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Aerodynamic characteristics of two-dimensional membrane airfoils were experimentally 

investigated in a wind tunnel. The effects of the membrane pre-strain and excess length 

on the unsteady aspects of the fluid-structure interaction were studied. The deformation 

of the membrane as a function of angle of attack and free stream velocity was measured 

using a high-speed camera. These measurements were complemented by the 

measurements of unsteady velocity field with a high frame rate Particle Image 

Velocimetry (PIV) system as well as smoke visualization. Membrane airfoils with 

excess-length exhibit higher vibration modes, earlier roll-up of vortices, and smaller 

separated flow regions, whereas the membranes with pre-strain generally behave more 

similarly to a rigid airfoil. Measured frequencies of the membrane vibrations suggest a 

possible coupling with the wake instabilities at high incidences for all airfoils. 
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Nomenclature 

c = airfoil chord length 

ce = effective length of the membrane 

Ct = tension coefficient, T /q∞c 

E = Young’s modulus 

f = frequency 

L0 = initial membrane length 

L  = time-averaged membrane length 

q∞ = dynamic pressure, ½ρ 2

∞
U

 

Re = Reynolds number, ρU∞c/µ 

S0 = pre-stress, Eδ0 

St = Strouhal number 

T  = time-averaged tension, (S0+Eδ )t 

t = membrane thickness 

'u  = fluctuating velocity in the streamwise direction 

U∞ = free stream velocity 

V = magnitude of velocity vector 

'v  = fluctuating velocity in the cross-stream direction 

z = camber 

zmax = maximum camber 

zSDmax = maximum standard deviation of membrane displacement 

α = angle of attack 

δ   = time-averaged strain 
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δ0 = pre-strain 

ε = excess length ratio, (L0 - ce)/ce 

µ = viscosity of air 

П1 = aeroelastic parameter, (Et/q∞c)
1/3 

ρ = density of air 

ρm = density of membrane 

 

1. Introduction 

Flexible membrane wings have been associated with a number of applications including 

either man-made vehicles such as parachutes, paragliders, hang gliders, yacht sails, 

microlights, and Micro Air Vehicles (MAVs), or natural flyers such as bats. For MAV 

applications in general, where the vehicles operate at Reynolds numbers below 105, poor 

lift and unsteadiness represent major problems in low Reynolds number aerodynamics. It 

is highly desirable to design MAVs that are able to operate under wind gust and unsteady 

free stream conditions. Several studies have shown that membrane wings can 

significantly improve longitudinal static stability, delay stall and provide more favorable 

lift-to-drag ratio, and therefore enhance the overall aerodynamic performance when 

compared to a rigid wing of similar geometry due to its desirable aeroelastic effects and 

the adaptive inflation of the membrane skin (Shyy et al., 1997; 1999; Ifju et al., 2002; 

Lian et al., 2003; Lian and Shyy, 2003; Albertani et al., 2007). 

 

The study of membrane wings for MAV applications has been partly motivated by 

observations of bats. These mammals hunt for insects, therefore they must have high 
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agility (rate at which a turn can be initiated) and good maneuverability (minimum space 

for a turn at a given speed) (Norberg and Rayner, 1987). During the insect capture, some 

bat species perform rapid turns, rolls, dives, and climbs, whereas other species fly slowly 

and hover close to vegetation, yet other bat species commute over substantial distances, 

hence they must be capable of sustained steady flight. These astonishing flight 

performances of bats can be attributed to their exceptional membrane wing structure, 

which has recently been an inspiration for micro air vehicle designs. 

 

In computational approaches, the potential flow theory (Newman and Low, 1984; 

Newman, 1987; Greenhalgh et al., 1984; Jackson and Christie, 1987), laminar flow 

(Smith and Shyy, 1995), and turbulent flow (Smith and Shyy, 1996) were used to 

simulate the membrane shape in equilibrium in steady conditions. It was found that the 

potential flow theory can only be sufficient for inextensible membranes with small 

camber and incidence, as there is no flow separation. Unsteady aspects of the fluid-

structure interaction have received less attention. The study by Galvao et al. (2006) on a 

low aspect ratio (AR=0.92) membrane wing reported that standing waves with large 

mode number were observed. Similar vibrational modes were presented for a rectangular 

wing with AR=1.38 in a subsequent study by Song and Breuer (2007). Force 

measurements were presented together with the deformation data by Song et al. (2008). 

