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Helmholtz-Type Regularization Method for
Permittivity Reconstruction Using Experimental

Phantom Data of Electrical Capacitance Tomography
Manuchehr Soleimani, Member, IEEE, Phaneendra K. Yalavarthy, and Hamid Dehghani

Abstract—Electrical capacitance tomography (ECT) attempts
to image the permittivity distribution of an object by measuring
the electrical capacitance between sets of electrodes placed around
its periphery. Image reconstruction in ECT is a nonlinear ill-posed
inverse problem, and regularization methods are needed to stabi-
lize this inverse problem. The reconstruction of complex shapes
(sharp edges) and absolute permittivity values is a more difficult
task in ECT, and the commonly used regularization methods in
Tikhonov minimization are unable to solve these problems. In the
standard Tikhonov regularization method, the regularization ma-
trix has a Laplacian-type structure, which encourages smoothing
reconstruction. A Helmholtz-type regularization scheme has been
implemented to solve the inverse problem with complicated-shape
objects and the absolute permittivity values. The Helmholtz-type
regularization has a wavelike property and encourages variations
of permittivity. The results from experimental data demonstrate
the advantage of the Helmholtz-type regularization for recovering
sharp edges over the popular Laplacian-type regularization in the
framework of Tikhonov minimization. Furthermore, this paper
presents examples of the reconstructed absolute value permittivity
map in ECT using experimental phantom data.

Index Terms—Electrical capacitance tomography (ECT),
forward and inverse problems, Helmholtz-type regularization,
Laplacian-type regularization, permittivity imaging.

I. INTRODUCTION

E LECTRICAL capacitance tomography (ECT) seeks to
image materials with a contrast in dielectric permittivity

using exterior measurements of capacitance across a system of
electrodes [1]–[3]. Potential applications include monitoring of
oil and gas mixtures in oil pipelines and flow measurement in
pneumatic conveying [4].

The inverse problem in ECT is nonlinear and ill posed,
similar to the inverse conductivity problem of Calderón [9].
Regularization techniques have been adapted to stabilize the
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inversion. Various image reconstruction methods have been
used to solve the ECT problem, with each of them having
a different regularization property. The Landweber iteration
method, “linear back projection,” and a regularized one-step
reconstruction method have been applied to the reconstruction
of images from experimental ECT data [14], [19].

In ECT, it is highly desirable to reconstruct the absolute
values of permittivity of the object. Accurate reconstruction of
the permittivity values is particularly desirable in multiphase
flow imaging and imaging of the concentration of the materials.
Our previous study reports an improvement in the shape of re-
constructed objects and the separation between nearby objects
by using a nonlinear image reconstruction algorithm [3]. Based
on our best knowledge, no results have been presented to show
the reconstruction of the absolute permittivity values using ex-
perimental data of ECT. This paper shows the reconstruction of
absolute permittivity values in two- and three-phase materials.
The most common regularization in Tikhonov minimization is
the standard Laplacian-type method, which is not well suited to
the problems with sharp transitions in permittivity and absolute
value reconstruction.

The application of total variation (TV) regularization to the
general form of the elliptic inverse problem was presented in
[8]. The application of TV was explored in the literature [6], [7]
for electrical impedance tomography using simulated data. The
application of TV regularization to reconstruct sharp edges and
to account for jumps in permittivity profile using experimental
data has been demonstrated in [3]. The TV regularization [10]
is nonquadratic, and special attention is required to use them
in a nonlinear inverse problem. In this paper, the most popular
quadratic-type penalty function in the framework of Tikhonov
minimization is used. Specifically, an investigation of the ap-
plication of the Helmholtz-type regularization to the ECT in-
verse problem, along with a comparison to the commonly used
Laplacian-type regularization, is presented. Therefore, the main
contributions of this paper are the quantitative reconstruction of
dielectric permittivity using experimental data, the use of ab-
solute capacitance measurement data (normalized capacitance
data are commonly used [2] in ECT), and a Helmholtz-type
regularization method instead of the Laplacian-type regu-
larization. These developments enabled us to reconstruct
complicated-shape objects and perform quantitative permittiv-
ity reconstruction.

