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Abstract 

     The objective was to develop a microemulsion formulation for the transdermal delivery of 

testosterone. Microemulsion formulations were prepared using oleic acid as the oil phase, Tween 20 as a 

surfactant, Transcutol® as co-surfactant, and water. The microemulsions were characterized visually, 

with the polarizing microscope, and by dynamic light scattering. In addition, the pH, conductivity (σ) and 

viscosity (η) of the formulations were measured. Moreover, differential scanning calorimetry and 

diffusion-ordered nuclear magnetic resonance spectroscopy were used to study the formulations 

investigated.  Conductivity measurements revealed, as a function of the weight fraction of the aqueous 

phase, the point at which the microemulsion made the transition from water-in-oil to bicontinuous. 

Alterations in the microstructure of the microemulsions, following incorporation of testosterone, have 

been evaluated using the same physical parameters (pH, σ and η) and via Fourier-transform infra-red 

spectroscopy (FTIR), 1H-NMR and 13C-NMR. These methods were also used to determine the location of 

the drug in the colloidal formulation. Finally, testosterone delivery from selected formulations was 

assessed across porcine skin in vitro in Franz diffusion cells. The physical parameter determinations, 

combined with the spectroscopic studies, demonstrated that the drug was principally located in the oily 

domains of the microemulsions. Testosterone was delivered successfully across the skin from the 

microemulsions examined, with the highest flux achieved (4.6 ± 0.6 µg cm-2 hr-1) from a formulation 

containing 3% w/v of the active drug and the composition (w/w) of 16% oleic acid, 32% Tween 20, 32% 

Transcutol® and 20% water. The microemulsions considered offer potentially useful vehicles for the 

transdermal delivery of testosterone. 

 



1. Introduction 

     Testosterone is the major circulating male androgen (Leichtnam et al., 2006a). Its deficiency is usually 

associated with adverse effects on body composition, bone density, sexual function and mood, and may 

also increase cardiovascular risk. Numerous studies have demonstrated the benefits of testosterone 

replacement in overtly hypogonadal men. Amongst the several possible administration routes for 

testosterone replacement, transdermal delivery offers advantages over oral and intramuscular 

application in that both hepatic first-pass metabolism in the liver after oral administration, requiring high 

testosterone doses, and potentially painful injections combined with supra-physiological testosterone 

serum concentrations, are avoided. Moreover, the endogenous, circadian rhythm of testosterone 

secretion can be mimicked (Leichtnam et al., 2006b). The relatively low molecular weight (MW = 288) 

and moderate lipophilicity (log Po/w = 3.3; water solubility = 0.039 mg/ml at 37°C) (Okimoto et al., 1999) 

of testosterone are favourable factors for transdermal delivery. Gel formulations are already used 

clinically for the delivery of this hormone (e.g. Androgel®). However, these formulations have to be 

applied over large surface areas to achieve the target plasma levels and transfer of the drug to female 

partners has been recorded. While the approved transdermal patches (e.g. Testoderm® and 

Androderm®) avoid this problem, they have other drawbacks which significantly reduce patient 

acceptance and compliance (Leichtenam et al., 2006b). It follows that the development of alternative 

formulations for the transdermal delivery of testosterone remains a desirable goal. 

    Androgen replacement therapy should match normal physiological production (3-10 mg/day) of 

testosterone (Leichtnam et al., 2006b), corresponding to a target transdermal flux on the order of 1-10 

µg cm-2 hr -1 for a 30 cm2 patch.  This objective has been achieved from semi-solid formulations and from 

transdermal patches (e.g. Androderm®) ( Mitragotri et al., 1995; Marbury et al., 2003; Farahmand and 

Maibach, 2009). The maximum, passive flux of a drug across the skin is achieved when it is present in the 

applied formulation at its saturation concentration and, in a previous study, saturated solutions of 



testosterone containing different percentages of ethanol, propylene glycol and water were assessed for 

the transdermal delivery of the drug and attained fluxes of ~1 μg cm-2 hr-1 (Leichtnam et al., 2006c).  It is 

nevertheless possible to achieve the higher target fluxes of testosterone without using sophisticated 

technologies (e.g. electroporation, iontophoresis, sonophoresis, micro-perforation of the stratum 

corneum, etc.) via the incorporation of penetration enhancers into the formulation, or by increasing the 

drug’s thermodynamic activity above unity using supersaturation. The limitation of the latter approach is 

stability, and the need to maintain the metastable state for a period sufficiently long so that an impact 

on drug transport is apparent (Leichtnam et al., 2006d). Consequently, the use of microemulsions, 

composed of excipients which include known penetration enhancers, was considered in this study. Single 

phase microemulsions are of interest as potential drug delivery vehicles due to their long term stability, 

ease of preparation, and considerable capacity for solubilisation of a variety of drug molecules 

(Malmstein, 1999; Lawrence and Rees, 2000). They are thermodynamically stable and optically isotropic, 

transparent, colloidal systems consisting of water, oil and amphiphiles (surfactant, usually in 

combination with a cosurfactant) (Stilbs et al., 1983; Langevin, 1988). When a sufficient amount of an 

appropriate surfactant is added to solubilise oil and water completely, single phase systems (Winsor IV 

microemulsions) are formed (Winsor, 1948). Four-component systems of surfactant, cosurfactant, oil, 

and water have many important features and are the most studied microemulsions. Moreover, interest 

in using non-ionic tensioactives, both as  surfactant and as cosurfactant, is increasing due to their high 

stability, low toxicity, low irritancy and biodegradability (Malmstein, 1999; Lawrence and Rees, 2000).  