The flow is highly three-dimensional and tip vortices are dominant for low aspect ratio 

wings. It is possible that the membrane vibrations can excite the separated shear layer 

forming the tip vortices and promote reattachment (Gursul et al., 2005). For a flexible 

nonslender delta wing, this mechanism delays the stall and increases the lift (Taylor et al., 
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2007). Hence, the unsteady fluid-structure interactions of low aspect ratio wings are 

expected to be strongly affected by the tip/leading-edge vortices. 

 

Unsteady fluid-structure interactions of membrane airfoils at low Reynolds numbers have 

been recently studied experimentally (Rojratsirikul et al., 2008; 2009a) and 

computationally (Gordnier, 2008; Gordnier and Attar, 2009; Matthews et al., 2008). In 

our previous study (Rojratsirikul et al., 2009a) we investigated two-dimensional flexible 

membrane airfoils with zero pre-tension with particular emphasis on the unsteady aspects 

of the fluid-structure interaction at low Reynolds numbers. It was found that the 

amplitude and mode of the membrane vibrations depend mainly on the relative location 

and magnitude of the unsteadiness of the separated shear layer. The results indicated 

strong coupling of membrane oscillations with the unsteady flow, in particular with 

vortex shedding in the wake. Comparison of rigid (but cambered) and flexible membrane 

airfoils shows that the flexibility delays the stall. Hence this is a potential passive flow 

control method using flexibility in nature and engineering applications. 

 

In this article, we extend our previous work to the effect of membrane pre-strain and 

excess length on the unsteady aspects of the fluid-structure interaction. Measurements of 

the membrane deformation and time-accurate velocity field as well as smoke 

visualization were conducted as a function of angle of attack and free-stream velocity. 

The effects of pre-strain and excess length were investigated in detail. Comparisons with 

the previous results for the airfoil with zero pre-tension were made. 
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2. Experimental Setup and Procedures 

2.1. Models 

The experiments were carried out in the low-speed, closed-loop open-jet wind tunnel 

with the circular working section of 760 mm in diameter, located in the Department of 

Mechanical Engineering, University of Bath. The details of the setup are similar to those 

of the previous work (Rojratsirikul et al., 2008; 2009a). The membrane airfoil was placed 

in the test section by means of a frame and end plates as shown in Fig. 1(a). Both the 

leading-edge and trailing-edge of the wing were fixed to circular plates at both ends to 

adjust the angle of attack. The rigid leading- and trailing-edges run along the whole span 

of the test section between the two end plates with a small gap (1 mm) between the 

membrane and the end plates. The membrane deformation appeared uniform in the 

spanwise direction in visual inspections. In the preliminary experiments, the time-

averaged deformation was measured near the tip region (near the end plates) and the 

difference was found to be less than 10% of the values at the mid-span plane. The airfoil 

had a span of 450 mm and chord length of c = 150 mm. The experiments were carried out 

over angles of attack α from 0 to 30 degrees, free stream velocities U∞ of 5, 7.5, and 10 

m/s which correspond to Reynolds numbers, based on the chord length, of Re = 53 100, 

79 700 and 106 000 respectively. 

 

The membrane airfoil was made from a black latex rubber sheet with thickness t = 0.2 

mm, Young’s modulus E = 2.2 MPa, and density of membrane ρm = 1 gr/cm
3
. The 

membrane’s modulus of elasticity was measured by subjecting the membrane to known 

tension and measuring the strain with a high resolution digital camera. In these 
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experiments, the strain was varied up to 6% and both the new and used membranes were 

tested. It was found that the tension-strain relation is linear in this range. The membrane 

airfoils with different initial strains of δ0 = 2.5%, δ0 = 5% and excess lengths of ε = 2.5%, 

ε = 5% were made from the same material. The uncertainty of the pre-strain or excess 

length of the airfoils is estimated as ∆δ0 = ∆ε = 0.5%. Each membrane was attached to the 

airfoil-shaped leading- and trailing-edges as shown in Fig. 1(b), resulting in an effective 

length of the membrane, ce = 137 mm. The aeroelastic parameter used by Smith and Shyy 

(1996) has values of П1 = 5.77, 4.41, and 3.64 based on U∞ = 5, 7.5, and 10 m/s 

respectively. In addition, a rigid airfoil made of 1 mm thick steel plate with a shape 

equivalent to the mean membrane deformation was tested in order to reveal the effects of 

membrane vibrations (Rojratsirikul et al., 2008; 2009a). 

