

Citation for published version:
Mullineux, G & Matthews, J 2010, 'Constraint-based simulation of carton folding operations', Computer-Aided
Design, vol. 42, no. 3, pp. 257-265. https://doi.org/10.1016/j.cad.2009.12.003

DOI:
10.1016/j.cad.2009.12.003

Publication date:
2010

Link to publication

This is the author’s version. A definitive version was subsequently published in Computer-Aided Design, 42 (3),
2010, DOI: 10.1016/j.cad.2009.12.003

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161909162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.cad.2009.12.003
https://researchportal.bath.ac.uk/en/publications/constraintbased-simulation-of-carton-folding-operations(10a1c5af-0131-41e9-8de8-30874f0bade8).html

Constraint-based simulation of carton folding operations

G. Mullineuxa,�, J. Matthewsa

a Innovative Design and Manufacturing Research Centre,

Department of Mechanical Engineering,

University of Bath, Bath BA2 7AY, UK

Abstract

Cartons are a common means for packaging a variety of items. These are
usually “erected” by dedicated machines which fold the carton into shape
from a flat net. When there is a need to use new forms of carton, dedicated
machinery may not be appropriate and reconfigurable systems may be used
instead. There is a need to simulate the erection process itself to ensure
that this behaves as expected. This paper investigates the use of constraint-
based techniques to produce such a simulation. The necessary commands
are generated from the geometry of the carton net. Geometric constraints
are imposed to ensure that the net remains intact and so resolve cases where
loops of faces are present.

Key words: transforms, simulation, cartons, carton erection, folding,
packaging, origami

1. Introduction

Cartons represent a popular way of packaging a variety of consumer prod­
ucts including food items, electronic components and stationary supplies [1].
They are versatile and they are likely to increase in popularity as they have
good environmental properties in regard to recycling and degradability.

Cartons are formed or erected from flat nets of carton-board which have
been cut and printed. Additionally creases are normally pre-formed by press­
ing thin metal rules into the flat board. Typically the erection process is car­

�Corresponding author
Email addresses: G.Mullineux@bath.ac.uk (G. Mullineux),

J.Matthews2@bath.ac.uk (J. Matthews)

Preprint submitted to Computer-Aided Design August 27, 2009

ried out by dedicated packaging machines which fold along the appropriate
creases [2]. The carton is usually held in its erected state by gluing or by
tucking and locking of flaps.

For some ranges of products, there is a desire to adapt the carton to
accommodate different sizes and quantities [3]. There is also interest in
“innovative” designs of cartons [4, 5, 6] so as to provide greater appeal for
the customer. These ideas can be accommodated by designing new dedicated
machines or introducing reconfigurable processes [7]. Reconfigurability can
be obtained by the use of robots and these have been used in various ways to
fold cartons [8, 9, 10]. Additionally, there has been related interest in paper
folding [11, 12] and in the use of robots to form origami models from paper
[15].

When designing a packaging system, there is naturally a need to simulate
the machinery and its interaction with the packaging material. There are
difficulties when the material is carton-board as its properties are non-linear
[16, 17] and can vary with the properties of the environment in which pro­
cessing takes place [18]. Often numerical techniques such as finite element
analysis, with a suitable representation of the material properties, are needed
[19, 20, 21].

When dealing with reconfigurable systems, it is also important to simulate
the erection process of the carton itself. This is to ensure that the process
is feasible and no unwanted interferences occur between different parts of
the carton. It also helps in checking that parts of the net which are to be
“captured” by other parts are moved to appropriate positions. The simula­
tion also provides data for the machine in terms of settings [22] and control
parameters.

This paper looks at how to provide such a simulation of the motion of the
carton during erection. It aims to do this based on data from the original flat
net for the carton. Folding takes places along creases and these divide the
net into faces. The next section discusses the face graph [23] which shows
the adjacency between faces. When this has no loops (as can occur with
simple cartons [9, 10, 11, 24]), the erection process is one of driving all the
creases through the required angles, assuming that there are no cases of faces
interfering with each other. The interference problem is certainly an issue.
For simple cartons it is usually straightforward to see how interferences can
be avoided, but this is not the case for more general folding operations [25].

When loops are present, “gussets” exist in which panels move because
of the motion of neighbours. Section 3 discusses how transforms can be

2

applied to simulate the motion of the faces of cartons and it shows how
commands can be created to enable the angles for gusset folds to be found
using a constraint-based approach. An example of a tray carton is discussed
in the early sections. A second example of a skillet carton is given in section
4. Section 5 investigates whether the approach can be extended to more
complex folding situations and looks at an example taken from origami. In
particular this highlights the large angular changes that may be induced in
some gusset folds by relatively small changes in the positions of neighbours.
This means that care is required to ensure that constraint resolution finds
the appropriate angular positions.