Transcutol® is a powerful solubilising agent, the use of which in dermal and transdermal delivery has 

been examined in some detail, due to its non-toxicity, biocompatibility with the skin, miscibility with 

polar and non-polar solvents and optimal solubilising properties for a number of drugs (Barthelemy et 

al., 1995). Mono-unsaturated fatty acids, such as oleic acid, have received attention as effective 

penetration enhancers (Golden et al., 1987). The aim of this work is the development of a microemulsion 



formulation for the transdermal delivery of testosterone using oleic acid as the oil phase, Tween 20 as a 

surfactant, Transcutol® as co-surfactant, and water. 

 



2. Materials and Methods 

2.1. Materials 

     Oleic acid, polyethylene 20 sorbitan monolaurate (Tween20®), polyethylene 40 sorbitan 

monopalmitate (Tween40®) and polyethylene 80 sorbitan monooleate (Tween80®)  (Sigma-Aldrich, 

Gillingham, UK), diethylene glycol monoethyl ether (Transcutol®) (Gattefosse, Lyon, France), 

testosterone (Sigma, St.Louis, MO, USA), acetonitrile, ethanol (HPLC grade) (Fisher Scientific, 

Loughbrough, UK), sodium chloride, potassium chloride, sodium phosphate (monobasic) and potassium 

phosphate (dibasic) (Acros Organics, Geel, Belgium), deuterated water (Cambridge isotope laboratories, 

Andover, MA, USA) and Parafilm® (Pechiney plastic packaging company, Chicago, IL, USA). All aqueous 

solutions were prepared using high-purity deionized water with conductance less than 1 µS cm-1 (18.2 

MΩ.cm) (Barnstead Nanopure Diamond, Dubuque, IA, USA).  

2.2. Methods 

2.2.1. Construction of pseudo-ternary phase diagrams 

     To determine the concentration ranges of components over which microemulsions would form, 

pseudo-ternary phase diagrams were constructed using the water titration method at ambient 

temperature (25°C) (Chen et al., 2004). Phase diagrams were prepared with different surfactants and 

different weight ratios of surfactant to co-surfactant. For each phase diagram, the ratios of oleic acid to 

the mixture of surfactant and cosurfactant were varied as 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1. The 

mixture of oil, surfactant and cosurfactant was diluted with water, under moderate stirring. After 

equilibration, the mixtures were assessed visually as either one-phase microemulsions or two-phase 

mixtures. Turbidity was considered an indication of phase separation.  Every sample that remained 

transparent and homogenous after vigorous vortexing was assigned to a monophasic area in the phase 

diagram (Garti et al., 2000). 

 



2.2.2. Polarized light microscopy 

     To verify the isotropic nature of microemulsions, samples were examined using cross-polarized light 

microscopy (Olympus BX51 U-AN 360, Tokyo, Japan). A drop of sample was placed between a coverslip 

and a glass slide and observed under cross-polarized light. Isotropic material, such as a microemulsion, in 

contrast to anisotropic liquid crystals, will not interfere with the polarized light (Friberg, 1990) and the 

field of view  remains dark. 

2.2.3. Water solubilisation parameters 

     One of the goals of this work was to incorporate a large amount of water and oil into the 

microemulsions. The total monophasic area has been used as a solubilisation parameter (Fanun, 2008), 

and it is the sum of all one-phase cross-sectional areas in the tetrahedral phase diagram. The water and 

oil solubilization was estimated as the monophasic area (AT) of the relevant pseudo-ternary phase 

diagrams. It is also well documented that the water solubilization capacity of different amphiphilic 

systems should be strictly compared at optimal solubilisation capacity. Because the maximum 

solubilisation of water appears in some systems on different water dilution lines (a line in the phase 

diagram beginning with a mixture of oil/surfactant/cosurfactant at a fixed ratio, which is diluted with 

water), it is common to state the maximum solubilisation of water (Wm) on the dilution line where 

maximum solubilisation was obtained (see Figure 1).  

2.2.4. Particle size measurements  

     The particle size and the polydispersity of the microemulsions were determined using dynamic light 

scattering (Malvern Zetasizer , Malvern, Worcestershire, UK) assuming a viscosity of 0.05 PaS. The 

scattering intensity data were obtained from pre-filtered (0.45 µm) microemulsions (Delgado-Charro et 

al., 1997). The samples were loaded into cuvettes having a volume of 1 cm3 in a thermostated chamber 

at 25°C. Triplicate measurements were made. 



2.2.5. Electrical conductivity measurements 

     Electrical conductivity (σ) of oleic acid/Tween20/Transcutol®/water microemulsions was measured 

using a conductometer (Metrohm 712, Herisau, Switzerland) at a frequency of 94 Hz. The measurements 

were performed in triplicate at 25 (±1) °C. The electrode material was graphite and the cell constant was 

0.965 cm-1 (±1.5%). The electrode was dipped in the microemulsion sample until equilibrium was 

reached and the reading became stable. Reproducibility was excellent. The conductivity cell constant 

was calibrated using standard KCl solutions and checked no less than three times during the course of 

the work. 