This paper is organized as follows. The forward and inverse
ECT problems are reviewed in Section II. This includes a brief

0018-9456/$26.00 © 2009 IEEE
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Fig. 1. PTL ECT system showing the sensor, the ECT system, and the host
computer.

discussion of the finite-element method (FEM) for modeling
of the forward problem, sensitivity calculation, and nonlinear
iterative methods for the inverse solution. In Section III, regu-
larization methods for the Tikhonov minimization are explored.
The main results, including the comparison of the Helmholtz-
type and the Laplacian-type regularization for experimental
ECT, are presented in Section IV.

II. FORWARD PROBLEM

The computational ECT problem mainly includes the for-
ward and inverse problems. Fig. 1 shows the eight-electrode
experimental ECT system [15] that has been used for the
collection of the experimental data in this paper.

The Poisson equation that is used to solve the forward
problem can be given by

∇ · (ε∇u) = 0 in Vd (1)

where u is the electric potential, ε is the permittivity, and
Vd is the region containing the field. With a suitable bound-
ary condition [3], [12], the forward problem can numerically
be solved. Most popular numerical methods for solving the
forward problem make use of FEM, as it offers flexible and
reasonably accurate modelling to model the complex-shaped
regions. In FEM, the imaging domain is divided into small
elements (mesh) and solved assuming that the basis function
that supports these elements is piecewise continuous (Galerkin
formulation). Here, a 2-D FEM mesh that represents the imag-
ing domain considered here with 6400 triangular elements was
used, with the number of elements in the region of interest being
725. In the case of experimental capacitance data, the data set
is commonly normalized using a calibration procedure [17].
These normalized capacitances are usually used to reconstruct
ECT images [3]. Note that there is no calibration procedure
involved for the experimental data used in this paper (absolute
capacitance data were used in the reconstruction procedure).
The sensitivity formula based on the mutual energy method
[3], [5] has been used as an efficient method for calculating the
updated Jacobian matrix.

III. INVERSE PROBLEM AND REGULARIZATION METHODS

The objective function for the Tikhonov minimization
method that can be used to find a distribution for ε is given by

Ω = ‖Cm − F (ε)‖2 + G(ε, εref ) (2)

where Cm is the vector of capacitance measurements, and the
forward solution F (ε) is the predicted capacitance from the
forward model with permittivity ε. G(ε, εref ) is the penalty
term (also known as the regularization term). This term is
necessary to overcome the ill-posedness of the problem. Often,
this incorporates the additional information about the solution
space. There are different types of the regularization methods to
solve an ill-posed inverse problem [21]. It is necessary for the
regularization term to be complementary to the measurement
data, be as realistic as possible, and more importantly be able to
stabilize the inverse problem. The result of the Landweber itera-
tion method shows an improvement in image quality compared
to that of linear back projection [19]. The nonlinear Landweber
iteration method will further improve the reconstructed image
quality similar to other nonlinear reconstruction methods well
established in ECT [3], but the number of linear iterations in
each nonlinear step has to be empirically selected by the user to
produce the best quality image. Other Krylov subspace methods
such as preconditioned conjugate gradient [11] can also act as
a regularization to constrain the solution space. The problem
with this type of regularization is the difficulty associated
with the inclusion of prior information. However, a thoughtful
implementation can lead to a revised regularization method for
improving the quality of the ECT images (discussed in [14]).

