

Citation for published version:
Cliffe, O, Scotney, A & Padget, J 2010, 'Bootstrapping semantic web services with in-language annotations' 7th
Extended Semantic Web Conference, Heraklion, Greece, 29/05/10 - 3/06/10, .

Publication date:
2010

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161909059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/bootstrapping-semantic-web-services-with-inlanguage-annotations(48d6877f-66e0-4891-8533-14394795c55e).html

Bootstrapping Semantic Web Services With
In-Language Annotations∗

Owen Cliffe, Adan Scotney, and Julian Padget

Dept. Computer Science, University of Bath
∗This work is partially supported by the IST ALIVE (FP7 215890) project

http://www.ist-alive.eu

Contribution: We outline a mechanism and tool for the authoring and maintenance
of semantic service descriptions through in-language annotations, in a manner that is
analogous to that widely used for the creation of web services in high-level languages.

Context and Problem: Semantic Web Services (SWS) offer a means to achieve mean-
ingful automated service composition and substitution in heterogeneous service-oriented
environments. Several languages (e.g. OWL-S, WSMO, SAWSDL) are used to de-
scribe (i) service semantics and (ii) bindings to the underlying service implementa-
tions. Furthermore, it is common to store semantic service descriptions separately from
the service itself, using using independent description tools (e.g. Protégé, METEOR-S,
WSMO-Studio). This separation poses problems when (i) creating semantic descrip-
tions, which is potentially time-consuming and error-prone with existing languages
and (ii) maintaining them, as changes must be manually tracked and corrected in the
corresponding semantic description. The common approach to building web services
(in high-level languages such as Java, C# Visual Basic.net etc.) is somewhat different.
Rather than producing a service implementation and attaching a web-service descrip-
tion later, the description (in WSDL) is typically built directly from and linked closely
to the program structure of the underlying implementation (or interface description):
web service operation descriptions (WSDL) and underlying data formats (XML/XSD)
are both derived semi-automatically from the method signatures and from the classes
of data passed in and out of those methods, using a default strategy for generating cor-
responding web service artifacts. In the case where the desired web service or XML
bindings differ from default values, in-language annotations (supported by Java 1.5, C#
2.0) on service methods and data classes are added to clarify and guide the construction
process. Consequently, creating and maintaining web service descriptions is relatively
simple as the transformation is driven directly by the program structure.

The Proposed Solution: We propose a mechanism and tool that apply an annotation-
driven approach to the creation of semantic service descriptions (initially in OWL-S)
for web services implemented in high-level languages (initially Java/JAX-WS), com-
plementing the mechanism used to describe conventional web services. We contend
that, in the case where a service implementation exists, then linking semantic anno-
tations directly with the programmatic interface from which it is implemented, allows
developers to create semantically-annotated services more rapidly, more easily and with
fewer errors than with external descriptions.

OWL-S Semantic
Annotations

Bean Ontology
Bindings

Existing domain
ontologies (OWL)

Existing java service interface.
(e.g. JAX-WS SEI)

Semantic Model
(OWL-S) with Java

Bindings JAX-WS model

OWL-S Java grounding
OWL-S core descriptions
(service, profile, process)

OWL-S WSDL
grounding

i) Annotate classes

ii) Parse
annotations

iii) Generate Java
grounding

iv) Generate core
OWL-S model

v) Generate XSLT
grounding

1 @OwlsClass(defaultOntology = "http://numbers.org/Numbers.owl")
2 public class AddServiceSimple{
3 @OwlsService(name = "AddService", label = "Addition Service")
4 @OwlsOutParam(name = "rv", owlType = "#Integer", bindings =
5 { @OwlsBinding(from = ".", to = "hasValue") })
6 public int add(
7 @OwlsInParam(name = "x", owlType = "#Integer",
8 bindings = { @OwlsBinding(from = ".", to = "hasValue") }) int x,
9 @OwlsInParam(name = "y", owlType = "#Integer",

10 bindings = { @OwlsBinding(from = ".", to = "hasValue") }) int y) {

Fig. 1. Translation model used for building service descriptions and an example

The Workflow: Figure 1 outlines the process used for deriving semantic descriptions
from JAX-WS annotated Java source (classes or interfaces) and a simple annotated ser-
vice. Users first add semantic annotations (i) for service properties (profile properties,
inputs, outputs, SWRL preconditions and results) and ontology bindings (bindings may
be drawn from existing Java-OWL binding tools such as Jastor or JenaBean, or may be
defined manually within the tool). OWLSBuilder parses these annotations and builds a
semantic model of the service, including references to any existing domain ontologies
(ii). This model is then used to build the required description documents including the
core service description (iv). Finally, OWLSBuilder produces groundings based on the
underlying mappings, currently these are direct-invocation Java groundings and WSDL
groundings. In the latter case, OWLSBuilder generates XSLT transformations automat-
ically using the parsed bindings and XML Schemas generated from JAX-WS. As with
JAX-WS, sensible defaults are applied where annotations are omitted, allowing services
to be created quickly with minimal annotation. Most aspects of the OWL-S model are
supported (except composite processes) and the semantic binding model is flexible, and
may in principle be applied to other annotation schemas such as SAWSDL in future.

Application: The tool has been used extensively within the ALIVE project, allowing
developers with limited prior experience of SWS technologies to construct semantic
descriptions from existing Java-based web services in a variety of domains, including
intelligent communications routing, crisis management and tourism services.

The Tools: The OWLSBuilder tool is available, along with other ALIVE project soft-
ware, from http://sourceforge.net/projects/ict-alive/. OWLSBuilder provides annotation
support for JAX-WS services and generates OWL-S 1.2 services. A preliminary tutorial
is available at https://wiki.bath.ac.uk/display/owlsbuilder/Tutorial.