2.2.6. Differential scanning calorimetry (DSC) 

   The thermal behaviour of water can be a helpful and rapid means with which to understand the 

microstructure of microemulsions (Liu et al., 2009). DSC measurements were carried out as follows: 

microemulsion samples (6-18 mg) were weighed into aluminium pans and immediately pressure sealed; 

measurements were performed in the cooling (exothermic) mode on an EX star / SII 7020 high sensitivity 

DSC (SII Nano Technology Incorporation, Tokyo, Japan) equipped with an automatic liquid nitrogen 

cooling unit; the samples were equilibrated at 25°C for 5 minutes, then gradually cooled by liquid 

nitrogen at a predetermined rate from ambient to -60°C at a constant scanning rate of 10C° / min. An 

empty pan was used as a reference. Nitrogen with a flow rate of 0.3 L/min was used as purge gas. 

2.2.7. Diffusion-ordered spectroscopy (DOSY) 

    All PGSE (Pulsed Gradient Spin Echo) measurements were determined using a Varian Mercury 400 

MHz spectrometer (Varian Inc., Palo Alto, CA, USA) equipped with a 4-nucleus auto-switchable probe, 

using the Dbppste pulse sequence, at 25°C, without spinning the sample. Gradient strength (G) was 

varied over 15 spectra, which were acquired with 32K data points, over a spectral width of 5 MHz, with a 

relaxation delay of 5 seconds and processed with line broadening of 1 Hz. Since the samples were 

essentially highly concentrated, only 4 transients were recorded for each gradient strength. For each 



component, a characteristic peak was selected such that in the 1H-NMR of the micro-emulsion the peak 

was clearly separate from all other peaks. For water, this corresponds to a broad peak at 4.69 ppm. For 

oleic acid, the triplet between 0.98 and 1.05 ppm was used for determining Do
oil taking an average of the 

values obtained for the three lines in the spectrum.  Self diffusion coefficients for pure water (Do
water) and 

neat oil (Do
oil) at 25°C were determined. Using the same conditions, DOSY analysis of the water and oil in 

the microemulsions was performed using the peaks identified from the pure components. 

2.2.8. pH  measurements 

     The pH of the selected oleic acid/Tween20/Transcutol®/water microemulsions was measured using a 

Thermo Orion pH meter (Thermo Fisher Scientific, MA, USA). Triplicate measurements were made. 

2.2.9. Rheological measurements 

     Dynamic viscosity (η) was determined at 20°C with a Bohlin rheometer (Bohlin Instruments, 

Gloucestershire, UK), using cone (4 cm diameter, 4 grad. angle) and plate geometry. Shear rates of 

between 0.1 and 5 sec-1 were used. All samples were measured in triplicate. 

2.2.10. Fourier-transform infrared spectroscopy (FT-IR) 

     FT-IR spectra of the microemulsions,  with and without drug incorporation, were recorded on a 

Perkin-Elmer (RX1) FTIR spectrometer (Perkin-Elmer, Waltham, MA, USA) using NaCl plates, in the 

frequency range 4,000–350 cm-1 with 64  scans and 4 cm-1 spectral resolution. 

2.2.11. 
1
H-NMR and 

13
C-NMR 

     NMR measurements were performed at 25°C on Varian Mercury 400 MHz using D2O as internal locking 

agent. 

2.2.12. Preparation of testosterone microemulsions 



   Testosterone was dissolved gradually in an oleic acid/Transcutol® mixture. Magnetic stirring was used. 

After complete solubilisation, Tween20 was added and the mixture was then diluted with water under 

moderate stirring. 

2.2.13. Alteration of microemulsion microstructure after drug loading  

     Microstructure alterations in the microemulsions, following incorporation of testosterone (1% and 3% 

w/v), were evaluated via physical measurements of pH, σ and η, and with FTIR, 1H-NMR and 13C-NMR. 

These results were also used to determine the location of the drug in the colloidal formulation. 

2.2.14. Skin 

   Dorsal porcine skin was obtained from animals slaughtered at a local abattoir and dermatomed to a 

thickness of 740 µm. The skin was stored (for a period of no more than one month) at -20°C until use. 

2.2.15. In vitro permeation experiments 

   Skin was defrosted, cut into circular sections and mounted with the stratum corneum uppermost in 

Franz-type diffusion cells (Permegear, Hellertown, PA, USA). The receptor volume was 7.5 ml and the 

diffusional area was 1.77 cm2.  Before starting the transport experiment, the receptor solution was filled 

with phosphate buffered saline (PBS) at pH 7.4 and the skin surface was covered with 1 ml of the same 

solution. The cells were equilibrated in a water bath at 37°C for 1 hour. The receptor was magnetically 

stirred.  Subsequently, the PBS in the donor was replaced by 2 ml of microemulsion containing 1% w/v 

testosterone and the compartment was covered with Parafilm®.  A 0.5 ml sample of the receptor fluid 

was collected at 2, 4, 6, 8, 10, 24, 28 and 30 h and immediately replaced with fresh solution. All samples 

were filtered using 0.45 μm Nalgene® Millipore syringe filters (Thermo Fisher Scientific, Waltham, MA, 

USA) prior to analysis.  All the experiments were performed in triplicate. 

