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DYNAMICS OF THREE-DIMENSIONAL GRAVITY-CAPILLARY
SOLITARY WAVES IN DEEP WATER∗

BENJAMIN AKERS† AND PAUL A. MILEWSKI‡

Abstract. A model equation for gravity-capillary waves in deep water is proposed. This model
is a quadratic approximation of the deep water potential flow equations and has wavepacket-type
solitary wave solutions. The model equation supports line solitary waves which are spatially localized
in the direction of propagation and constant in the transverse direction, and lump solitary waves
which are spatially localized in both directions. Branches of both line and lump solitary waves are
computed via a numerical continuation method. The stability of each type of wave is examined. The
transverse instability of line solitary waves is predicted by a similar instability of line solitary waves
in the nonlinear Schrödinger equation. The spectral stability of lumps is predicted using the waves’
speed energy relation. The role of wave collapse in the stability of these waves is also examined.
Numerical time evolution is used to confirm stability predictions and observe dynamics, including
instabilities and solitary wave collisions.

Key words. water wave, solitary wave, nonlinear Schrödinger equation, gravity-capillary wave,
wave collapse
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1. Introduction. Gravity-capillary waves are surface waves in the regime where
the restoring effects of both gravity and surface tension are similar in magnitude.
For an air-water interface, this implies a free-surface length scale of approximately
1 cm. At this length scale, the phase speed has a minimum about which waves
are locally nondispersive. Gravity-capillary solitary waves are localized, traveling,
nonlinear waves whose Fourier transform decays rapidly away from this minimum.
Unlike the classic shallow water solitary wave, these waves are oscillatory. On a
one-dimensional (1D) free surface of a two-dimensional (2D) fluid domain, gravity-
capillary solitary waves resemble traveling wavepackets. On a 2D free surface, the
waves’ cross section in the propagation direction is similar to the 1D solitary waves,
but, transverse to the propagation direction, the waves either are constant (for so-
called line solitary waves) or decay at infinity (for lump solitary waves). Since the
wavelength is set by the physical parameters, the deep water (infinite depth) regime is
applicable in water deeper than a few centimeters. In this work we ignore the effects
of viscosity and surface dissipation which, at this length scale, ultimately need to be
included.

In 1989, Longuet-Higgins provided physical motivation for why gravity-capillary
solitary waves should exist [1]. Since then, traveling solitary waves have been com-
puted numerically as solutions to the Euler equations in both two and three space
dimensions [2, 3, 4, 5, 6] in both shallow and deep water. The existence of such solu-
tions in Euler’s equations has been predicted in approximate models [7] and rigorously
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SOLITARY GRAVITY-CAPILLARY WAVES 2391

shown to exist in 1D [8] and 2D shallow water [9]. Gravity-capillary wave dynam-
ics, such as generation from forcing, stability, and collisions, have been considered
in shallow water models in one dimension [10, 11, 12] and two dimensions [13] and
using envelope and one-way models in two dimensions [14, 15, 16, 17]. Experimental
observations of such waves and related flows can be found in [18] and [19].

However, as we have mentioned, the most physically relevant setting in which
to study gravity-capillary waves is deep water for which there are few models: in
recent work the authors wrote unidirectional model equations for deep water gravity-
capillary waves and studied solitary wave dynamics in one dimension [20] and in a
weak 2D setting [14]. For the latter case the equation proposed was

ηt + 2ηx +H [η − ηxx − 2ηyy]− 3

2
ηηx = 0,

where H is the Hilbert transform in x, the direction of propagation, and η is the
free-surface displacement in a moving frame. In contrast, this paper focuses on a 2D
isotropic model for gravity-capillary waves in deep water. The model takes the form

ηtt +Ω2η +N(η, ηt) = 0,

where Ω2 is the linear operator that yields the full 2D gravity-capillary dispersion
relation in deep water and N is a quadratic nonlinear term. (Note that the scaling
of the variables is not the same in the two equations.) This new model is used to
study the stability dynamics of solitary waves—which are computationally much more
challenging for the full Euler equations. To the best of our knowledge, this is the first
paper addressing the dynamics of fully 2D deep water gravity-capillary solitary waves.

The paper is organized as follows. In section 2, we derive the model equation as
an approximation of the Euler equations. In section 3, we present the branches of
numerically computed solitary waves, with connections to the nonlinear Schrödinger
(NLS) equation. In section 4, we consider the stability of the numerically computed
solitary waves. In section 5, we present the dynamics of unstable solitary waves
and collisions of stable solitary waves. Conclusions and future avenues for research
are presented in section 6. The numerical method for computing solitary waves is
summarized in Appendix A.