In the case of Tikhonov minimization, which is the most
popular technique for solving the ill-posed problem, G(ε, εref )
can be implemented in discrete form using a regularization
matrix (L), where εref is an a priori guess for the permittivity
distribution, and has the form of

G(ε, εref ) = ‖α(εn − εref )‖2 (3)

where α is the regularization parameter that balances the data-
model misfit with the penalty term. The regularization matrix
L acts as a filter that can suppress the high-frequency noises.
It can also include the structural prior information about the
imaging domain [22], [23]. Minimizing (2) with respect to ε
and linearizing the problem lead to the iterative update equation
(for the (n + 1)th iteration)

δεn =
(
JT

n Jn + α2LT L
)−1

×
(
JT

n (Cm − F (εn)) − α2LT L(εn − εref )
)
. (4)

In all the studies conducted here, the permittivity correspond-
ing to free space (ε = 1) was used as an initial guess in this
iterative procedure. The Jacobian matrix J is a discretization
of F ′(ε). For n = 1, this is a linear reconstruction algorithm.
Here, Jn is the Jacobian calculated with permittivity εn. As
the problem is ill posed, the condition number of J is very
high. Small changes in the measurements lead to large changes
in ε, making the estimation problem extremely susceptible
to the system noise. To overcome this, a penalty term was
added in the minimization scheme (2). Even though the penalty

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on March 16,2010 at 11:16:54 EDT from IEEE Xplore.  Restrictions apply. 



80 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 59, NO. 1, JANUARY 2010

term used in this paper has the form given by (3), the choice
of regularization matrix L makes the type of regularization
unique. The identity matrix and diagonal matrix of the so-
called NOSER Hessian regularization matrix [20] can also be
used in this Tikhonov minimization scheme. The generalized
singular value decomposition of the regularized system using
this diagonal matrix allows the analysis of these regularization
terms [21]. In this paper, a systematic comparison of the well-
known Laplacian-type regularization with the Helmholtz-type
regularization is presented. Sections III-A and III-B provide the
details of these regularization matrices.

A. Laplacian-Type Regularization Matrix

The Laplace equation in a variable φ(x) is given by
(
∇2φ(x)

)
= 0. (5)

A finite-difference method for solving the Laplace equation in
one dimension having M nodes with step size d makes this
equation as follows:

(
∇2φ(x)

)
d2 = φ1 + φ2 · · · − φM/2 + · · · + φM = 0. (6)

Dividing the whole domain by −M gives

−φ1

M
+

−φ2

M
+ · · · + φM/2 + · · · + −φM

M
= 0. (7)

This equation provides a mathematical formulation for the
relation between any two points in the given region that obeys
the Laplace equation. The regularization matrix L is chosen in
such a way that it can relate each point in the imaging domain
to the rest of the points (here, a point represents the center of
each element). This leads to a matrix form of L with Lij = 0
if points i and j are from different regions, Lij = −1/M if
points i and j are in the same region (M is the number of points
included in that region), and Lij = 1 for i = j. With this form,
LT L approximates the second-order Laplacian operator with
smoothing effect for the points that belong to the same region
and allows sharp transition between regions. Note that, in this
paper, the whole imaging domain was chosen to be one region,
making all the elements in the imaging domain connected.

B. Helmholtz-Type Regularization Matrix

The Helmholtz equation for a damped wave in a variable
φ(x) for a wavenumber k can be written as

(
(∇2 − k2)φ(x)

)
= 0. (8)

With wavenumber k = 0, this equation becomes the Laplace
equation. Similar to the finite-difference approximation to the
Laplace equation, this equation can be discretized as

(∇2 − k2)φ(x)d2 = φ1 + φ2 · · · + φM = 0. (9)

Dividing the equation by −(M + (kd)2) gives

−φ1

(M + (kd)2)
+

−φ2

(M + (kd)2)
+ · · · + φM/2

+ · · · + −φM

(M + (kd)2)
= 0. (10)

With this, an L matrix can be established that relates each
point (center of an element) to all other points. Again, a region
is a circle surrounding the point with a given radius (here,
we choose 1/16 of the radius of the tank). Lij = 0 if points
i and j are from different regions, Lij = −1/(M + (kd)2) if
points i and j are in the same region that includes M points,
and Lij = 1 for i = j. In this case, LT L approximates the
second-order Helmholtz equation smoothing operator. In this
case, d is the distance between the points, and k is a weighting
factor that can be chosen to be the inverse of the length of
an inclusion based on a priori knowledge of the length of the
inclusion.