2. Graphs

Consider the tray carton [4] shown in figure 1. The figure gives various
stages during the erection process. The original net is shown in figure 2.
It has fifteen face panels in total. These are numbered with the panel for
the base being numbered zero. This can be regarded as being fixed with
the other faces being moved relative to it. It is likely that a mechanism or
machine used to erect the tray acts principally on the main side walls. So
panels 1, 4, 7 and 10 are turned through 90� and panels 13 and 14 are each
turned through 180� relative to panels 4 and 10.

In the corners of the tray are four “gusset” arrangements. An example
comprises the panels 2 and 3. These need to move inwards, as seen in figure
1, and they are finally captured and held inside the short double-wall end as
panel 13 is folded over. The gussets do not require to be pushed explicitly;
they move naturally as the main panels to which they are attached move.
However, they may need to be guided during the initial stages of their motion
to ensure they move inwards and not outwards.

Also shown in figure 2 is the face graph of the carton [23]. The nodes of
this graph correspond to the panels of the carton, and two nodes are joined
if, in the carton net, the two faces have a common edge. (If the face net is
itself regarded as a planar graph, then the face graph is essentially the dual
graph.)

Similar graphs are used to represent the interconnection of the links of
mechanisms or robots [26], and they have also been used to describe the
hierarchy of “model spaces” used to represent such systems [27]. A model
space is a collection of geometric entities described with respect to a local
coordinate system. It also has associated with it a transform which maps

3

1 2

3 4

5 6

7 8

Figure 1: Folding of an origami tray carton

4

13

4

13

0 1

2

3
4

5

6

7

8

9
10

12

5
6 2

3

7
 0 1

11

8

14

12
10

9
 11

14

Figure 2: Tray carton and associated face graph

5

from the local space to another coordinate system. That second system can
either be world space or another model space. A hierarchy is created in which
the nodes are the spaces themselves and the edges can be regarded as the
transforms mapping between these. The hierarchy forms a tree in which the
root node is world space. To find how any other space relates to the world
it is necessary to map it by each of the transforms along edges between it
and world space. As the hierarchy is a tree, this sequence of transforms is
unique.

If each of the transform is specified, then the positions of each of the
model spaces is determined. So, for example, with a conventional robot,
if each of the joint angles is known, then the position of the end-effector
is established. However, in practice, one needs to take the end-effector to
a given point. This effectively creates a new edge joining the end-effector
directly to world space. This in turn creates a loop in the hierarchy and it is
no longer a tree. Once there are loops, determining the transforms is more
difficult as there is likely to be conflict depending on which way one passes
around the loops.

An example is shown in figure 3 which shows the three moving links of
a four bar mechanism. The coupler and driven links are not joined. The
corresponding hierarchy is also shown in the figure. Joining the two links
creates an additional edge (shown as a dashed line) and a loop is formed.
One way to establish the assembly is to consider the angles of the coupler
and driven links as being free. Two such links form a “dyad”. Forming
the expressions for the ends of the links and setting them equal leads to
two simultaneous non-linear equations for the angles. These can be solved
numerically by a variety of techniques.

In the case of the tray carton, each of the four gusset corners can be
regarded as a dyad. If each is thought of as being cut along its diagonal fold,
as shown in exaggerated form on the left in figure 4, then the resultant face
graph is that shown on the right of the figure. This graph is a now a tree, in
fact a spanning tree of the original graph, and its edges represent transforms
which involve rotations about the corresponding edges in the carton net. The
cuts in the dyads represent non-linear equations which need to be solved.

The approach adopted here is to deal with each dyad in terms of a geo­
metric constraint [28, 29, 30] requiring its two sides to join. Use is made of
a constraint modelling environment [31, 32] in which the geometric entities
and the constraints between them are specified via a user interface language.
What is done is to create automatically the command file for the constraint

6

world

crank

coupler

driven

crank

coupler

driven

Figure 3: Four bar mechanism and graph of spaces

modeller from a description of the net for the carton (and its dyads). The
command file specifies the constraints which need to be solved to assemble
the carton at any stage in its erection. A simulation can be obtained by spec­
ifying a sequence of values for the rotations about the uncut edges. These
can then be stepped through and at each stage the constraints resolved. The
next section looks at the creation of the command file from the carton net.

Finally in this section, a brief overview is given of the constraint mod­
elling approach which is used for the examples in this paper. A number of
approaches to constraint-based design have appeared [33, 34, 35, 36, 37, 38]
with applications including graphics, conceptual design, and embodiment
design. Various means for resolving constraints have been used including
computational reasoning and numerical solution of simultaneous equations.
The constraint modelling environment [31, 32] uses optimisation techniques
for constraint resolution. It has has an underlying language in which design
parameters are declared. These can include graphical entities such as points,
lines and arcs.