2. Derivation. In this section, a nonlinear equation which approximates weakly
nonlinear gravity capillary waves in deep water is derived. The equation is a quadratic
truncation to the Euler equations (2.1) for an incompressible, irrotational flow with
a free surface under the action of both gravity and surface-tension forces. Denoting
the horizontal coordinates by (x, y) ∈ R2 and the vertical coordinate by z, consider
the Euler equations, with free-surface boundary conditions, for the velocity potential
φ(x, y, z, t) and the free-surface displacement given by z = η(x, y, t):

Δφ+ φzz = 0, −∞ < z < εη,(2.1a)

φz = 0, z = −∞,(2.1b)

ηt + ε∇η · ∇φ = φz , z = εη,(2.1c)

φt + ε
1

2
(∇φ)2 + ε

1

2
(φz)

2 + η +
1

ε
∇ · n̂ = 0, z = εη.(2.1d)

Equation (2.1a), Laplace’s equation for φ, reflects conservation of mass for irrotational
flows. The remaining equations are boundary conditions: decay for the velocity field
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2392 BENJAMIN AKERS AND PAUL A. MILEWSKI

with depth (2.1b), the kinematic boundary condition (2.1c) implying the free bound-
ary is carried with the flow, and Bernoulli’s equation (2.1d), a statement of conser-
vation of momentum, with the pressure taken to be zero immediately above the free
surface. The jump in pressure across the free surface due to surface-tension effects is
reflected in the last term in (2.1d) and is proportional to the surface curvature since n̂
is the unit normal to the free surface. These equations have been nondimensionalized
using a characteristic wave height a, the length scale L = γ1/2g−1/2, the time scale
γ1/4g−3/4, and the velocity potential scale aγ1/4g1/4. The parameter ε = a/L will be
assumed to be small. In cgs units, g = 981cm/sec2, and γ = 73.50cm3/sec2 is the
surface tension coefficient for an air-water interface [21].

Taylor expanding (2.1d) and (2.1c) about the mean level at z = 0 yields bound-
ary conditions at that level, and solving Laplace’s equation in the lower half-space
eliminates the z-dependence of (2.1):

φ(x, y, t, z) = F−1
{
F {Φ(x, y, t)} e|k|z

}
.

Here F is the Fourier transform in (x, y) with dual variable k. Clearly Φ = φ(x, y, t, 0).
Derivatives of φ with respect to z at z = 0 correspond to multiplication of the Fourier
transform of Φ by |k|, denoted by (−Δ)1/2 in physical space. This procedure simplifies
(2.1) to a system of two equations acting at the mean level. This system, truncated
at cubic order in φ and η, is

ηt − (−Δ)1/2Φ + ε∇ · (η∇Φ) +
ε2

2
∇ · (η2∇(−Δ)1/2Φ) = 0,(2.2a)

Φt + (1−Δ)η + ε

(
1

2
(∇Φ)2 +

1

2
((−Δ)1/2Φ)2 + η(−Δ)1/2Φt

)
(2.2b)

+
ε2

2

(
∇ · (∇η)3 + 2η(∇Φ · ∇(−Δ)1/2Φ−ΔΦ(−Δ)1/2Φ)− η2ΔΦt

)
= 0.

System (2.2) can be formally rewritten in terms of only Φ or η. Eliminating Φ in
favor of η, and truncating at quadratic order, yields

ηtt +Ω2η + εN(η, ηt) = 0(2.3)

with

N(η, ηt) = (−Δ)1/2
(
1

2
(Hηt)

2 +
1

2
η2t − ηΩ2η

)
−∇ · (ηS∇η + ηtHηt),

S = (1−Δ), Ω2 = (1 −Δ)(−Δ)1/2, and H = −∇(−Δ)−1/2.

The operator H is the Hilbert transform in (x, y), with Fourier symbol Ĥ = −i k
|k| .

Similar techniques can be used to write quadratic truncations in terms of Φ [22].
We note, however, that there are many possible formally consistent ways to write
truncated equations, and that they may have quite different behaviors—much like
in shallow water, where a variety of Boussinesq systems exist [23]. This truncation
was chosen for its relative simplicity and, as we shall see, for having similar focusing
properties to NLS models.

We shall use the quadratic nonlinear model (2.3)—henceforth called the Model—
to study localized weakly nonlinear wavepacket solitary waves. This model equation
is formally equivalent to the full Euler equations (2.1)—henceforth called Euler—to
quadratic order, and thus agrees with the Euler equations for triad interactions. Tra-
ditionally, weakly nonlinear wavepackets are studied using the associated NLS equa-
tion. (This is true in infinite depth; in finite depth there is a leading order mean flow
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contribution leading to a Benney–Roskes–Davey–Stewartson system.) In the small
amplitude limit, the solitary wave solutions to the associated NLS equation approx-
imate the envelopes of wavepacket solitary waves in the primitive equation. Since
the NLS equation has solitary wave solutions only in the focusing regime (related to
the relative signs of its coefficients), it can be used to predict the existence of small
amplitude wavepacket solitary waves in primitive model equations. In general, the
derivation of the NLS equation involves both quadratic and cubic nonlinear terms
in the primitive equation. Thus, the model we present, which is, for simplicity, a
quadratic truncation of Euler, will have a corresponding NLS equation with different
coefficients than a cubic truncation (which would, by definition, have the same co-
efficients as Euler). Nevertheless the NLS equation for our model has coefficients of
the same sign as that of the NLS equation written for Euler equations. Thus, up to
a rescaling, these NLS equations will have identical dynamics.

