will have 
various options for the next Monte Carlo step: either to hop to a neighbor site or to emit radiatively. A waiting time for 
each available jump can be calculated from an exponential distribution21 as: 

1 ln( ) ,ij
ij

X
k
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where kij is the transfer rate from an initial site i to a target site j and  is a random variable drawn from a box 
distribution between 0 and 1.Besides the possible events of hopping to nearest neighbors we also define a rate for 
radiative emission, ie recombintation of the hole and electron that constitute the exciton, as ln( ) .em

i X    This decay 
rate is in competence to the hopping events. All events are placed in an array and the event that requires the smallest 
waiting time is selected and executed. If the chosen event is hopping then a new set of waiting times is generated. In the 
case where the event with the smallest waiting time is decay then the Monte Carlo trial stops and a new exciton is created 
in the system until completion of all the number of trials, that are typically of the order of 104, large enough to provide us 
with statistics of importance and construct averages.  

 

3. TRAP LIMITED DIFFUSION 
 

In the case of site selective excitations the average chromophore energy at a given time can be calculated from the time 
dependent population of the excited chromophores. This quantity is presented on the left panel of Figure 2 as solid lines 
for excitations initially placed on chromophores of length 3,4,5,6,7 and 8, plotted in decreasing starting energy. For 
comparison we also display room temperature experimental results on the spectral diffusion of the 0-1 
photoluminescence peak for energy selective excitations in a drop-cast PIF sample11. We observe that excitons created at 
the shortest segments will lose their energy moving downhill while excitons created at longest segments will gain energy 
moving uphill in the energy manifold. Eventually, thermal equilibrium will be reached. Although the simulation and 
experimental results show a similar behavior, there are clear differences on the timescale for energy relaxation. 
Experiment suggests an exciton relaxation time of about 300 ps while theory predicts a much faster trel, of approximately 
20 ps.  

Now we switch on to include trapping events in the transport simulation.  Random sites are assigned as attractive traps 
for the excitation with a trapping rate much higher (100 times faster) than the hopping rate. Such values are realistic as 
they correspond for example to the transfer rate to a lower energy acceptor site, for example a perylene molecule17. The 
trapping events will influence the energy relaxation of the excitation at large times, as shown in Figure 2. By allowing a 
small percentage of the sites, ~0.5%, to act as traps we can obtain a reasonable timescale for exciton relaxation. This 



 
 

 
 

demonstrates that in a 3 dimensional polymer system a small percentage of trapping sites can very effectively capture the 
excitations. It is not only the relaxation rate that is is affected from the presence of traps but also the distance over which 
the excitons travel, ie the diffusion length. This quantity can be estimated from the Monte Carlo simulations as the 
average travelled distance of all completed trials. As it is depicted on  

 

 
 

Figure 2. Left panel: Exciton energy relaxation in PIF as a function of time for site selective excitations in a trap free 
film (black solid lines) and in the presence of traps (blue dashed lines). In order of decreasing starting energy the lines 
correspond to excitations initially placed in trimers, tetramers, pentamers, hexamers, heptamers and octamers. Red 
symbols are experimental results from Ref. 11 for excitation energies of 3.062 eV (filled circles), 2.952 eV (open 
circles), 2.884 eV (filled squares) and 2.851 eV (triangles down). Right panel: Reduction of LD with increasing trap 
concentration. 

 

 

the right panel of Figure 2 a small percentage of trapping sites greatly reduces the diffusion length from ~45 nm to 
values typically measured in polymers ~10 nm. For small concentration of trap sites the reduction of the diffusion length 
with the trap percentage x , is in agreement with the expected inverse square root dependence22: D hopL r N  and 

therefore 1.23D
rL
x

 . 

 

4. ENERGETIC DISORDER 
 

We now turn our attention to the influence of energetic disorder, expected to be present in polymeric solids14, on exciton 
diffusion. As a preamble to the analytical calculations we perform a MC study of exciton migration on a morphology at 
which the molecular sites have been replaced by single atomic centers on a cubic lattice with a lattice constant of a=1 nm 
and  the transfer rates between nearest neighbor sites are given by: 
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where Ei and Ej are the site energy values of the initial and target site respectively, kB is the Boltzmann constant and T the 
temperature. It is clear from the above equation that it is easy to move downwards in energy but more difficult to 
perform an upward in energy jump, since the latter is phonon assisted and requires excessive thermal energy.  The above 
equation has been parametirised via quantum-chemical calculations: (i) an effective orientation averaged value for the 
Förster radius of 3.1 nm has been extracted. This is in good agreement with the value measured experimentally ~3.3 nm 
in films of PIF11. (ii) an exciton lifetime of 500 ps has been computed by averaging the lifetimes of the  

 

 
Figure 3. Left panel: LD as a function of for the analytical model(red line) and the lattice MC 
simulations(squares). Right panel: Shift of the thermal level(vertical lines) with increasing for a Gaussian DOS. 
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obtained from the INDO/SCI calculations. Static, uncorrelated energetic disorder has been introduced to the site energy 
values and distributed according to a Gaussian with a standard deviation that we will allow to vary.  