2.2.16. High performance liquid chromatography (HPLC) assay for testosterone 



   For isocratic chromatography, a Phenomenex® C18, 5 μm, 50×4.6 mm column (Phenomenex, Torrance, 

CA, USA) was used at 25°C.  UV detection at 241 nm was performed using the UV detector of a Shimadzu 

2010 EV liquid chromatograph mass spectrometer (Shimadzu, Kyoto, Japan) together with a Spectra 

Serie P 100 HPLC-pump (Thermo separation products, Riviera beach, FL, USA).  A 60:40 (v/v) degassed 

mixture of acetonitrile and water was used as the mobile phase. At a flow rate of 1 ml/min, the retention 

time of testosterone was 1.3 ± 0.3 min. Unknown testosterone concentrations were calculated against 

known standards.  The quantitation limit of the assay was 0.1 μg/ml; when a solution of drug at that 

concentration was injected on six separate occasions, the HPLC response had a coefficient of variation 

(CV) of 0.24%. Repeating this experiment on a different day resulted in essentially identical results, this 

time with a CV of 0.25%. The method was therefore considered repeatable and reproducible. 

2.2.17. Data Analysis 

     The permeation results were expressed as the cumulative amount of drug transported across the skin 

barrier per unit area (Q) as a function of time (t). Each permeation curve was fitted to the appropriate 

solution (Eq. 1) of the non-steady state diffusion equation (Fick’s second law (Friend, 1992)), which 

assumes the boundary conditions (a) that there is no depletion of the drug in the donor compartment 

over the course of the experiment, (b) that the receptor phase provides “sink conditions”, and (c) that at 

t = 0, there is no drug in the skin (Sekkat et al., 2004). That is, 
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where Cveh is the drug’s concentration in the donor solution and K is its SC-microemulsion partition 

coefficient; D is the diffusivity of the drug in the SC of thickness H. 

The fitting procedure used a commercial software package (Prism, Version 5, GraphPad 

Software, San Diego, CA, USA), running on a personal computer, and enabled the drug’s characteristic 



partitioning (KH) and diffusivity (D/H2) parameters to be deduced. In turn, the conventional permeability 

coefficient (kp) of the drug across the skin was found: 
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together with the estimated steady-state drug flux Jss 

vehpss CkJ ×=                                    (3) 

2.2.18. Final experiments 

   In a last set of experiments, the drug concentration was increased from 1% to 3% w/v in the 

microemulsion which best delivered testosterone across the skin and the in vitro study was repeated. 

Physical characterization and spectroscopic analyses were conducted and compared to the 

corresponding unloaded and 1% w/v microemulsion. 

 



3. Results and discussion 

3.1. Solubilisation parameters for different microemulsions                                                                                                                                                                                                                                                                                                                                

      The isotropic and low-viscosity region is presented in the phase diagram (Figure 1) as the one-phase 

microemulsion region (1Φ). The remainder of the phase diagram represents the turbid region, 

represented as multiphase (MΦ), conventional emulsions. These results were confirmed using polarized 

light microscopy. The total monophasic region (AT) of the system oleic acid/Tween20/Transcutol®/water 

was 16.9 (±2.9) %. 

3.2. Effect of surfactant chain length on microemulsion formation 

      The surfactants considered were Tween20, Tween40 and Tween80, and the effect of chain length on 

AT, Wm and Sm are presented in Figure 2. The highest AT and Wm, and the lowest Sm, were observed with 

Tween20 (C-12) which has the shortest chain length, the highest hydrophilicity (HLB 16.7), and the 

greatest ability to incorporate water (Thevenin et al., 1996). Furthermore, Tween20 has the lowest 

dynamic viscosity (400 cp) compared to that of Tween40 (500 cp) and Tween80 (425 cp). It is worth 

noting that Tween80 had higher AT and Wm  than Tween40 presumably due to its unsaturation at C-9 

which increases its HLB. The compatibility between the individual components is an important factor 

with respect to the formation of microemulsions (Hou and Shah, 1987; Bayrak and Iscan, 2005a; Bayrak 

and Iscan, 2005b). From the results obtained here, together with the established relationship between 

surfactant alkyl chain length and skin penetration enhancement ability (Zaslavsky et al., 1978; Walters et 

al., 1981; Florence et al., 1983; Lopez et al., 2000), Tween20 was selected for further investigations. 

3.3. Effect of the surfactant/cosurfactant ratio on microemulsion formation 

     The mixing ratios of surfactant to Transcutol® considered were 1:3, 1:1 and 3:1. The effect on AT is 

presented in Figure 3. The 1:1 ratio gave the highest value: 16.9 (± 2.9) %. 

3.4. Particle size 



     Dynamic light scattering revealed that the average droplet diameter for all microemulsions 

investigated was 10-13 nm (Table 1). A small droplet size provides increased stability against 

sedimentation, flocculation, and coalescence (Cho et al., 2008). 