Although a quadratic truncation of Euler neglects cubic interactions, we believe
it includes the more important effects neglected by envelope equations altogether. In
the NLS approximation the wave envelope is decoupled from the carrier wave, and
therefore the phase of the carrier wave relative to the envelope is arbitrary. This has
been shown to be incorrect in Euler. We shall see in our quadratic truncation (as in
Euler) that many effects (wave profiles, stability, and collision properties) depend on
the phase of the carrier wave. This coupling between phase and envelope has been
studied in the simplified context of the 5th order Korteweg–de Vries (KdV) equation
both numerically [10] and via a “beyond all orders” asymptotic expansion [24]. The
5th order KdV (and in two dimensions the corresponding Kadomtsev–Petviashvili
(KP) equation) are the simplest shallow water models for capillary-gravity waves.
The goal of this paper is to study deep water 2D capillary-gravity solitary waves in
a new model equation which can provide information that is outside the scope of the
NLS equation.

3. Solitary waves and the nonlinear Schrödinger equation. The solitary
wave solutions to the Model resemble traveling wavepackets. The Fourier transform
of these waves is localized near k = (k, l) = (1, 0), and at small amplitudes there
is a clear slowly varying wave envelope. The existence of these waves is predicted
by two features of the Model: that it has a phase speed minimum at k = (1, 0)
and that the nonlinearity is of the right type. This nonlinear criterion can be tested
by checking that the nonlinear coefficient of the corresponding NLS equation has the
correct sign. Linear wavepackets have crests which move at the phase speed |cp| = ω

|k|
and envelopes which move at the group velocity cg = ωk(k). The phase velocity and
group velocity are generally different except, for example, when the dispersion relation
is isotropic and the phase speed has an extremum. In this case, both velocities are in
the same direction and they have equal magnitude since

0 =

(
ω(|k|)
|k|

)′
=

|cg|
|k| − |cp|

|k| .

Thus, wavepackets whose carrier wave has the wavenumber of a phase speed extremum
have crests which move at the same speed as the wave envelope. This condition
alone does not predict the existence of solitary waves. In fact, one can argue on
physical grounds that in one dimension, solitary waves will exist generically if the
phase speed has an extremum, but in two dimensions a minimum is required [14]. If
these conditions are satisfied at k = 0, one expects classical solitary waves, whereas
at finite k, one expects solitary wavepackets.
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To understand the existence of a localized wave envelope, one can write an NLS
equation from the Model by substituting the ansatz

(3.1) η(x, y, t) = εA(ε(x− ct), εy, ε2t)eiΘ + ε2A2(x, y, t) + ε3A3(x, y, t) + ∗+ · · · .
The phase Θ = k0 ·x−ωt, where k0 is the carrier wave frequency, ω is the linear dis-
persion relation, and ∗ stands for complex conjugate. At O(ε3) a solvability condition
for A3 is that the leading order envelope solves

(3.2) iAτ + λ1AXX + λ2AY Y = χ|A|2A.
The variables in (3.2) in physical space areX = ε(x−ct), Y = εy, and τ = ε2t. For the
Model, at carrier wavenumber k0 = (1, 0), and for right-traveling waves with c =

√
2,

the coefficients of (3.2) are

λ1 =

√
2

4
, λ2 =

√
2

2
, and χ = −2

√
2.

Only the relative signs of λ1, λ2, and χ are meaningful, since the equation can be
rescaled so that these coefficients all have magnitude one. The coefficients of the
linear terms are directly related to the dispersion relation, λ1 = 1

2ωkk(1, 0) and λ2 =
1
2ωll(1, 0). For λ1χ < 0, (3.2) is focusing in X and has line solitary wave solutions

(3.3) A =

∣∣∣∣ 2χ
∣∣∣∣
1/2

sech

(
X√
λ1

)
eiτ .

Of course if λ2χ < 0, then there are also line solitary waves which depend only on
y. When, as is the case here, both products λ1χ and λ2χ are negative, the resulting
equation is the elliptic or focusing 2D NLS equation which has fully localized lump
solitary wave solutions. There is no closed form for the lump solutions to NLS, but
they have been computed numerically [14, 17]. These localized solutions correspond
to approximate envelopes of traveling wave solutions to the Model.