A constraint is specified as an expression involving some of the design
parameters. This is deemed to be true when its value is zero; if it has a
non-zero value (as a real number) then this is a measure of its falseness. For
each set of constraints, the user specified which parameters can be changed
in order to satisfy those constraints. The system then treats the sum of the

7

13

4

13

0 1

2

3
4

5

6

7

8

9
10

5

6

7
 0

2

3

12

1

12

11

10

8

9

14

11

14

Figure 4: Tray carton with cuts and associated spanning tree of face graph

8

squares of the constraint expressions as a function of the parameters which
can be varied and searches for a (local) minimum value using numerical
optimisation techniques (such as Powell’s direct search method [39]). If a
minimum of zero is found, then it is known that the constraints have been
resolved satisfactorily. A non-zero minimum suggests that the constraints
are in conflict and cannot be fully resolved.

The aim is to find a single satisfactory configuration. This means that the
initial values of the variable parameters is important as this is the starting
point for the numerical search. The approach is intended as an aid to the
designer in exploring the design space. In the early stages of the design
process, the constraints are evolving as the designer gains understanding of
the design task. Specifying the known constraints to the environment allows
their implications to be assessed so that the constraints can be modified or
extended as necessary.

As an example, part (a) of figure 5 shows a representation as a “stick
model” of the four bar mechanism given in figure 3. The lines representing
the coupler and driven links are Lcoupler and Ldriven and the constraint
to bring their ends together is

rule(Lcoupler:e2 on Ldriven:e2);

Here the extension e2 denotes the second end point of the line and on is
a binary function which returns the distance between two geometric objects;
in the case of points this is zero when they coincide.

The system finds the solution in part (b) of figure 5, when the constraint
is resolved allowing the angles of the two lines to vary (and keeping the crank
fixed). This is starting from the configuration shown in part (a). There is of
course another solution as shown in part (c). If this is the one that is desired,
then either the two lines need to be rotated “close” to this configuration
before the search is made, or additional constraints imposed to disallow the
other solution.

3. Transforms

This section describes how a description of the geometry of the original
carton net is used to create a simulation of the erection process. The de­
scription of the net is as a collection of points and faces supplied in a data
file. This file is processed by a stand-alone pre-processor program to create

9

Lcrank

Lcoupler

Ldriven

Figure 5: Constraint resolution for links forming a dyad

commands for the constraint modelling environment. It is within this that
the simulation is performed.

Each point represents the vertex of one of the face panels. It is labelled
with a name and its coordinates are specified using a suitable coordinate
frame for the net. Each face is specified as the sequence of points around it
(in an anticlockwise sense). The pre-processor program needs to determine
the hierarchy of the faces corresponding to the spanning tree of the face graph
that is to be used. This can be done automatically by declaring within the
data file which edges have been cut and which remain; this gives sufficient
information for the pre-processor to determine the hierarchy. It can also be
achieved, more simply, by tagging each face with a reference to the next face
in the hierarchy. The base face is used as the root node of the hierarchy.

The pre-processor program generates commands to create lines repre­
senting the boundary of each face. Each internal line is created twice: once
for each face in which it lies. For convenience, call the “joining edge” of
a face that edge which is common to it and the next face in the hierarchy
nearer to the base. The lines are created in a local coordinate system for the
face. This is chosen so that its joining edge forms the local x-axis. Figure
6 shows two adjacent faces f and F with f being nearer to the base. The
local coordinates for face F use point (X0, Y0) as the origin, with the x-axis
going towards point (X1, Y1). If the typical point in face F has coordinates
(X, Y) with respect to the frame of the net, these can be expressed as a
column vector of homogeneous coordinates [X, Y, 0, 1]T . Then transforming

10

�	 �

by pre-multiplying by the matrix

cos θ sin θ 0 −X0 cos θ − Y0 sin θ
⎤	 ⎣ ⎤ − sin θ cos θ 0 X0 sin θ − Y0 cos θ ⎣ ⎤	 ⎣ �	 0 0 1 0 ⎡

0 0 0 1

where θ is the angle between the joining edge and the global x-axis, has the
effect of transforming the point to the local coordinates of the face.

(X1,Y1)F

f
(X0,Y0) (x1,y1)

(x0,y0) towards
baseα2

β α1

Figure 6: Transforms between two adjacent panel faces

11

�	 �

As noted previously, the edges of the face graph can be regarded as trans­
forms which relate one face to the next. For simplicity, the pre-processor sets
up two transforms to be used one after another. A similar technique is used
in [40]. Within the commands for the constraint modeller, this means creat­
ing two model spaces, one embedded in the other. The first transform that
is applied is a rotation about the x-axis. Since locally this axis is the edge
joining to the next face, this transform represents folding of the crease.

The second transform maps from one local space to the next with a trans­
lation in x and y and a rotation about an axis in the z-direction. Referring
again to figure 6, the following matrix product

cos �1
�

sin �1 0 0
� �

1 −x0
�

⎤ ⎤ − sin �1 cos �1 0 0 ⎣ ⎣
⎤ ⎤ 1 −y0

⎣ ⎣ ⎤ � 0 0 1 0
⎣ ⎡

⎤ � 1 0
⎣ ⎡

0 0 0 1 1

where �1 is the angle between the joining edge for face f and the global
x-axis axis, maps the space of face f so that its joining edge maps to the
global x-axis with the end (x0, y0) mapping to the origin.