The internal-phase ratio (Ø) was calculated (Lissant, 1974) for each formulation (Table 1). For a 

W/O microemulsion system,  

Øw = (VH2O+Vsurf+cosurf)/ Vtot                           (4) 

while, for an o/w microemulsion, 

Øo = (Vo+Vsur.+cosurf)/ Vtot                                 (5) 

where V represents the volume of the phase(s) indicated by the subscript. The results in Table 1 show 

that the droplets occupy 27-90% of the w/o or o/w microemulsions investigated. Because the 

partitioning of surfactant/cosurfactant between the droplets and the continuous phase is unknown, the 

calculated phase volumes are apparent values rather than absolute (Baroli et al., 2000). Assuming that 

microemulsion droplets behave like rigid spheres, stronger hydrodynamic interactions between them are 

expected as their number increases (Lissant, 1974), and aggregates may be formed. Maximum droplet 

aggregation is anticipated for the largest Ø values and this was confirmed by the high polydispersity 

index (recognising, of course, that values of polydispersity approaching 1 indicate that particle size 

estimates come with considerable uncertainty).  

3.5. Electrical conductivity measurements (σ) 

      It has been previously demonstrated that strong correlations exist between a microemulsion’s 

structure and its electroconductive behaviour (Clausse et al., 1987a). Conductimetry is therefore a useful 

tool with which to assess aspects of a microemulsion’s properties (Clausse et al., 1987b).  In Figure 1, 

Line L20 starting at 20% v/v oil to 80% v/v surfactant/co-surfactant represents a wide range of stable 

microemulsions containing increasing amounts of water. Figure 4a shows the influence of water content 

on the electrical conductivity of oleic acid/Tween20/Transcutol®/water compositions along the line L20. 



As the volume percentage of water increases, the electrical conductivity increases. In the so-called 

percolation model, the conductivity remains low up to a certain volume fraction of water (Fanun, 2008). 

If a dramatic change in conductivity at a given water volume fraction (Φ) is recorded, then a phase 

inversion from reverse swollen micelles (w/o) to direct micelles (o/w) is suggested (Thevenin et al., 

1996). This transition is explained by the emergence of bicontinuous structures which possess ultralow 

interfacial tension. Conductivities >1 μS/cm have been reported to be indicative of bicontinuous or 

solution-type microemulsions, where the presence of water in the continuous pseudo-phase leads to 

measurable conductivity (Krauel et al., 2005; Graf et al., 2008). These dynamic structures include water 

and oil pseudo-domains which rapidly exchange (Baker et al., 1984). In the presence of these structures, 

the conductivity is comparable to that of electrolyte solutions and decreases with decreasing water 

content. Under these conditions, the conductivity drops sharply by more than one order of magnitude 

(Lagourette et al., 1979). The conductivity of w/o microemulsions are on the order of 10-6 S/m, i.e., much 

higher than those typical of apolar solvents (10-16-10-12 S/m) (Giustini et al., 1996). 

     Water-in-oil droplets, below a critical water volume fraction (Φc) are isolated from each other and are 

embedded in the non-conducting, continuum oil phase; hence, they contribute very little to the electrical 

conductance. However, as the volume fraction of water reaches Φc, contact between these conductive 

droplets occurs and results in the formation of clusters. The number of such clusters increases very 

rapidly above this so-called percolation threshold, giving rise to the observed changes in electrical 

conductivity. The electrical conductivity increase above Φc  has been attributed both to ion hopping from 

droplet to droplet within clusters, to transfer of counter ions from one droplet to another through water 

channels during sticky collisions, and to the transient merging of droplets (Mathew et al., 1988). The 

threshold depends on interactions between droplets, which control the duration of the collision and the 

degree of interface overlap, and hence the probability of hopping or merging. Increasing conductivity 



requires attractive interactions and Φc decreases as the strength of these inter-droplet interactions 

increases (Safran et al., 1985). 

In these systems, conductivity follows a universal law independent of the physical properties of the 

medium and, near the percolation threshold (Bisal et al., 1990), 

σ = (Φ –Φc)
t          (6) 

where σ is the conductivity, Φ is the dispersed water volume percentage, Φc  is the dispersed volume 

percentage at the percolation threshold, and t depends on the system dimensionality (t = 1.5-1.6 for a 3-

dimensional system) (El-Laithy, 2003). 

     To test the validity of the percolation theory, (log σ)/t and d(logσ)/dΦ were plotted as a function of Φ 

(Figure 4). For the system oleic acid/Tween20/Transcutol®/water, the x-axis intersect in Figure 4b 

indicates that Φc = 2.8 (±0.2) µS/cm, while Figure 4c shows a maximum corresponding to Φc = 3 (±0.1) 

µS/cm. Incorporation of the drug had no significant effect on the conductivities of the microemulsions A 

to F (Table 3). 

3.6. Differential scanning calorimetry 

    The cooling curves of all pseudo-ternary mixtures investigated (Table 2) show one exothermic peak 

(Figure 5). With increasing water fraction, the peak shifts towards higher temperatures. The changes 

tend towards the freezing behaviour of pure water as shown by the reference measurement with its 

maximum at about -17°C.  Therefore, the exothermic event represents the freezing of super-cooled 

water (Broto and Clausse, 1976; Podlogar et al., 2004). The decreasing water fraction goes hand-in-hand 

with an increase in the amount of surfactant and this leads to more strongly bound water molecules 

being needed to hydrate the polar head groups. Correspondingly, a decrease in the freezing temperature 

can be anticipated and the presence of non-freezing water is therefore likely (Yaghmur et al., 2002). In 

this context, a small broadened peak at very low temperatures (below -30°C) has been suggested to be 

either internal water or water that is interacting strongly with the surfactants (Podlogar et al., 2004; 



Podlogar et al., 2005). The behaviour might be expected in the system containing 5% water. Since the 

other peaks are also broadened, but show maxima at more than -30°C , these mixtures may be 

demonstrating a structural change towards bicontinuous microemulsions. Similar deductions can be 

made from the electrical conductivity experiments. 