Our central result, summarised  in Figure 3, is that energetic disorder in conjugated polymers can cause a dramatic 
decrease leading to diffusion length values below 10 nm. To test this scenario, we employ analytical tools to derive an 
expression for LD in a medium of randomly positioned hopping sites with diagonal(on-site) energetic disorder. This 
model has as a starting point the Förster equation (6) that can be rewritten as a function of a hopping parameter u: 
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, where  the Heaviside function. An average number of target 

sites with hopping parameter smaller than u can be calculated via integration over space and energy25 and eventually one 
can derive an expression for the diffusion coefficient on the assumption of thermal equilibrium(Boltzmann statistics): 
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Where <r2> is the mean square hopping distance and g(E) the excitonic density of states (DOS). It is straightforward to 
compute the diffusion length: 
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Figure 4. Left panel: Analytical results of LD as a function of the Förster radius for different values of disorder . Right 
panel: The temperature dependence of LD for various ascomputed from the MC simulations  

 

In Figure 3 we display the results obtained from equation 8 for a Gaussian DOS and for a Förster radius of 3.1 nm, a 
lifetime of 500 ps and a chromophore density of 1021 cm-3 in order to be consistent with the parameters used in the MC 
model. As illustrated, LD is very sensitive to the standard deviation of the Gaussian distribution and greatly reduces with 
increasing disorder as also predicted from the MC simulations. To understand this behavior, we have to consider that at 
room temperature, excitons created at any place of the Gaussian distribution will quickly relax to the thermal level, 
located –2/kBT from the center of the distribution23. However, with increasing disorder the thermal level shifts towards 
the low energy tail of the excitonic density of states, as illustrated in Figure 3, where there is a small number of 
energetically accessible sites to hop. Henceforth, increasing disorder reduces the paths for exciton transport. There are 
two other important issues that follow from the analytical calculations: Firstly the diffusion coefficient scales with the 

chromophore density and the Förster radius according to the expected law 
6

4 / 3 F
t

rD N


 15,24, see equation 7, and 

therefore 2 / 3 3
D t FL N r . This behavior is illustrated in Figure 4 which shows the increase of LD with the Förster radius, at 

different levels of disorder. Another interesting result is that as disorder increases, the increase of LD with rF becomes less 
pronounced and in the high disorder limit, chemically different polymers, or a given polymer exhibiting different 
intermolecular interactions (e.g due to different packing) will exhibit very similar LD. 

 

The temperature dependence of the diffusion length has been also studied in the framework of MC simulations. For low 
temperatures, the available energy from the bath is not sufficient in order to overcome energy barriers on the course of 
the exciton path. The average exciton transfer rate and total number of hops become smaller, resulting to lower LD 
values, see Figure 4. Eventually above a certain temperature(that depends on the value of ) the diffusion becomes 
thermally activated. These results are in line with recent experimental evidence of thermally activated diffusion in 
MDMO-PPV9. It is therefore the synergetic effect of disorder strength and temperature that controls the exciton diffusion 



 
 

 
 

process. Both MC simulations and the analytical model have shown that LD exhibits an Arrhenius like behavior only at 
high T with an activation energy increasing with 25.  

 

5. CONCLUSIONS 
We have described theoretical tools for modelling the diffusion of singlet excitons in disordered conjugated polymers. 
These tools include quantum-chemical calculations of exciton transfer rates and Monte Carlo simulations to study the 
dynamics of the exciton diffusion. The model has been applied in a PIF polymer to examine the influence of single trap 
sites and energetic disorder on the magnitude of the diffusion length. Additionally an equilibrium analytical model has 
been applied to justify the dependence of LD on the disorder strength. These results demonstrate that the simple 
continuous analytical model, with minimum input parameters the Förster radius and exciton lifetime, provided either by 
experiment or by quantum-chemical calculations, could be used to estimate the value of the exciton diffusion length and 
it’s variation with disorder strength. We conclude that the small values of the measured diffusion lengths in conjugated 
polymers are a result of the disorder inherent in these materials. We have shown how traps and energetic disorder can pin 
down the diffusion length measured in conjugated polymers to values below 10 nm. Although different in nature, both 
scenarios yield to a reduction of LD. In reality, both mechanisms are expected to be present in a material. However, if 
such materials could be engineered to be free of traps and exhibit small values of energetic disorder then the exciton 
diffusion length values can be improved by at least one order of magnitude.  
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