¯ ¯Let X0 and Y0 be the x and y coordinates of point (X0, Y0) under this
map. Then the matrix

cos �2 − sin �2 0 X̄0 ⎤ ¯ ⎣ ⎤ sin �2 cos �2 0 Y0 ⎣ ⎤	 ⎣ �	 0 0 1 0 ⎡

0 0 0 1

where �2 is the angle between the two joining edges, creates the transform
mapping the space of F to that of f . The pre-processor uses the values in
this matrix to create commands to set up the second transform.

The pre-processor always creates the commands which specify the con­
straints which need to be solved for the dyads. The data file for the net
declares these in terms of pairs of faces (between which a “cut” has been
formed) and an indication of which points need to be brought together. As
noted earlier, each gusset corner can move inwards or outwards. So it is also
possible to specify bounds of the values for the angles of the folds so as to
ensure motion in the appropriate direction.

Figure 7 shows one of the gussets corners for the tray carton with the cut
between the two faces exaggerated. The following are the commands for the
constraint modelling environment created by the pre-processor.

12

edge_guss1_00

e
d
g
e
_
g
u
s
s
1
_
0
1

ed
ge
_g
us
s1
_0
2

ed
ge
_g
us
s2
_0
0

edge_guss2_01

e
d
g
e
_
g
u
s
s
2
_
0
2

Face 2
(guss1)

Face 3
(guss2)

Figure 7: Dyad formed by gusset corner in tray carton

13

dec mod3 mspc guss1 posn, mspc guss1 turn;

dec geom edge guss1 00, edge guss1 01, edge guss1 02;

dec mod3 mspc guss2 posn, mspc guss2 turn;

dec geom edge guss2 00, edge guss2 01, edge guss2 02;

mspc guss1 posn = mod3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, mspc dsid1 turn);
mspc guss1 turn = mod3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, mspc guss1 posn);

edge guss1 00 = lin(0.0, 0.0, 0.0, 5.0, 0.0, 0.0, mspc guss1 turn);
edge guss1 01 = lin(5.0, 0.0, 0.0, 5.0, 5.0, 0.0, mspc guss1 turn);
edge guss1 02 = lin(5.0, 5.0, 0.0, 0.0, 0.0, 0.0, mspc guss1 turn);

mspc guss2 posn = mod3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, mspc dsid2 turn);
mspc guss2 turn = mod3(0.0, 0.0, 0.0, .00, 0.0, 0.0, mspc guss2 posn);

edge guss2 00 = lin(5.0, 0.0, 0.0, 0.0, 5.0, 0.0, mspc guss2 turn);
edge guss2 01 = lin(0.0, 5.0, 0.0, 0.0, 0.0, 0.0, mspc guss2 turn);
edge guss2 02 = lin(0.0, 0.0, 0.0, 5.0, 0.0, 0.0, mspc guss2 turn);

function resolve guss12
{

var mspc guss1 turn:ax;

var mspc guss2 turn:ax;

rule(edge guss1 01:e2 on edge guss2 00:e2);

rule(mspc guss1 turn:ax .ge. 0.0);

rule(mspc guss1 turn:ax .le. 180.0);

rule(mspc guss2 turn:ax .ge. 0.0);

rule(mspc guss2 turn:ax .le. 180.0);

}

The first four of these commands declare the names of the lines and the
two pairs of model spaces used. These are then defined, with the model
spaces embedded in each other appropriately and the lines similarly asso­
ciated with their local spaces. The lines are defined in an anticlockwise
sequence around each face. It is within the function that the constraints are
specified. The rotations about the relevant local x-axes are specified as being
variable when the constraints are resolved. The first constraint specifies that
the second end-points of the two given lines should be coincident. The other
four constraints limit the angles of rotations so that these lie between zero
and 180� .

14

When the function is invoked within the constraint modeller, the system
automatically adjusts the values of the two angles in a search for values which
allow all the constraints to be satisfied. There is generally a unique solution
to this problem. The exception is when the neighbouring side walls have been
turned through 90� . Here the short edges of the gusset faces, those about
which they rotate locally, are together and there are infinitely many angles
which allow the above constraints to be satisfied. (The constraint modeller is
set up to find just one solution and this is normally the same as that found in
the previous step of a simulation.) From the point of view of simulating the
process, this is inconvenient. So the net is modified by introducing “dummy”
faces of zero width between each gusset face and its neighbouring side panel.
This adds extra nodes and edges to the face graph and to its spanning tree,
and allows the specification of additional angles for the simulation process.
The angles of these faces are kept at zero as the side walls are rotated and the
gussets move inwards. Then the angles of the dummy faces are varied over a
range of 45� . The gusset constraints remain satisfied as this is done as their
angular values do not change. This allows the simulation to show the gusset
flaps being folded back against the double walls as in the passage between
steps 4 and 5 in figure 1. Specifying the appropriate sequence of angles for
the edges in the spanning tree and resolving the constraints at each stage
allows the full simulation shown in that figure to be run.