Line solitary waves, and fully localized, lump solitary waves have been computed
to Euler [2, 5]. Here, we have computed such solutions for the Model. Example cross
sections of line solitary waves are in Figure 1 and example lump solitary waves are in
Figure 2. (Although many families of exotic solitary waves have been found in these
types of problems, we follow the two principal families—that is, those with monoton-
ically decaying envelopes—which, following the literature, we denote elevation and
depression waves, respectively.) The speed-amplitude and speed-energy relations of
depression line solitary waves in the Model are compared to those of Euler in Figure 3.
The traveling wave solutions to the Euler equations were computed using a boundary
integral formulation similar to that used in [2]. The speed-energy relations of lump
solutions are given in section 4. Here, and throughout the paper, we have used the
H1 norm as a proxy for the energy since we do not have a closed form for the energy
of the Model. It can be shown that the leading order term in the energy for Euler
with surface tension is ||η||2H1

[20]. The details of the computational method used to
find the lump solitary wave solutions are given in Appendix A.

4. Stability of solitary waves. The stability of wavepacket-type solitary waves
has been studied in the 1D Euler problem and the 5th order KdV equation. In both,
elevation waves are spectrally unstable and depression waves are spectrally stable
[4, 10]. In a previous work, the authors presented simple one-way models for the 1D
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Fig. 1. Example cross sections of depression (left) and elevation (right) line solitary wave

solutions to the Model. Only a portion of the computational domain is shown.
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Fig. 2. Examples of depression (left) and elevation (right) lump solitary wave solutions to the
Model. Only a portion of the computational domain is shown.
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Fig. 3. Left: The speed dependence of the infinity norm of depression solitary waves on a 1D
free surface in the Model (diamonds) compared to waves in Euler (circles). Right: The H1 norm
of depression waves plotted as a function of the wave speed; diamonds are the Model, and circles
are Euler. In both figures, the dashed curves are the approximations from the NLS equation, with
coefficients from the Model, to second order given in section 4.
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deep water regime, where the stability results are similar [20]. (In one of the models,
presented for contrast, depression waves change stability at finite amplitude, which is
a consequence of a nonmonotonic speed-energy plot.) In this section we investigate
the stability of both line and lump solitary waves of the Model.

The stability of line solitary waves to perturbations in the propagation direction
(the 1D problem) follows the Euler result: elevation waves are unstable and depression
waves are stable. This can be confirmed with both eigenvalue and time-dependent
computations (not shown). These stability results are beyond the reach of the NLS
equation, which does not differentiate between elevation and depression waves.

Consider then the stability of line solitary waves with respect to transverse per-
turbations. This is a classic problem: the KP equation was derived to study the
stability of the KdV soliton with respect to transverse perturbations [25]. Since then
this instability has been studied at length [26, 27]. In the context of gravity-capillary
waves, wavepacket solitary waves of the 5th order KdV equation are unstable to trans-
verse perturbations in the context of the corresponding KP equation [28], and line
solitary waves are transversely unstable within the full Euler equations [29]. In [14]
the authors also relate the transverse instability of a line wavepacket solitary wave
to the transverse instability of its envelope within the NLS equation. Here we briefly
present this argument applied to the Model.

The line solitary waves of the NLS equation (3.3) are unstable to transverse
perturbations if the wavenumber of the perturbation κ = (κx, κy) is sufficiently small

in the y direction, 0 < κy <
√
3

|λ2| [30]. The line solitary waves in the NLS equation

correspond to physical waves

η = 2ε

∣∣∣∣ 2χ
∣∣∣∣
1/2

sech

(
ε(x−√

2t)√|λ1|

)
cos(x −

√
2t) +O(ε2).

Recasting the stability condition in terms of the waves’ height ||η||∞ we find that the
line solitary wave above is unstable for perturbations with wavelength

(4.1) |ky| <
∣∣∣∣ 3χ8λ2

∣∣∣∣
1/2

||η||∞ =

√
3

2
||η||∞.

Equation (4.1) predicts that line solitary waves of arbitrary amplitude are unstable to
sufficiently long perturbations. Depression line solitary waves of the Model have been
evolved numerically, with a perturbation of ky = 1

8 . Four different line solitary waves
are compared: two on either side of the predicted threshold ||η||∞ ≈ 0.102. The two
waves below this threshold are stable, and the two waves above this threshold are
unstable as shown in Figure 4.

Next, we consider the stability of fully localized lump solitary waves. Two families
of lump solitary waves were computed (elevation and depression lumps), defined by
the displacement from the mean level at the waves’ center. We shall find that elevation
lumps are unstable and that depression lumps are stable at small amplitude, unstable
for a range of intermediate amplitudes, and then stable at larger amplitudes.