A priori structural information can be included in these regu-
larization matrices by dividing the image domain into different
regions and assuming that there is no intraregion permittivity
[22]. This a priori structural information can be developed
based on a physical model such as a fluid dynamic model in
multiphase flow or based on a priori knowledge of the internal
structures for solid material inspection. Choosing k = 0 con-
verts the Helmholtz equation to the Laplace equation; further-
more, choosing the radius of the regions to be the size of the
smallest element makes the regularization matrix an identity
matrix.

IV. RESULTS AND DISCUSSIONS

An optimal value for k has been selected based on the
smallest error between observed and reconstructed values.
To evaluate the performance of the Helmholtz-type and the
Laplacian-type regularization method, ECT measurement data
were collected with various object shapes. The shape of the
objects was chosen to represent the sharp transition in per-
mittivity profile. The objects were cross-shaped, “T”-shaped,
“V”-shaped, and rectangular-shaped objects. The absolute val-
ues of the permittivity distributions and visual inspection of
the images are used to evaluate the performance of the regu-
larization methods. The circular region of interest for imaging
has a diameter of 150 mm. In all experimental test examples,
six iterations of a Gauss–Newton algorithm are used to solve
the nonlinear image reconstruction (with recalculation of the
Jacobian at each iteration) problem of ECT [3]. To compare
the performance of the Helmholtz-type with the Laplacian-type
regularization, the regularization parameter α=α1×‖J‖/‖L‖
(where J is the first Jacobian) was selected so that the two meth-
ods can be compared with the same amount of regularization for
a given α1.

In the simulated ECT data in Fig. 2, a circular inclusion
of radius 20 mm from the center with a relative permittivity
of 1.8 and α1 = 10−4 was chosen, and the variable k was
changed, with an image error of ‖ε6 − εtrue‖, where ε6 is the
reconstructed permittivity of the sixth iteration of nonlinear
inverse solver, and εtrue is the true permittivity distribution.
Fig. 2(a) shows that 1/k = 0.003 m provides an optimal value
to generate the best image, which is shown in Fig. 2(b). In
this example, a noise with a standard deviation of 0.5% was
added to the simulated data. The optimal k value obtained
from the aforementioned example was used in the following
experimental data cases.
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Fig. 2. (a) Effect of k in the reconstructed image. (b) Reconstructed image
with 1/k = .003.

Fig. 3 shows the reconstructed images of a plastic ob-
ject (with a permittivity of 1.7) with a cross shape using
experimental (phantom) data. The Helmholtz-type regulariza-
tion and the Laplacian-type regularization were used to re-
construct these images. Different values of the regularization
parameters are used to study the effect of the amount of regu-
larization. With the regularization parameter α1 = 10−2, which
represents a higher level of regularization (more emphasis on
the penalty term), the Helmholtz-type reconstruction shows
the cross shape, and the Laplacian-type regularization tends to
smooth out the object. Fig. 3(f) shows a reduction in mismatch
error (norm of differences) between measured and simulated
capacitance data with the iteration of the nonlinear inverse
solver. Similar results were found using “T”-shaped objects
and various “V”-shaped objects, where the Helmholtz-type
method outperforms the Laplacian-type method. Fig. 4 shows
the reconstruction of a “V”-shaped object using the Helmholtz-
type and the Laplacian-type regularization method.

Fig. 5 shows another challenging example, i.e., that of two
rectangular wooden objects. Various regularization values were
tested, and the best images could be reconstructed using the
Helmholtz-type regularization. The absolute value of permit-
tivity could satisfactorily be reconstructed after nonlinear it-

Fig. 3. Reconstruction of a cross-shaped plastic object from experimental
data using Helmholtz and Laplacian regularization. The experimental data were
collected by PTL. (a) A cross-shape inclusion. (b) Laplacian reconstruction
with regularization parameter 10−2. (c) Helmholtz reconstruction with reg-
ularization parameter 10−2. (d)Laplacian reconstruction with regularization
parameter 10−4. (e) Helmholtz reconstruction with regularization parameter
10−4. (f) Reduction in mismatch error between simulated and measured data
by nonlinear iteration for (e).

erations, particularly when the Helmholtz-type regularization
is used.