The advantage of the constraint-based approach is that it allows investi­
gation of different closing strategies by varying the driving angles while using
the same commands to assemble the carton and perform the simulation. For
example, the options of closing the side walls at different speeds can be in­
vestigated. In the simulation shown in figure 1, these are driven at the same
speed. This leaves the gusset flaps pointing into the tray at 45� to the sides.
In fact, even at this angle, it is possible for the double walls to fold over,
capture and retain them. However driving the longer side wall more quickly
than the shorter (double) walls has the effect of forcing the gussets flaps to
lie closer to the short walls, thus making their capture more certain. A stage
in the simulation of this is shown in figure 8. This simulation is obtained
simply by modifying the sequence of driving angles defined for the edges in
the spanning tree.

15

Figure 8: Closing the side faces at different speeds

16

4. Gable-end skillet

As a second example, consider the carton stages in whose erection are
shown in figure 9. The form of the top of the carton is called a “gable-end”
and it is also composed of a number of gussets.

1

13

3

5

17

16

15

14

13

4
3

8
7

17

12

11

10

2

17

13
12

11

10

3 2

7 6

17

13
11

10

3 2

2

6

17

13
12

11

10

3 2

8
7

6

13
11

3 2

3

7

17

13
12

11

10

3 2

8 6

17
11

3 2

4

8

Figure 9: Folding of a skillet with a gable end

The net for the carton is shown in figure 10 along with its face graph.
When the carton is produced, the initially flat net is folded along the edges
between faces 2 and 3 and between faces 12 and 13. Then tabs along the
edges of faces 4 and 16 are glued to faces 1 and 9. This means that the first
stage of erection is to open out the carton so that faces 1, 2, 3 and 4 form
a parallelogram and finally a square. It is this initial gluing that makes the
carton a skillet [6].

Figure 11 shows two possible spanning trees for the face graph. Below
each is the corresponding net with the appropriate faces separated. Also
shown separated are the flaps at the bottom of the carton, faces 5-8. Note

17

1 2 3 4

5 6 7 8

9
10

11
12

13
14

15
16

17

17

9

1

5

7

3

13

11 2 6 1548

1610

12 14

Figure 10: Net and face tree for gable-end skillet

that the nets do not fall into two pieces since there are joins between faces at
the left and right sides as indicated by the arrows; for example faces 1 and
4 join. In both trees, the edge joining nodes 2 and 3 is removed. This is on
the assumption that during the opening process, face 1 is held fixed and face
4 is driven through 90� as suggested in figure 9. To assemble the main walls
of the carton, a constraint is required to bring faces 2 and 3 together.

A little more care is required with the gussets involved in the gable-end
itself. This is because there are now cases of five faces with a common vertex.
Consider the tree labelled (a). Assuming that face 9 is driven, faces 10 and
11 can be treated as a dyad. Once the position of face 11 is known, faces 12
and 13 can be dealt with as a second dyad; then faces 14 and 15. This leaves
faces 16 as 9 as a final dyad. But the position of face 9 is already established.
So the final dyad is handled by only adjusting face 16.

In practice, simply driving face 9 is unlikely to be successful in driving
all the other faces because of the tendency of the panels to distort as they
transmit the motion. Instead, both faces 9 and 13 are driven. This means
that the second spanning tree, labelled (b) in figure 11, is more appropriate.
It means that every face is at most distance 3 away (in terms of path-length

18

17

9

1

5

7

3

13

11 2 6 1548

1610

12 14

(a) 17

9

1

5

7

3

13

11 2 6 1548

1610

12 14

(b)

1 2 3 4

5 6 7 8

9
10

11
12

13
14

15
16

17

1 2 3 4

5 6 7 8

9
10

11
12

13
14

15
16

17

Figure 11: Possible spanning trees

19

within the tree) from a driven face. A general principle is that one wishes to
choose the faces that are to be driven and the spanning tree so as to ensure
that every face is close to a driven face and thus problems with distortion are
reduced. Using spanning tree (b), faces 10 and 11 are solved as dyad. The
dyad between faces 11 and 12 is then handled by adjusting face 12 alone. A
similar approach is applied for the other faces around the gable-end.

From the point of view of the simulation, the pre-processor can set up the
commands in the same way as before, with two angles declared as variable
for each dyad. However, when only one angle is allowed to change, a “fix”
command is given to ensure that the other is unaltered during constraint
resolution.

5. Extension to origami

The previous sections have looked at the simulation of the erection of
cartons. Although there is interest in more complicated packs [5], practical
cartons tend to be fairly simple structures. This is partly because of the need
to be able to manipulate them by machine or manually. In order to see if
the previous simulation techniques work with added complexity, this section
looks at their application to an example from origami. This is the “flapping
bird” (e.g. [41]) which is a standard origami construction.