One type of instability of depression lumps can be understood by the dependence
of the wave’s energy on its speed. Perturbations of traveling waves have a neutral mode
that arises from their Galilean invariance, and a change of stability of the system due
to a bifurcation from this mode may arise only at local extrema of the speed-energy
curve. This has been shown in Hamiltonian systems [31] and in a class of dispersive
nonlinear equations [32]—of which the KdV equation [28] and KP equation [17] are
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))η̄, where η̄ is a line solitary wave. The

diamonds, stars, circles, and squares correspond to ||η̄||∞ equaling 0.15, 0.125, 0.1, and 0.075,
respectively. The predicted threshold for stability is ||η̄||∞ = 0.102.
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pointing down) plotted as a function of the waves speed. Right: The largest unstable eigenvalue of
depression waves, estimated from the nonlinear evolution. The change of stability corresponds to
the extrema of the energy.

examples. Despite the fact that the Model does not belong to these classes, and
that we do not have an explicit form for the energy, we conclude, numerically, that
the stability of traveling lumps can still be understood via the graph of the wave
speed versus its approximate energy (see Figure 5). The figure confirms an unstable
eigenvalue in an interval approximately equal to the interval in which the approximate
energy is increasing with speed.

The small amplitude limit of the speed energy relation can be obtained when
the envelope of the solution to the truncated Euler equation is close to the localized
solution to the NLS equation. The solutions are approximated by the series

(4.2) η(x, y, t) = εA(ε(x− ct), εy, ε2t)eiΘ + ε2DA2e2iΘ + ∗+ · · · ,

where A solves (3.2) and D = −2. Substituting into the approximate energy
∫
η2x+η2,
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and collecting terms gives asymptotic predictions for the wave energy:

1D Energy ∼ εI0 + ε3I1,(4.3a)

2D Energy ∼ I0 + ε2I1.(4.3b)

The coefficients are

I0 = 4
Π|λj |1/2

|χ|
∫

ρ2 dxdy, I1 =
Π|λj |1/2

|χ|
∫

10|D|2
|χ| ρ4 +

2

|λ1|ρ
2
x +

2

|λ2|ρ
2
y dxdy.

For 1D waves ρy = 0, the integrals are only in x, and the product Π|λj |1/2 = |λ1|1/2.
The variable ρ(x, y) satisfies the eigenvalue problem

(4.4) Δρ+ ρ3 = Wρ,

obtained by setting A = χ−1/2ρ(|λ1|−1/2X, |λ2|−1/2Y )eiWτ and with the conditions
that ρ → 0 at infinity and ρ(0, 0) = 1. We define Δc as the difference between the
solitary wave speed C and the linear bifurcation speed c; then Δc = C−√

2 ∼ −ε2W .
For right-traveling waves, Δc < 0. The family of amplitude-dependent solutions
results from the scaling invariance ρ → μρ(μX, μY ), W → μ2W .

The NLS solitary wave solution can be used to determine W and the integrals of
ρ for 1D waves. Using ρ(x) = sech(x/

√
2) yields

W = 1/2,

∫
ρ2 = 2

√
2,

∫
ρ4 = 4

√
2/3,

∫
ρ2x =

√
2/3.

Numerically computed radially symmetric ground state solutions to (4.4) for the 2D
problem give

W ≈ 0.204,

∫
ρ2 ≈ 11.70,

∫
ρ4 ≈ 4.81,

∫
ρ2x =

∫
ρ2y ≈ 1.20.

For the Model, the energy predictions are

1D Energy ∼ 25/4|Δc|1/2 + 23/416

3
|Δc|3/2,(4.5)

2D Energy ≈ 8.27 + 67.8|Δc|.(4.6)

Similarly, one can also get the speed-amplitude relation valid for both line and lump
solitary waves

(4.7) ||η||∞ ∼
∣∣∣∣ 4

χW

∣∣∣∣
1/2

(Δc)1/2 +

∣∣∣∣ 2DχW
∣∣∣∣Δc.

The 1D predictions are compared to the computations in Figure 3. In two dimensions
the situation is very interesting: the waves have finite energy as the amplitude tends
to zero. The value of this energy in our computation does not agree very well with
the prediction (approximately 8.27 versus 7.25), probably due to domain truncation
errors, which become important near bifurcation.

A further type of possible instability is the focusing instability, related to the
phenomenon of wave collapse in the 2D focusing NLS equation. To understand this,
consider the rescaled elliptic NLS equation, which reads

(4.8) iAτ +AXX +AY Y = −|A|2A,
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with the two conserved quantities

M =

∫
|A|2dXdY and E =

∫
|∇A|2 − 1

2
|A|4dXdY.

A well-known result is that localized solutions with E < 0 initially have a finite time
singularity. The argument, due to Zakharov, considers the second derivative of the
second moment of |A|2:

(4.9)
d2

dt2
M2 =

d2

dt2

∫ ∫
(X2 + Y 2)|A|2dXdY = 8E.

Since E is a constant of motion, M2 will become zero in finite time when E < 0.
Since M > 0, this implies a concentration singularity at the origin. This singularity
is known as wave collapse. On the other hand, if E > 0, we expect the M2 to increase
without bound, and therefore the wave disperses.