 

2.2. Measurements of deformation  

In order to measure the membrane shape, a thin laser sheet from a 4W Argon-Ion laser 

was used to illuminate the membrane surface in the streamwise plane located at the mid-

span of the wing. A high speed camera (Photron FASTCAM APX) was positioned 

normal to the flow and images were captured at a rate of 1500 frames per second. The 

resulting image appears as a white curve as shown by the example in Fig. 2. The images 

with 1024×1024 pixel resolution in TIF format were obtained in 2 seconds, resulting in 

3000 images per each angle of attack and speed.  Finally, the images were digitized 

through MatLab (Image Processing Toolbox) to find the coordinates. The uncertainty of 

the measurements of the membrane displacement with the present technique is estimated 

as ∆z/c=0.1%. Examples of the digitized membrane shapes at different instants are shown 
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in Fig. 3. Different modes of vibrations (second, fourth and fifth modes) are seen in these 

examples. This technique can only detect the chordwise modes. Although the time-

averaged deformation is nearly uniform in the spanwise direction, this does not rule out 

possible existence of the spanwise modes, which can not be detected with the present 

technique. 

  

From the instantaneous coordinates of the membrane, the time-averaged membrane shape 

was calculated for each angle of attack and free stream velocity. The time-averaged 

strain, δ , was then calculated from the mean shape:  

, /)( 00 LLL −=δ
                                                           (1) 

where L is the time-averaged membrane length, and L0 is the initial membrane length. 

The tension coefficient Ct was calculated using the definition of  

 
, / cqTCt ∞

=
                                                               (2) 

where  

 
, )( 0 tEST δ+=
                                                             (3) 

in which T  is the time-averaged tension, q∞ is the dynamic pressure, and S0 is the pre-

stress (S0 = Eδ0). 

 

From the digitized membrane shapes as a function of time, it was also possible to study 

the time history of the displacement. The dominant frequencies were found by the 

spectral analysis using the Fast Fourier Transform (FFT) method in MatLab. 
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2.3. Velocity measurements   

Quantitative flow measurements were undertaken using a high frame-rate Digital Particle 

Image Velocimetry (DPIV) system. Illumination of the desired plane was achieved using 

a New Wave Pegasus Nd:YLF double pulse high speed laser with a maximum energy of 

10 mJ per pulse. The laser light sheet was placed parallel to the free stream velocity to 

illuminate a plane at the mid-span of the wing as shown in Fig. 1(a). The PIV camera was 

placed normal to the flow, and the flow over the suction surface of the whole wing was 

imaged. In some experiments, specific areas near the leading-edge or trailing-edge were 

investigated. The images were captured using a TSI PowerView HS-3000 high speed 

CMOS camera. A TSI LaserPulse synchronizer unit was utilized to link the camera and 

the laser to enable the accurate capture of images for two frame cross-correlation 

analysis. For these measurements, the velocity field was captured at a rate of 1,500 

frames per second, at a resolution of 1024 by 1024 pixels, producing sequences of 3,000 

instantaneous velocity fields over 2 seconds. A TSI model 9307-6 multi-jet atomizer was 

used to produce oil droplets in order to seed the flow. The atomizer worked best using 

olive oil and the mean size of the droplets was 1µm. The commercial software TSI 

Insight3G and a FFT cross-correlation algorithm were used for the analysis of the results 

obtained. The size of the interrogation window was 20 by 20 pixels, resulting in an 

effective grid size around 2% of the chord length in these measurements. The 

measurement uncertainty for the velocity is estimated as 2% of the free stream velocity. 

 

2.4. Smoke flow visualization 

Flow visualization was performed using a smoke wire. In order to generate smoke, a strip 
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 of wire was clamped vertically, perpendicular to the flow upstream of the wing and at 

the mid-span. Oil was dropped to the wire continuously by a small valve on a dripping 

system. With a current applied to the wire, the oil was burnt by the heat, and the smoke 

was generated. A high speed camera (Photron FASTCAM APX) was used to capture 

images at a rate of 1 000 frames per second. 