3.7. DOSY measurements 

    Diffusion-ordered nuclear magnetic resonance (NMR) spectroscopy (DOSY) is a powerful technique 

that enables discrimination among molecular species using apparent translational diffusion coefficients. 

A DOSY experiment performed on a mixture results in a two-dimensional spectrum which displays 

conventional NMR spectral information (chemical shifts) in one dimension and the apparent self 

diffusion coefficient in the other. This apparent self diffusion coefficient is calculated by measuring the 

decay obtained of the spin echo spectra using pulsed field gradients (Liu et al., 2009). The relative 

diffusion coefficient D/Do, of water and oil in the nanodroplets versus the diffusion coefficient in a 

solution is used to evaluate the self-diffusion data in terms of microstructure. The Do
water determined 

using the peak at 4.69 ppm was 20.3 x 10-10 m2 s-1, which is consistent with literature values (Ghi et al., 

2002).  The value of Do
oil was 0.33 x 10-10 m2 s-1. Relative diffusion coefficients of the water and the oil 

were obtained by dividing water and oil diffusion coefficients in the microemulsion by those in the neat 

phases. It was previously documented that discrete particles of the slowly diffusing solvent are indicated  

if the D/Do values of water and oil differ by more than one order of magnitude; alternatively,  if the D/Do 

values of water and oil are of the same order of magnitude, a  bicontinuous structure is implied (Libster 

et al., 2006). The selected microemulsions (Table 2) containing 5-23% aqueous phase had relative 

diffusion coefficients for water and oleic acid of the same order of magnitude as shown in Figure 6. This 

would suggest a bicontinuous microstructure in agreement with the DSC and conductivity measurements 

reported above. 

3.8. pH  measurements 



        The pH decreased significantly (p < 0.05 using a one-way ANOVA and Bonferroni’s post test) from 

5.23 to 4.56 for the selected microemulsion formulations (Table 2) as the water concentration 

progressively increased from 5 % to 23%. At higher water content, the ionization of the organic acid 

present increases, releasing more protons into the solution and reducing the pH (Spernath et al., 2006). 

Incorporation of the drug caused no significant change in the pH (Table 3). Nevertheless, the pH values 

observed are considered physiologically acceptable.  

3.9. Rheological measurements 

     Newtonian flow was suggested for the microemulsions investigated as the viscosity remained 

constant at different shear rates. The dynamic viscosity of the microemulsion formulations ranged from 

0.047 to 0.061 Pa s.  ANOVA and Bonferroni’s post test showed that there was no significant difference 

at p < 0.05 between any of the measured viscosities. The viscosity of a microemulsion is a function of the 

surfactant, water and oil components and their concentrations (Yuan et al., 2008). The viscosity is 

governed by two opposing effects: increasing the water content is expected to lower the viscosity while 

decreasing the amount of surfactant and co-surfactant increases interfacial tension between oil and 

water, decreases interfacial area, increases the size of the internal domains and therefore increases 

viscosity (El Maghraby, 2008).  Adding the drug caused no significant increase (p < 0.05) in viscosity 

(Table 3).  

 

 

3.10. FTIR, 
1
H-NMR and 

13
C-NMR spectroscopy 

      The O-H stretching frequency in the infrared can be used to measure the strength of a hydrogen 

bond. The stronger the H-bond, the lower the vibration frequency and the broader and more intense the 

absorption band (Williams and Fleming, 1996). 



     The O-H absorbance of microemulsions A to F occurred at higher frequencies than pure water (3400 

cm-1) (Table 3) due to H-bond interactions between water, the surfactant and the co-surfactant. These 

bonds are weaker than intermolecular H-bonds in water alone. As the water content in the 

microemulsions (ME A to ME F) increased, the O-H absorbance shifted to lower frequencies. 

     Incorporation of the drug had a negligible effect on the O-H stretching frequency (Table 3). In other 

words, the drug did not influence the water-surfactant interface (Mehta et al., 2008), consistent with its 

probable location in hydrophobic domains and its low aqueous solubility. This would suggest no 

alteration in the microemulsion microstructure with drug incorporation, in agreement with the 

conductivity, pH and rheological measurements.  

      The 1H-NMR and 13C-NMR spectra and peak assignments to different groups of the microemulsion 

components are presented in the Supplementary Information. The changes in chemical shifts of the 

protons in the distinct functional groups (CH3, CH2CH and CH) of oleic acid after drug incorporation were 

the highest. These results were confirmed using 13C-NMR, where C=C and -CH3 carbons scored the 

highest shifts. These results are consistent with the physical characterisation and FTIR spectroscopy 

findings, and confirm that testosterone is found primarily in the oil domain of the microemulsions. 

 

3.11. In vitro permeation 

Figure 7 shows the permeation profiles of testosterone from the selected microemulsion 

formulations and the corresponding fitting of the data to Fick’s second law. Drug partitioning (KH) and 

diffusivity (D/H2) parameters, estimated permeability coefficients (kp) and steady-state fluxes (Jss) for 

each formulation are summarized in Table 4. 