Localized lump solutions of (4.8) satisfy (4.4) with A = ρ(X,Y )eiWτ and have
E = 0 since M2 is constant. In fact this can be used to prove that W > 0 since from
(4.4) and E = 0

W =

∫
ρ4 − ∫ (∇ρ)2∫

ρ2
=

∫
ρ4

2
∫
ρ2

.

If we have a solution A with E = 0 (denoted E[A] = 0), then E[(1 + δ)A] < 0 when
δ > 0 and E[(1 + δ)A] > 0 when −1 < δ < 0. Thus, for amplitude perturbations, the
lump solitary waves lie at the boundary between wave collapse and dispersion.

The “ghost” of this property of the envelope equation appears in the primitive
Model equation. To see this, we perturb the magnitude of a solitary wave η̃,

η = (1 + δ)η̃,

and then use η as initial data for numerical time evolution. We use a solitary wave
η̃ which is stable according to the prediction of its speed-energy plot. The resulting
evolution is dependent on both the sign and size of the perturbation, δ. For δ > 0,
when the NLS equation predicts wave collapse, the Model’s waves grow initially and
evolve to what appears to be a quasi-periodic oscillation about a stable wave at
larger amplitude (slower speed). We do not see evidence of a singularity, and in
the Lyapunov sense, the wave appears stable. For δ < 0, when the NLS equation
predicts that the wave disperses, there are two observed phenomena. For very small
perturbations, the waves in the Model evolve to oscillate about a stable wave of smaller
amplitude (faster speed) and thus again appear Lyapunov stable. For slightly larger
perturbations, waves in the Model disperse into a radiated wave field, as predicted
by the focusing NLS equation. The conclusion is that the focusing mechanism of the
2D NLS equation is at play, leading to transient growth, but that the waves chosen
appear Lyapunov stable. The evolution of the wave magnitude for four perturbations
is shown in Figure 6.

Lastly, we consider a possible instability due to resonant triads of waves. This
instability is completely outside the NLS regimes as it involves waves “distant” in
wavenumber space. We shall compute the triad equations for the resonant interac-
tions of weakly nonlinear monochromatic waves in the Model, one of which has the
wavenumber of the carrier wave for our solitary wave. The triad equations can be used
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Fig. 6. The evolution of ||η||∞, normalized by its initial value, of a depression solitary wave
with its magnitude perturbed, η = (1 + δ)η̃. For positive perturbation, δ = 0.02 (stars), the wave
oscillates about a larger (slower) depression wave. For negative perturbation, δ = −0.02 (circles),
the wave disperses into a radiated wave field. For smaller perturbations, here δ = 0.001 (triangles
pointing up) and δ = −0.001 (triangles pointing down), the wave oscillates about a slightly slower
(or faster, respectively) wave of approximately the same amplitude. The unperturbed wave in all
cases has ||η||∞ = 0.3305.

to understand the primary nonlinear interactions at quadratic order [33]. Consider
the ansatz

(4.10)
η = εA1(εt)e

ik1·x−iω1t + εA2(εt)e
ik2·x−iω2t + εA3(εt)e

ik3·x−iω3t + ∗+ ε2B(x, t) + · · · ,
where ∗ refers to the complex conjugate and ωi =

√|ki|+ |ki|3. At O(ε2) a solvability
condition for B(x, t) is that the Ai solve the triad equations

−2iω1A1,T + C(−k2,k3)Ā2A3 = 0,(4.11a)

−2iω2A2,T + C(−k1,k3)Ā1A3 = 0,(4.11b)

−2iω3A3,T + C(k1,k2)A1A2 = 0(4.11c)

whenever

k1 + k2 = k3 and ω1 + ω2 = ω3,

with C(ki,kj) being the triad interaction coefficients obtained in a straightforward
way from the Model.

Given that the solitary waves solutions to the Model are supported near wave-
number k = (1, 0), it is natural to examine the predictions of the triad equations
for a set of waves including this one. We consider triads of the form k1 = (1, 0),
k2 = (α, β), k3 = (1 + α, β). There is a one parameter family of such triads, includ-
ing the simplest case β = 0 with α ≈ 0.4951. We use (4.11) to study the stability of
A1 with respect to perturbations in the other two waves in the triad by linearizing
about A1 = 1, A2 = 0, A3 = 0 [33], setting

A1 = 1 + μÃ1, A2 = μÃ2, and A3 = μÃ3

(for μ small) and neglecting quadratic terms in μ. This leads to the “pump-wave”
approximation for, say, Ã2,

Ã2,tt +
C(−k1,k3)C(k1,k2)

4ω2ω3
Ã2 = 0.
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Fig. 7. The evolution of a line solitary wave into a lump solitary wave and some radiation,
viewed from above. From left to right t = 0, 170, and 300.