As with most origami models, the bird starts with a square of paper.
The net used for the simulation is shown in 12. The upper right corner of
the net contains the fold lines that form the head of the bird. Stages in the
simulation are shown in figure 13.

As with the carton tray, there is a need to introduce a number of “dummy”
faces to allow turning of parts once dyads have been fully folded. There are
17 dummy faces shown as shaded regions in figure 12. The 13 central dummy
faces all have zero size and are coincident with the central point; showing
them larger in the figure distorts the shape of neighbouring faces. The central
face allows the simulation to show the parts folding symmetrical downwards
and upwards about the mid-point of the square (as for example in passing
between stages 1 and 3 in figure 13) . Its 12 neighbouring dummy faces allow
the rotation of the main triangular parts about a common vertical axis (as in
going between stages 3 and 4 of the simulation). The remaining four dummy
faces are used to simulate the raising of the wings (as in stages 7 to 9).

The thick edges shown in figure 12 indicate which edges of the net are
regarded as being cut so as to leave a spanning tree. In each case, the faces

20

Figure 12: Starting net for origami bird

21

1 2 3

4 5 6

7 8 9

Figure 13: Folding of origami bird

22

�

on either side form a dyad, and these can be set in the correct orientation
by setting up and resolving constraints. As with the skillet example, there
is a need with some dyads to allow only one of the two faces to move. An
example is the triangular face along the top edge of the net at the right hand
corner. In the simulation, when this is aligned with the edge to its left, that
face has already been positioned (with reference to the neighbour on its left),
so only the triangular face can be changed.

As noted previously, there are typically two solutions for any dyad as­
sembly and so there is a need to ensure that the appropriate one is found.
In the constraint modelling environment, constraint resolution is carried out
by a search process. The result achieved can be controlled by ensuring the
search starts out in a configuration close to the one desired. Normally this
is not a problem, and when it is, it can be overcome by applying constraints
to bound the angle of rotation of a face. However it is found with the bird
example that a little more care is required than with the cartons discussed
previously (cf. also [42]).

To see the difficultly, consider the arrangement of faces shown in figure
14. The point O is taken as the origin of coordinates, with the x-axis along
OA, the y-axis as shown, and the z-axis normal to the plane of the figure.

The two main triangles ABR and ACR are joined along line OR and
separated along OA. Each is split into two faces along OP and OQ which
lie at angle � to the y-axis shown in the figure. Folding around these lines
is possible and the angle of rotation about each is assumed to be the same
angle �. Suppose that face ORBP is rotated about OR through an angle
�, and face ORCQ is rotated about OR through the same angle but in the
opposite sense. Clearly the two points A can be kept together by taking �
to be zero. To find the other possibility, consider the transform matrix for
face OAP . Since point O is fixed, the transform matrix is that of a rotation.
It can be obtained by combining a rotation of � about the z-axis, a rotation
of � about the new y-axis, a reverse rotation of −� about the z-axis, and a
rotation of � about the x-axis. This is represented by the following product.
�

1
� �

cos � sin �
� �

cos � − sin �
� �

cos � − sin � ⎤ � cos � − sin � ⎣ ⎡
⎤ � − sin � cos � ⎣ ⎡

⎤ � 1 ⎣ ⎡
⎤ � sin � cos �

sin � cos � 1 sin � cos �

This product can be formed and used to transform, by pre-multiplication,
the point A = [a 0 0]T regarded as part of face OAP . The y-component of

23

⎣ ⎡

1

B y

P

φR A
xO

Q

C

α

αφ

θ

θ

Figure 14: Two folding panels with a dyad

24

�.

the transformed point is found to be

a cos �[− sin � cos � cos � + sin � cos � − sin � sin �].

By symmetry, when the two points A coincide, the above component is zero
and so, assuming that cos � is non-zero,

0 = sin � cos � (1 − cos �) − sin � sin �

= sin � cos � (2sin2 1
2

1
2

1
2

�) − 2 sin � sin
 � cos

1
2

So either sin
 � is zero, which is the trivial solution, or

tan �

=

sin �
1�
2

tan

Figure 15 shows graphs of � against � as the latter varies between zero and
90� representing a complete fold. For small values of � the initial change in
� is seen to be large.

An instance of this arrangement of faces is present in the net of the bird.
This is in the faces that form the neck. They lie on either of the cut along
diagonal of the square in the top right of the net in figure 12. The large
movement corresponding to the initial change in � is seen in the movement
between stages 4 and 5 in figure 13. To ensure that the correct solution is
found in the simulation, the appropriate angles (those equivalent to �) need
to be reset (to around 30�) before the constraints for the dyad are resolved.
Once the initial jump has been achieved, constraint resolution for subsequent
stages can be undertaken starting with the previously found values of the
angles.