Different mechanisms have been proposed to explain the enhanced transdermal delivery of drugs 

using microemulsions: via increased thermodynamic activity of the drug, through the action of 

microemulsion ingredients as permeation enhancers, and because of increased skin hydration (Williams 



and Barry, 2004). All these possibilities are supported in some way by the results (Rhee et al., 2001): 

testosterone flux increased with increasing water content of the microemulsion, consistent with a higher 

thermodynamic activity of the drug and a greater level of skin hydration. Equally, when the level of the 

known penetration enhancer, oleic acid, fell below 16 %, the flux of testosterone was reduced. 

   Increasing the loading dose of drug is an effective method to improve the skin permeation rate (Zhao 

et al., 2006). Figure 8 demonstrates this principle for testosterone in microemulsion E with the drug flux 

increasing from 1.40 (± 0.44) to 4.63 (± 0.61) µg cm-2 h-1 as the loading was raised from 1% to 3% w/v.  

 



4. Conclusion 

  Microemulsions for the transdermal delivery of testosterone have been developed and fully 

characterised and shown to achieve percutaneous absorption rates of the drug consistent with effective 

clinical treatment.   Further work is required to determine whether a microemulsion may ultimately be 

incorporated into a transdermal patch, and take advantage of the favourable delivery rate as well as the 

lower skin irritation potential which has been reported for formulations of this type.  Alternatively, one 

might envisage a more conventional ‘unit-dose’ system of a microemulsion, such as a gel, designed for 

application over a specific and controlled skin area (e.g., the backs of the hands); in this case, it may be 

possible to adjust downwards the level of penetration enhancer with a view to mitigating further any 

irritation effects. 

 

5. Supplementary information 

   1H-NMR chemical shift data for microemulsions E and F. 13C-NMR chemical shift data of microemulsion 

F. 1H-NMR and 13C-NMR spectra and assignment of peaks for microemulsion F.  
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Figure Legends 

Figure 1  Phase diagram for the oleic acid/Tween20/Transcutol®/water system where the mixing ratio 

of Tween20 to Transcutol is 1:1. 1Ф represents the water-in-oil, bicontinuous phase and the 

oil-in-water microemulsion (one phase region); MФ corresponds to multiple phase regions.  

Wm is the maximum amount of solubilised water, Sm is the amount of surfactant needed to 

obtain maximum water solubilisation and L20 is a dilution line where the initial oil 

concentration is 20% w/w. 

Figure  2  Variation of the total monophasic region (AT), the maximum amount of solubilised water 

(Wm), and the minimum amount of surfactant (Sm), needed to achieve maximum water 

solubilisation, as a function of Tween chain length. 

Figure  3  Variation of the total monophasic region (AT) as a function of the surfactant to co-surfactant 

ratio in the systems oleic acid/Tween20/Transcutol®/water. 

Figure  4  Dependence of (a) electrical conductivity (σ), (b) (log σ)/t and (c) d(log σ)/dΦ, as a function 

of percentage water content (Φ) along the dilution line L20 for the system oleic 

acid/Tween20/Transcutol®/water presented in Figure 1. 

Figure  5  DSC cooling curves (plotted as endothermic heat flow as a function of temperature) of pure 

water and of the selected microemulsions (see Table 2). 

Figure  6 Relative diffusion coefficients (D/D0) of water (o) and oil (Δ) of the selected microemulsions 

(see Table 2) as a function of water content. 

Figure  7 Permeation of testosterone (1% w/v) from selected oleic acid/Tween20/Transcutol®/water 

microemulsions. The lines through the data are best fits to the appropriate solution of Fick’s 

second law of diffusion (r2 values were 0.71, 0.96, 0.97, 0.99, 0.90 and 0.99 for 

microemulsions A to F respectively). 

Figure  8  Permeation of testosterone (at (a) 3%, w/v, and (b) 1% w/v) from microemulsion E. The lines 

through the data are best fits to the appropriate solution of Fick’s second law of diffusion 

(r2= 0.96 and 0.90, respectively). 
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Figure 5 
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Figure 7 
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Figure 8 
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Table 1:  Dynamic light scattering characterization of selected microemulsions comprising oleic acid/Tween20/Transcutol®/water. 

 

 

Microemulsion composition (%v/v) 

Oleic acid/Tween20/Transcutol®/Water Øw Øo 

Z - average diameter 

(nm) ± S.D. 

Polydispersity 

Index ± S.D. 

70/14/14/2 0.27  10 ± 2 0.53 ± 0.31 

50/22.5/22.5/5 0.46  13 ± 3 0.25 ± 0.19 

30/30/30/10  0.90 13 ± 6 0.33 ± 0.13 

10/35/35/20  0.79 10 ± 6 0.89 ± 0.14 
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Table 2:  Selected microemulsion formulations (%v/v). 

 

 

Microemulsion 
Components 

A B C D E F 

Oleic acid 19 18 17 16.2 16 15.4 

Tween20 38 36 34 32.9 32 30.8 

Transcutol® 38 36 34 32.9 32 30.8 

Water 5 10 15 18 20 23 
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Table 3:  Changes in the physical parameters of microemulsions (ME) after loading with drug (1% w/v). 