 

3. Results 

3.1. Mean shape of membrane 

Figure 4 shows the maximum camber of the time-averaged membrane shape for different 

membrane pre-strains and excess lengths as a function of angle of attack at different free 

stream velocities. Note that the smallest angle of attack shown for a given airfoil 

corresponds to the onset of the bistable instability. For the lowest free stream velocity U∞ 

= 5 m/s, the maximum camber increases gradually up to a moderate incidence, then stays 

roughly constant for the airfoils with nonzero pre-strains. For zero pre-strain and excess 

length cases, the changes in maximum camber are small as the angle of attack is varied, 

which is consistent with our previous observations (Rojratsirikul et al., 2008; 2009a) and 

simulations by Gordnier (2008). As expected, the largest maximum camber is observed 

for the airfoils with excess length. However, the difference between the two airfoils with 

different excess length appears to be small. With increasing free stream velocity to U∞ = 

7.5 m/s and 10 m/s, the maximum camber increases for all airfoils. The observations are 

very similar for all speeds. Although not shown here, the location of the maximum 

camber is at about the mid-chord point for small incidences. It tends to move forward as 

the angle of attack increases up to a certain incidence, and tends to move back at higher 
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angles of attack. The location of the maximum camber is only slightly sensitive to the 

membrane pre-strain and excess length ratio. Similarly, previous experiments 

(Rojratsirikul et al., 2008; 2009a) showed that the location of the maximum camber is not 

very sensitive to the free stream velocity. 

 

The time averaged strain is shown in Fig. 5. The airfoils with excess length show larger 

time-averaged strain than the airfoils with pre-strain at higher free stream velocities. This 

is particularly obvious at the highest free stream velocity, U∞ = 10 m/s. The strain rate is 

very similar for airfoils with δ0 = 0%, ε = 2.5% and 5%. The strain increases with the free 

stream velocity for all airfoils, but the rate of increase of strain with free stream velocity 

is larger for the airfoils with δ0 = 0%, ε = 2.5% and 5%.   

 

These three different free-stream velocities also represent three different regimes for the 

membrane tension. As the membrane tension is proportional to the total strain, 

tET )( 0 δδ += , it is seen that, for U∞ = 5 m/s, the tension is dominated by the pre-strain. 

The membrane tension is much larger for δ0 = 2.5% and 5% compared to other cases. 

With increasing free stream velocity to U∞ = 7.5 m/s, the airfoils with no pre-strain show 

a large increase in tension, although the tension is still larger for those with pre-strain. 

Eventually, at the largest free stream velocity U∞ = 10 m/s, the membrane tension reaches 

similar levels for all cases. In terms of the tension coefficient, it decreases with increasing 

free-stream velocity (Rojratsirikul et al., 2009b). 
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3.2. Mean flow 

Figure 6 shows the magnitude of the time-averaged velocity and streamlines for different 

airfoils with pre-strain and excess length. Note that the flow is from right to left. In this 

figure, for each airfoil, the mean flow is shown for α = 12° (left column) and α = 20° 

(right column). For the lowest free stream velocity, U∞ = 5 m/s, it is shown that the shear 

layer gets closer to the membrane surface and separation is delayed as the camber of the 

airfoil increases due to the excess length. For δ0 = 0% and α = 12°, even though the 

separation takes place at the leading-edge, the shear layer remains close to the membrane 

surface. For nonzero pre-strain, the shear layer moves away from the surface as the 

separation region becomes larger. In summary, the airfoils with pre-strain have large flow 

separation region, whereas the airfoils with excess length, hence large camber, exhibit 

small separated regions. For all airfoils, comparison of left and right columns shows that 

the separation region becomes larger at α = 20
o
, as expected. 

 

Figure 7 shows a comparison of the mean flow for U∞ = 5 m/s (left column) and U∞ = 7.5 

m/s (right column) for various airfoils with pre-tension and excess length. For the angle 

of attack α = 20
o
, the airfoils at the larger free stream velocity (U∞ = 7.5 m/s) exhibit 

larger cambers and smaller separated regions. This is also consistent with the previous 

results (Rojratsirikul et al., 2008; 2009a) which reported the trend of shear layer getting 

closer to the wing surface as the camber of the wing increases. 