6. Conclusions

When designing packaging machinery, there is a clear need to simulate
the action of the machine itself to check that it functions correctly. There
is also a need to simulate the motion of the carton itself during the various
stages of the erection process. This is to ensure that unwanted interference
between faces of the carton net does not occur. This is particularly the case
when reconfigurable equipment is being used to check that the configuration
is correct and to establish what motion control is required.

25

180

160

140

120

100

80

60

40

20

0
Angle φ (degrees)

Angle θ (degrees)

α=10o

α=20o

α=30o

α=60o

10 20 30 40 50 60 70 80 90

Figure 15: Variation of dyad angle � with main fold angle �

26

It has been seen that it is possible to obtain a simulation by handling the
transforms applied to the carton faces. Reducing the face graph to a spanning
tree imposes a hierarchy on the faces and allows the required driving motions
to be established. The cuts effectively made in forming the tree correspond
to dyads in which the angular positions of two adjoining faces need to be
established. This can be done by imposing constraints which say that the
edges on either of each cut must come together.

Such constraints can be dealt with within a constraint modelling environ­
ment. The necessary commands can be created automatically from a data
file which defines the net of the carton (in terms of nodes and faces) and
identifies where the cuts (and dyads) are deemed to lie. Since each dyad
normally can have two solutions, care is needed to ensure that the correct
one is found. This can be done by imposing bounds on the allowable angles
for the faces or by imposing suitable values with which to start the search
for the solution.

These ideas have been demonstrated successfully on two typical forms
of carton, namely a tray and a skillet with a gable-end. In addition, the
approach has been shown to work well with the more complicated folding
pattern required for an origami bird.

Acknowledgements

The work reported in the paper was carried within the Innovative De­
sign and Manufacturing Research Centre at the University of Bath. This
is funded by the Engineering and Physical Sciences Research Council (EP­
SRC). Additionally the work relates to a project on reconfigurable packaging
systems sponsored by the Department of the Environment, Food and Rural
Affairs (DEFRA). This support is gratefully acknowledged.

References

[1] Hine D. Cartons and Cartoning. Leatherhead: Pira International; 1999.

[2] Hanlon JF, Kelsey RJ, Forcinio HE. Handbook of Package Engineering.
Pittsburgh: Technomic Publishing Company; 1998.

[3] Leung SKS, Wong WK, Mok PY. Multiple-objective genetic optimiza­
tion of the spatial design for packing and distribution carton boxes.
Computers & Industrial Engineering 2008; 54: 899-902.

27

[4]	 van Roojen P, Baardman J, Hölscher J, Molenaar K. Special Packaging.
Amsterdam: Pepin Press; 2004.

[5] Keay M.	Cartoning machinery moves beyond the box. Machinery Up­
date 2006; July/August: 31-37.

[6] Anon. Printed folding cartons. Huntingdon:	 Mainline Flatpacks Lim­
ited; http://www.mainlineflatpacks.co.uk/pdfs/cartons.pdf, accessed
August 2008.

[7] Daniel J, Medland AJ, Mullineux G.	 Use of parametric modelling to
understand the functional requirements for a reconfigurable packaging
system. Proc. International Conference on Engineering Design (ICED)
07 2007; Ecole Centrale Paris: 9 pages on conference CD.

[8] Lu L, Akella S. Folding cartons with fixtures:	 a motion planning ap­
proach. IEEE Transactions on Robotics and Automation 2000; 16: 346­
356.

[9] Khire MY, Madnaik SD. Folding cartons using low cost automation - a
case study. Assembly Automation 2001; 21: 210-212.

[10] Liu H, Dai JS. An approach to carton-folding trajectory planning using
dual robotic fingers. Robotics and Autonomous Systems 2003; 42: 47-63.

[11] Song G, Amato NM. A motion-planning approach to folding: from paper
craft to protein folding. IEEE Transactions on Robotics and Automation
2004; 20: 60-71.

[12] Winder BG, Magleby SP, Howell LL. Kinematic representations of pop­
up paper mechanisms. Proc. ASME 2007 International Design Engineer­
ing Technical Conferences & Computers and Information in Engineering
Conference, IDETC/CIE 2007; Las Vegas; paper DETC2007-35505.

[13] Demaine ED, O’Rourke	 J. Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge: Cambridge University Press; 2007.

[14] Matsushima K, Shimanuki H, Watanbe	 T. Computer-assisted paper
wrapping with visualization. Lecture Notes in Computer Science 5093:
Technologies for E-Learning and Digital Entertainment: Proc. 3rd In­
ternational Conference, Edutainment 2008. Berlin: Springer; 2008; 114­
125.

28

http://www.mainlineflatpacks.co.uk/pdfs/cartons.pdf

[15] Balkcom DJ, Mason MT. Robotic origami folding. Int. J. Robotics Re­
search 2008; 27: 613-627.

[16] Stenberg N. A model for the through-thickness elastic-plastic behaviour
of paper. Int, J. Solids and Structures 2003; 40: 7483-7498.