From this equation we can conclude that the solution A1 = 1 is stable in the triad
equations (4.11) when the product C(−k1, k3)C(k1, k2) > 0. This can be shown nu-
merically from the interaction coefficients for the full one parameter family of possible
triads in our system (and is related to the fact that in Hamiltonian systems, A1 is
stable in any triad with |k2| < |k1| < |k3|).

5. Dynamics of solitary waves. In this section we present some dynamics of
solitary wave solutions to the Model. It is evolved numerically using a pseudospectral
method in space, and 4th order Runge–Kutta in time, as in [34]. Typical numbers
of Fourier modes in (x, y) used in the time-dependent computations are 512 × 128.
Three types of initial value problems are considered. First, line solitary waves with a
small transverse perturbation are evolved. Second, unstable lump solitary waves are
evolved. Finally, stable lumps are collided.

In section 4, a range of unstable transverse wavenumbers for line solitary waves
of a particular amplitude was derived. This threshold was explored numerically and
shown to agree well with numerical results. Here we observe how this linear instabil-
ity manifests itself in the nonlinear wave evolution. The result is that, for small to
moderate amplitudes, unstable line solitary waves evolve into depression lump soli-
tary waves through a focusing mechanism. Snapshots of one evolution of a depression
line solitary wave into a depression lump are shown in Figure 7. For larger ampli-
tudes (||η||∞ ≈ 0.3) we observed cases in which there was evidence that the focusing
mechanism resulted in wave-breaking, that is, ηx → ∞. Of course, such phenomena
is outside the realm of validity of the Model.

The stability of lump solitary waves was predicted using connections to the speed-
energy plot; see Figure 5. From this prediction, we expect all elevation lumps to have
the same stability properties; i.e., that they are unstable, as are their analogues in
1D and other model equations, but that depression lumps change stability at the
local energy extrema as predicted by the growth rates. Thus we expect there to be a
band of unstable depression waves at intermediate amplitudes. These predictions were
confirmed numerically, but the nature of the nonlinear evolution of the unstable waves
is different. Elevation waves are unstable and evolve into depression waves, whereas
unstable depression waves radiate into linear waves. An example of an unstable
elevation wave evolving into a depression wave is shown in Figure 8. An example
of the unstable evolution of an intermediate amplitude depression wave is shown in
Figure 9.

In addition to considering the dynamics of unstable lump solitary waves, we also
consider the collisions of stable depression lumps. Three collision experiments are
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Fig. 8. An unstable elevation wave at times t = 0 (left), t = 425 (center), and t = 475 (right).
The deepest trough left of the centerline becomes a depression wave; the deepest trough right of the
centerline dissolves into radiated waves. The computation is shown in a frame moving with the
speed of the original wave, which moves to the right.
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Fig. 9. Snapshots of the evolution of an unstable depression wave in the Model. From left to
right: t = 0, 2250, and 2650. The computation is shown in a frame moving with the speed of the
original wave.

presented. In the simplest collision, the waves move in opposite directions, toward
each other, with their centers aligned. We refer to these as head-on collisions, and
there appears to be no visible interaction between the waves. An example of a head-
on collision is shown in Figure 10. In a second collision experiment, both waves
move in the same direction with their centers aligned. The smaller (faster) wave
overtakes the larger (slower) wave. We refer to this interaction as an overtaking
collision. Overtaking collisions exhibit significant nonlinear interaction and result
in a lone solitary wave, which is larger than both of the waves which collided to
form it, and a radiated wave field. Snapshots of an overtaking collision are shown
in Figure 11. The last experiment here is an overtaking collision, where the wave
centers are not aligned. The goal of this experiment is to observe interactions which
are not as weak as head-on collisions, yet not as strong as overtaking collisions with
the centers aligned. If the offset is very small, offset overtaking collisions are identical
to overtaking collisions. Similarly, for a very large offset, the interaction is very small
and appears to be elastic, as in head-on collisions. For moderate displacements, we
observe a qualitatively different behavior: two waves which interact to form two new
waves of different sizes, moving at different speeds from those which formed them. In
this interaction, little or no waves are radiated from the interaction. An example of
such an offset collision is shown in Figure 12.