 

3.3. Membrane oscillations 
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Figure 8 summarizes various regimes based on the observations of the membrane 

oscillations for different airfoils with pre-strain and excess length. In the steady regime, 

where membrane oscillations are insignificant, the flow remains attached for small 

incidences. In some cases, such a steady regime was also observed at high angles of 

attack, which is likely to be due to the shear layer being far away from the membrane. In 

the unsteady regime, membrane oscillations are significant, and corresponding vibration 

modes and frequencies can be easily detected. In the bistable regime, which is observed 

for small angles of attack near zero, the bistable instability (luffing) occurs and the 

membrane can easily switch from positive to negative camber (Newman and Paidoussis, 

1991). It is seen in Fig. 8 that the bistable regime is more dominant for airfoils with 

excess length. The onset of the membrane vibrations also occurs at a slightly larger angle 

of attack for airfoils with excess length. 

 

Figures 9-13 show the power spectral density of the membrane displacement (for the 

chordwise location where the standard deviation of the displacement is maximum) as a 

function of Strouhal numbers, fc/U∞, and angle of attack for δ0 = 5%, δ0 = 2.5%, δ0 = 0%, 

ε = 2.5% and ε = 5% respectively. These plots show the frequencies at which large 

amplitude of vibrations (shown with the dark shades) take place for each incidence. In 

general, airfoils with excess length or zero pre-strain have larger amplitude oscillations 

compared to the airfoils with nonzero pre-strain. It is seen that the vibration occurs at 

certain modes. For each airfoil, the vibration modes were identified from the time 

variation of the membrane shape such as those shown in Figure 3. The mode numbers 

were confirmed from these graphs, or by calculating the standard deviation of the 
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membrane displacement and counting the peaks. Figures 9-13 show that the airfoils with 

pre-strain exhibit the first and second modes predominantly. The airfoils with excess 

length tend to have higher mode numbers than those with pre-strain at all incidences. For 

all free stream velocities and all airfoils, there are certain incidences where there are 

jumps in the dominant mode. In particular, a change to the second mode at high 

incidences is observed. 

 

The general trend for airfoils with zero or excess length is that the higher modes are 

observed at moderate incidences (α ≥ 10°) when noticeable oscillations start. The 

separation is typically delayed for these airfoils (see Fig. 6 for α = 12°). It is likely that 

the membrane vibrations couple with the most unstable frequencies of the shear layer. 

Although the natural frequency of the shear layer instabilities for rigid airfoils was not 

measured in this investigation, we expect that the natural frequency of the separated shear 

layer is higher than the shedding frequency in the wake. Wu et al. (1998) estimates that 

the ratio of the shear layer frequency to the wake shedding frequency is 6.6 for NACA 

0012, which provides an estimate of fc/U∞ ≅ 2.5 for this airfoil. In the present 

investigation, we obtain fc/U∞ = 2 to 3, if the same ratio of the frequencies is used. On the 

other hand, at higher angles of attack, flows are typically separated at the leading-edge 

(see Fig. 6 for α = 20°) and the membrane appears to couple with the wake instabilities as 

will be discussed further later on. 

 

An attempt was made to predict the natural frequencies of the membrane based on the 

linear elastic theory, using the estimated tension from the mean deformation. Assuming 
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two-dimensional membrane shape, our predictions for the first mode varied between 

±100% of the experimentally measured frequencies, depending on the free stream 

velocity, pre-strain or excess length, with no clear trend. We believe that this highlights 

the nonlinear nature of the fluid-structure interaction. In general, the Strouhal number is 

on the order of unity. At relatively high angles of attack, where the second mode is 

always observed, the Strouhal number is close to unity regardless of the pre-strains and 

excess lengths of the membrane. This is consistent with previous results (Rojratsirikul et 

al., 2008, 2009a), suggesting a coupling of the membrane oscillations with vortex 

shedding from the membrane. An alternative definition of the Strouhal number, based on 

the vertical distance between the leading-edge and trailing-edge, is often used in the 

literature (Fage and Johansen, 1927; Abernathy, 1962): 

       
∞

=
U

fc α
α

sin 
St .            (4) 

This modified definition of the Strouhal number is reported to be constant for flat plates 

and thin airfoils, with values given in the range of 0.16 to 0.22 (Fage and Johansen, 1927; 

Abernathy, 1962; Miranda et al., 2005). In this study, the vortex shedding frequency in 

the wake of a rigid membrane (an equivalent rigid cambered airfoil which was used in 

previous investigation) was obtained with hot-wire anemometry and is shown in Fig. 9-