¨ ¨ [17]	 Ostlund M, Ostlund S, Carlsson LA, Fellers C. Experimental determi­
nation of residual stresses in paperboard. Experimental Mechanics 2005;
45: 493-497.

[18] Berry C, Hicks BJ, McPherson CJ, Medland AJ, Mullineux G. Impact
of environmental conditions on the performance of carton-board skillets.
Packaging Science and Technology 2005; 18: 225-241.

[19] Hambli R, Richir S, Crubleau P, Taravel B. Modelling of sheet carton
stapling using the finite element method. Int. J. Materials and Product
Technology 2003; 19: 431-441.

[20] Hirano H, Kohuyashi T, Koduka I. Simulation for compressive behaviour
of cartons. Japan Tappi Journal 2005; 59: 99-104.

[21] Sirkett DM, Hicks BJ, Berry C, Mullineux G, Medland AJ. Finite el­
ement simulation of folding carton erection failure. Proc. Instn Mech.
Engrs - Part C: J. Mechanical Engineering Science 2007; 221: 753-767.

[22] Sirkett DM, Hicks BJ, Singh B, Mullineux G, Medland AJ. The role of
simulation in predicting the effect of machine settings on performance
in the packaging industry. Proc. Instn Mech. Engrs - Part E: J. Process
Mechanical Engineering 2007; 221: 163-176.

[23] Liu H, Dai JS. Carton manipulation analysis using configuration trans­
formation. Proc. Instn Mech. Engrs - Part C: J. Mechanical Engineering
Science 2002; 216: 543-555.

[24] Nimnual R, Suksakulchai S. Virtual reality for packaging folding prac­
tice. Proc. International Conference on Control, Automation and Sys­
tems 2007, Seoul; 1011-1014.

[25] Demaine ED, Demaine ML, Hart V, Iacono J, Langerman S, O’Rourke J.
Continuous blooming of convex polyhedra. Computing Research Repos­
itory (CoRR) 2009; 1-13; available at: http://arxiv.org/abs/0906.2461.

29

http://arxiv.org/abs/0906.2461

[26] Craig J. Introduction to Robotics: Mechanics and Control, 2nd edition.
Englewood Cliffs: Prentice Hall; 2004.

[27] Leigh RD, Medland AJ, Mullineux G, Potts IRB. Model	 spaces and
their use in mechanism simulation. Proc. Instn Mech. Engrs - Part B:
J. Engineering Manufacture 1989; 203: 167-174.

[28] Mullineux	 G. Optimization scheme for assembling components.
Computer-Aided Design 1987; 19: 35-40.

[29] Ge J-X, Chou	 S-C, Gao X-S. Geometric constraint satisfaction using
optimization methods. Computer-Aided Design 1999; 31: 867-879.

[30] Michelucci D, Foufou S. Geometric constraint solving: the witness con­
figuration method. Computer-Aided Design 2006; 38: 284-299.

[31] Mullineux G. Constraint resolution using optimisation techniques. Com­
puters & Graphics 2001; 25: 483-492.

[32] Hicks BJ, Medland AJ, Mullineux G. The representation and handling
of constraints for the design, analysis, optimization of high speed ma­
chinery. Artifical Intelligence for Engineering Design, Analysis and Man­
ufacturing (AIEDAM) 2006; 20: 313-328.

[33] O’Sullivan	 B. Constraint-Aided Conceptual Design. London: Profes­
sional Engineering Publishing Limited; 2002.

[34] Au CK, Yuen MMF. A feature modeller for sculptured object modelling.
Engineering with Computers 2003; 19: 1-8.

[35] Anderl R, Mendgen R. Modelling with constraints: theoretical founda­
tion and application. Computer-Aided Design 1996; 28: 155-168.

[36] Wilhelms S. Function- and constraint-based conceptual design support
using easily exchangeable, reusable principle solution elements. Artif­
ical Intelligence for Engineering Design, Analysis and Manufacturing
(AIEDAM) 2005; 19: 201-219.

[37] Hoffmann	 CM. Constraint-based computer-aided design. Journal of
Computing and Information Science in Engineering 2005; 5: 182-187.

30

[38] Thornton AC, Johnson AL. CADET: a software support tool for con­
straint processes in embodiment design. Research in Engineering Design
1996; 8: 1-13.

[39] Fletcher R. Practical Methods of Optimization, 2nd edition. Chichester:
Wiley; 1987.

[40] Perez-Garcia A, McCarthy JM. Kinematic synthesis	 of spatial serial
chains using Clifford algebra exponentials. Proc. Instn Mech. Engrs ­
Part C: J. Mechanical Engineering Science 2006; 220: 953-968.

[41] Harbin R. Secrets of Origami: the Japanese Art of Paper Folding. Mi­
neola: Dover Publications; 1997.

[42] Shimanuki H, Kato J,	 Watanbe T. Construction of 3-D paper-made
objects from crease patterns. Proc. IAPR Conference on Machine Vision
Applications (MVA IAPR), 2005; Tsukuba Science City; 35-38.

31