6. Conclusion. We present a quadratic truncation of Euler’s equations for po-
tential flow as a new model for solitary gravity-capillary waves in deep water. This
model is isotropic and thus differs from the unidirectional and weakly 2D model in-
troduced in [14] in much the same way as 2D Boussinesq equations (also called the
Benney–Luke equations) differ from the Kadomtsev–Petviashvili equation in shallow
water.
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Fig. 10. A head-on collision of solitary waves in the Model. The collision is shown in a
stationary frame. Such a collision is outside the scope of the unidirectional model in [14].
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Fig. 11. Snapshots of an overtaking collision of two depression lump solitary waves, where the
wave centers are aligned in the Model. The images are shown in a frame moving to the left at speed
equal to that of the larger and slower wave, which is on the left in (a). After the collision, a lone
solitary wave, larger than both of the original waves, remains. Some waves are radiated during the
interaction.
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Fig. 12. Snapshots of an overtaking collision of two depression lump solitary waves, where the
wave centers are offset by 10 space units in the Model. The images are shown in a frame moving to
the right at speed equal to that of the larger and slower wave, which is on the right in (a). After the
interaction, two waves remain, but they have different amplitudes, speeds, and propagation direction
than the original waves.
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We study in detail two branches of solitary wave solutions on both a 1D free
surface and a 2D free surface. These waves are called elevation and depression waves,
based on their central displacement from the mean level. The waves on the 1D free
surface have the same stability as their Euler counterparts. These waves can be ex-
tended trivially as line solitary waves on a 2D free surface. The waves’ envelopes
are approximated by line solitary wave solutions of the focusing NLS equation. Line
solitary waves are unstable to transverse perturbations, at a threshold predicted by
the NLS equation. The stability of lump solitary waves on a 2D surface is considered,
both via the speed energy plot and by numerical time evolution. We find that eleva-
tion lumps are unstable and the stability of depression lumps depends on the wave
amplitude. The unstable band occurs between two extrema in the speed-energy plot.
The dynamics of unstable waves are also investigated. Unstable elevation waves evolve
into depression waves and radiated wave fields. Unstable depression waves decay into
a radiated wave field. Other possible instabilities are considered: the wave collapse
predictions of the NLS equation for the wave envelope are compared to dynamics of
waves in the physical equation, and triad instabilities are ruled out. Three collisions
of lump solitary waves are presented, capturing a broad range of behaviors. Interac-
tions are presented where two waves collide almost elastically, where two waves form
one wave, and where two waves form two waves, different from the original ones. In
the latter two cases a noticeable radiated wave field is present We find it remarkable
that, in spite of all the solitary waves we consider being subject to the wave collapse
or dispersion mechanism of the focusing NLS equation, they form robust solutions in
the time-dependent evolution.

Appendix. Computing solitary waves. In this appendix we discuss the
computation of solitary wave solutions to the model equation. The Model has two
classes of solitary waves on a 2D free surface: those that decay only in the propagation
direction (line solitary waves) and those that decay in both directions (lump solitary
waves). Line solitary waves are the trivial 2D extension of solitary waves on a 1D
free surface, constant in the transverse direction. Line solitary waves are computed
in the 1D version of the Model using Newton’s method on the Fourier coefficients, as
in [20, 13]. The NLS wavepacket is used for an initial guess, η ∼ εsech(εx) cos(x).

To compute lump solitary waves, we use a more sophisticated continuation pro-
cedure. First, traveling solutions to the Model are expanded in Fourier components:

η(x, t) =
∑
m

∑
n

an,meikn(x−ct)+ikmy.

The equation is projected onto M Fourier modes in x and N Fourier modes in y,
yielding a nonlinear system of NM algebraic equations for NM + 1 unknowns: the
NM Fourier amplitudes and the speed c. We add to this an equation fixing a measure
of the solution amplitude (either a norm or the height at the central crest). Solutions
for different amplitudes are computed by continuation. It is, however, difficult to find
an appropriate initial guess for the solutions (focusing NLS lumps do not appear to
give good results). Thus we use an algorithm similar to that used in [5, 2]. The idea
is to add an artificial forcing to the Model:

(A.1) ηtt +Ω2η +N(η, ηt) = δF (x− ct, y).

The forcing function used here is

F (x− ct, y) =
d2

dt2

(
e−0.15(x−ct)2−0.01y2

)
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SOLITARY GRAVITY-CAPILLARY WAVES 2407

1.38 1.385 1.39 1.395 1.4 1.405 1.41 1.415
0

1

2

3

4

5

Speed

||η
|| 22

Fig. 13. The continuation diagram for the Model. Diamonds mark the forced branches (ε fixed,
||η||∞ increasing); circles mark the branches where ε decreases to zero; triangles mark the unforced
branches (ε = 0; triangles pointing up are elevation waves; triangles pointing down are depression
waves).

Newton’s method is used to find solutions to (A.1) with small forcing (a typical value of
δ is 0.1) using η = 0 as an initial guess. The computed solution is a small perturbation
of the linear solution to the forced problem, which moves at the speed of the forcing.
Continuation is used to compute a forced branch of solutions of increasing amplitude
with fixed amplitude forcing, allowing the speed to vary. In the large amplitude range
of this branch, the forcing becomes small relative to the nonlinearity. Once this is
the case, we can decrease the amplitude of the forcing δ up to a solution to the
unforced Model. The resulting solution is used to find continuous families of these
waves, again via continuation. A diagram showing this continuation procedure is
presented in Figure 13. The typical numbers of modes used in the forced branches of
the continuation process are N = 128, M = 32. Once unforced solutions are found,
these numbers are increased to N = 256 and M = 64.
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