13. The uncertainty of the measurements of the vortex shedding frequency with hot-wire 

anemometry was estimated as 3%. We have not measured the natural wake frequencies 

for a range of camber values, and the rigid thin airfoil had a shape derived from the zero 

pre-strain membrane only. It represents an average of the cases with smaller camber 

(airfoils with pre-strain) and larger camber (airfoils with excess length). Nevertheless, the 

constant for the modified Strouhal number is expected to be not too different, as it is 
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around 0.2 for various bluff bodies. In these figures, the symbols show the measured 

frequencies in the wake and the dashed line shows the variation of the Strouhal number 

calculated from the alternative definition based on the vertical distance between the 

leading-edge and trailing-edge, assuming a constant value of 0.17 to fit our data. The 

results suggest that the membrane oscillations might be coupled with the vortex shedding. 

In particular, at high incidences where the second mode is observed, the membrane 

oscillations might be coupled with the first harmonic of the natural frequency. In active 

flow control studies with rigid airfoils by Miranda et al. (2005) and Wu et al. (1998), it 

was found that vortex shedding may lock on the first harmonic or the subharmonic of the 

natural frequency. 

 

3.4. Unsteady flow 

Figure 14 shows the comparison of the turbulence intensity 222 /''
∞

+ Uvu  in the 

measurement plane for the airfoils with excess length of 2.5%, 5%, and pre-strain 2.5%, 

5%, together with the results of the airfoil with zero pre-strain at α = 14o (left column), 

18
o
 (middle column) and 25

o
 (right column), for U∞ = 5 m/s. For α = 14

o
, the weakest 

shear layer fluctuations are seen for the airfoil with excess length, whereas the strongest 

turbulence intensity is observed for the membrane with pre-tension. With increasing 

angle of attack, the shear layer moves away from the membrane surface. For airfoils with 

excess length, the turbulence intensity increases with increasing angle of attack. For other 

airfoils, there is a decrease in turbulence intensity with increasing incidence. 
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The Reynolds stress component shown in Fig. 15 exhibits similar trend to that of the 

turbulence intensity. The location of the maximum values of the Reynolds stress moves 

away from the membrane surface and downstream with increasing angle of attack. Peak 

magnitudes are observed for the airfoil with 2.5% pre-strain at α = 14° and 18°, and for 

the airfoil with 5% excess length at α = 20°. The relatively large value of the Reynolds 

stress observed for these cases is related to the formation of coherent structures. 

Examinations of the instantaneous flow fields suggest that the peak of the Reynolds stress 

coincides with the roll-up of the large vortices. 

 

3.5. Smoke flow visualization 

The smoke flow patterns for 2.5% excess length ratio and 2.5% pre-tension together with 

the results for the airfoil with zero pre-tension and the rigid airfoil are presented in Fig. 

16. It is seen that at the lower incidence (α = 14
o
), the size of the separation region for ε = 

2.5% and δ = 0% is small. The oscillation of the membrane with excess length seems to 

excite the shear layer. The airfoil with pre-tension shows a larger size of separation 

region than the one with zero pre-tension, and this is more evident at the higher 

incidence. At the higher incidence (α = 18
o
) the roll-up of large vortices is evident over 

the flexible membrane with ε = 2.5% and δ = 0%. The membrane airfoil with ε = 2.5% 

shows the smallest size of separation region among other airfoils. The airfoil with pre-

tension does not induce the roll-up of vortices over the airfoil. This is also similar to the 

flow pattern for the rigid airfoil. 
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4. Conclusions 

High frame rate measurements of deformation and velocity fields were conducted for 

various membrane airfoils with pre-strain and excess length. The maximum camber and 

strain of the time-averaged membrane depends on the membrane pre-strain and excess 

length. The effect of the angle of attack is small for these mostly separated flows at low 

Reynolds numbers. The largest camber is observed for the airfoil with excess length. The 

strain is also largest for the airfoil with excess length. The membrane tension is 

dominated by the pre-tension at the smallest free-stream velocity, but it becomes of 

similar magnitude for all airfoils with increasing free stream dynamic pressure. The time-

averaged velocity field exhibits smaller separated region for airfoils with excess length 

due to their larger camber.  The shear layer moves closer to the airfoil surface and 

separation is delayed with increasing free stream velocity.  On the other hand, the airfoils 

with pre-strain have large flow separation regions. 