Fig. 6 shows a successful reconstruction of three different
permittivity materials. A rectangular-shaped wooden object and
a circular-shaped plastic object are reconstructed in an air
background. The resulting reconstruction images show better
corner detection in the rectangular-shaped object and better
quantification of permittivity values using the Helmholtz-type
regularization. It can also be seen that the Laplacian-type
regularization produces a smoother image with fewer artifacts
than the Helmholtz regularization. In this paper, we did not find
a systematic way to find the optimal value of k. All simulation
results, same as Fig. 2, shows that the optimal k is not k = 0,
which is the commonly used Laplacian method; a selection
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Fig. 4. Reconstruction of a V-shaped wooden object from experimental data
using Helmholtz regularization. The experimental data were collected by PTL.
(a) V-shaped object. (b) Tiknonov reconstruction with regularization parameter
10−4. (c) Helmholtz reconstruction with regularization parameter 10−4, using
normalized capacitance data, where the higher permittivity filling was plastic
with permittivity of 1.7. (d) Helmholtz reconstruction with regularization
parameter 10−4. (e) Helmholtz image with upper and lower permittivity
thresholds of 1 and 2.1, respectively.

of k that creates a wavenumber that is the same size as the
smallest object (smaller corner of a complex object) is a suitable
choice. More studies are needed for the optimal selection of the
k parameter.

V. CONCLUSION

A linear iteration scheme such as the Landweber iteration
method can act as a regularization tool, but it is difficult to
include prior information in the reconstruction scheme. Here,
a simple framework that can utilize the prior information in
the regularization matrices, which have the equivalent forms of
Laplacian and Helmholtz, has been presented. The Laplacian-
type regularization assumes the smoothness of the permittivity
distribution, so the sharp edges cannot easily be recovered.
However, the shape of the targets can more accurately be
detected by using the Helmholtz-type regularization, which
encourages the spatial correlation of permittivity variation.
The Helmholtz-type regularization can be seen as a more
generalized method for incorporating the structure a priori in
image reconstruction of ECT.

Fig. 5. Reconstruction of two rectangular-shaped wooden objects from ex-
perimental data using Helmoholtz-type and Laplace-type regularization. The
experimental data were collected by PTL. (a) True shape. (b) Laplace recon-
struction with regularization parameter 10−4. (c) Helmoholtz-type reconstruc-
tion with regularization parameter 10−4.

Fig. 6. Reconstruction of a rectangular-shaped wooden object and a circular
plastic object from experimental data using Helmoholtz-type and Laplacian-
type regularization. The experimental data were collected by PTL. (a) True
shape. (b) Laplacian reconstruction with regularization parameter 10−4.
(c) Helmoholtz-type reconstruction with regularization parameter 10−4.

The Helmholtz-type regularization matrix implemented in
this paper has some measure of difference between neighbor-
ing pixels weighted by the distance between two pixels. The
measure of differences between pixel values can help to recover
the permittivity jumps and consequently achieve better absolute
value and edge detection.
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This paper has compared the Helmholtz-type and Laplacian-
type regularization methods for challenging inverse problems
that uses ECT experimental (phantom) data. The Helmholtz-
type regularization is more reliable in recovering the shape
function compared to the Laplacian-type regularization with the
same level of regularization. The absolute permittivity values
reconstructed in this paper are the first absolute permittivity
reconstruction using ECT experimental data and without addi-
tional constraints. The absolute value reconstruction using the
Helmholtz-type regularization shows better agreement with the
actual permittivity of the object.
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