 

The onset of the membrane vibrations is delayed to a larger angle of attack for the airfoils 

with excess length. In general, the mode number of the membrane vibrations is larger for 

the membranes with excess-length than for those with pre-strain. Mode numbers up to six 

are observed, and the Strouhal number remains on the order of unity. Both the mode 

number and Strouhal number tend to decrease with increasing angle of attack. Measured 

frequencies of the membrane vibrations suggest a possible coupling with the wake 

instabilities. The magnitude of the shear layer fluctuations is seen to be dependent on the 

angles of attack, and the trends are different for the airfoils with excess length and pre-

strain. The Reynolds stress component shows a similar trend to that of the turbulence 



 19 

intensity. The roll-up of large vortices excited by the membrane oscillations at high angle 

of attack is more evident, and the shear layer is closer to the airfoil surface for the airfoil 

with excess length than for the one with pre-tension, which generally behaves more 

similarly to a rigid airfoil. 
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Figure 1. a) Schematic of experimental setup; b) Cross-section of the membrane airfoil and details of 

leading- and trailing-edge. 

 

 

 

 

Figure 2. Membrane shape as obtained from the laser sheet visualization, U∞ = 5 m/s, α = 20
o
.
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Figure 3. Digitized membrane shapes at different instants for U∞ = 10 m/s for a) δ0 = 0%, α = 25
o
; b) ε 

= 2.5%, α = 18
o
; c) δ = 0%, α = 13

o
. 
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Figure 4. Variation of maximum camber as a function of incidence for different pre-strains and 

excess lengths for a) U∞ = 5 m/s; b) U∞ = 7.5 m/s; c) U∞ = 10 m/s. 
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Figure 5. Variation of time-averaged strain as a function of incidence for different pre-strains and 

excess lengths for a) U∞ = 5 m/s; b) U∞ = 7.5 m/s; c) U∞ = 10 m/s. 
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Figure 6. Magnitude of the time-averaged velocity and streamlines at U∞ = 5 m/s (left: α = 12
o
, right: 

α = 20
o
) for a) ε = 5%; b) ε = 2.5%; c) δ = 0%; d) δ0 = 2.5%%; e) δ0 = 5%. 
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Figure 7. Magnitude of the time-averaged velocity and streamlines at α = 20
o
 (left: U∞ = 5 m/s, right: 

U∞ = 7.5 m/s) for a) ε = 5%; b) ε = 2.5%; c) δ = 0%; d) δ0 = 2.5%. 
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Figure 8. Membrane regimes as a function of incidence at different free stream velocities for different 

pre-strains and excess lengths. 
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Figure 9. Power spectral density of membrane vibrations for δδδδ0 = 5% for a) U∞ = 5 m/s; b) U∞ = 7.5 

m/s; c) U∞ = 10 m/s. 
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Figure 10. Power spectral density of membrane vibrations for δδδδ0 = 2.5% for a) U∞ = 5 m/s; b) U∞ = 

7.5 m/s; c) U∞ = 10 m/s. 



 32 

 
 

Figure 11. Power spectral density of membrane vibrations for δδδδ0 = 0% for a) U∞ = 5 m/s; b) U∞ = 7.5 

m/s; c) U∞ = 10 m/s. 
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Figure 12. Power spectral density of membrane vibrations for εεεε = 2.5% for a) U∞ = 5 m/s; b) U∞ = 7.5 

m/s; c) U∞ = 10 m/s. 
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Figure 13. Power spectral density of membrane vibrations for εεεε = 5% for a) U∞ = 5 m/s; b) U∞ = 7.5 

m/s; c) U∞ = 10 m/s. 
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Figure 14. Turbulence intensity at U∞ = 5 m/s (left: α = 14
o
, middle: α = 18

o
 right: α = 25

o
) for a) ε = 

5%; b) ε = 2.5%; c) δ = 0%; d) δ0 = 2.5%; e) δ0 = 5%. 
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Figure 15. Reynolds stress at U∞ = 5 m/s (left: α = 14
o
, middle: α = 18

o
 right: α = 25

o
) for a) ε = 5%; b) 

ε = 2.5%; c) δ = 0%; d) δ0 = 2.5%; e) δ0 = 5%.
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Figure 16. Smoke flow visualization for flexible (ε = 2.5%, δ = 0%, and δ0 = 2.5%) and rigid wings, 

U∞ = 5 m/s, (left: α = 14
o
, right: α = 18

o
). 

 

 