 

OH frequency (cm-1) σ (µS/cm) η (Pa.s) pH 
ME 

Unloaded Loaded Unloaded Loaded Unloaded Loaded Unloaded Loaded 

A 3449 3442 2.39 ± 0.16 2.35 ± 0.21 0.047 ± 0.011 0.036 ± 0.027 5.24 ± 0.01 5.30 ± 0.03 

B 3436 3433 3.11 ± 0.27 3.63 ± 0.29 0.046 ± 0.012 0.049 ± 0.020 5.15 ± 0.04 5.14 ± 0.02 

C 3434 3436 4.18 ± 0.64 5.04 ± 0.60 0.050 ± 0.016 0.062 ± 0.008 5.04 ± 0.03 4.97 ± 0.01 

D 3426 3433 5.82 ± 0.53 6.35 ± 0.48 0.039 ± 0.018 0.062 ± 0.007 5.03 ± 0.03 4.97 ± 0.02 

E* 3431 

 

3434 

3434 

 

7.34 ± 0.23 
7.20 ± 0.54 

6.68 ± 0.17 
0.037 ± 0.014 

0.040 ± 0.017 

0.052 ± 0.016 
4.89 ± 0.02 

4.90 ± 0.03 

4.92 ± 0.00 

F 3401 3402 8.63 ± 0.59 8.71 ± 0.32 0.061 ± 0.017 0.073 ± 0.037 4.45 ± 0.03 4.45 ± 0.01 

 

*Values in italics represent the physical parameters of microemulsion E after loading with drug at 3% w/v. 
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Table 4: Testosterone partitioning (KH) and diffusivity (D/H2) parameters, estimated 

permeability coefficients (kp) and steady-state fluxes (Jss) from different 

microemulsions (ME) containing oleic acid/Tween20/Transcutol®/water across 

porcine skin in vitro. 

 

 

ME 103. KH (cm) D/H2 (hr-1) 105. kp (cm/hr) Jss (µg. cm-2. hr-1) 

A 0.19 ± 0.03 0.03 ± 0.014 0.60 ± 0.31 0.06 ± 0.03 

B 0.40 ±  0.05 0.03 ± 0.004 1.55 ± 0.23 0.15 ± 0.02 

C 1.00 ± 0.60 0.06 ± 0.036 4.00 ± 0.90 0.41 ± 0.09 

D 1.30 ± 0.18 0.04 ± 0.002 4.74 ± 0.32 0.47 ± 0.03 

E* 
2.70 ± 0.77 

3.93 ± 0.87 

0.05 ± 0.004 

0.04 ± 0.007 

11.4 ± 0.44 

15.4 ± 2.04 

1.40 ± 0.44 

4.63 ± 0.61 

F 1.13 ± 0.52 0.07± 0.026 7.68 ± 0.66 0.77 ± 0.05 

 

*Values in italics are the results when microemulsion E contained the drug at a 

concentration of 3% w/v; in all other cases the drug concentration was 0.1%w/v. 

 

 



37 
 

 

 

 

Supplementary information 

 
1
H-NMR chemical shifts of different functional groups of drug-free and drug-loaded microemulsions E and F. 

 

δ (ppm) δ (ppm) 

 

 

 

Functional  

group 

ME F (δ
0
) 

ME F with 1% 

(w/v)drug (δ
1
) 

 

 

∆δ 

(δ
1
- δ

0
) 

ME E (δ
0
) 

ME E with 3% 

(w/v) drug (δ
3
) 

 

 

 

∆δ 

(δ
3
- δ

0
) 

CH3 0.855 0.888 0.033 0.962 0.986 0.024 

CH2 1.162 1.191 0.029 1.263 1.282 0.019 

CH2CH2CO 1.543 1.571 0.028 1.645 1.663 0.018 

CH2CH 1.989 2.02 0.031 2.080 2.119 0.039 

CH2CO 2.208 2.23 0.022 2.308 2.324 0.016 

OCH2CH2O 3.646 3.668 0.022 3.731 3.746 0.009 

CH2OCO 4.171 4.190 0.019 4.261 4.280 0.019 

OH 4.653 4.652 -0.001 4.69 4.691 0.001 

CH 5.287 5.318 0.031 5.393 5.420 0.027 
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13C-NMR chemical shifts of oleic acid, Tween20 and Transcutol functional groups after incorporation of drug (1%, w/v) in 

ME F. 

 

Oleic acid Tween20 Transcutol 

δ (ppm) δ (ppm) δ (ppm)  

Functional 

group 
ME F 

(δ
0
) 

ME F with 

1% drug 

(δ
1
) 

 

∆δ 

(δ
1
- δ

0
) 

 

 

Functional 

group 
ME F 

(δ
0
) 

ME F with 

1% drug 

(δ
1
) 

 

∆δ 

(δ
1
- δ

0
) 

 

 

 

Functional 

group ME F (δ
0
) 

ME F 

with 1% 

drug (δ
1
) 

 

∆δ 

(δ
1
- δ

0
) 

 

CH3 14.117 14.806 0.689 CH3 14.088 14.161 0.073 CH3 14.843 14.916 0.073 

C-OH 60.863 60.914 0.051 

CH2 

 

22.896 

29.477 

29.631 

30.004 

 

22.926 

29.513 

29.660 

30.034 

 

0.073 

0.036 

0.029 

0.030 

CH2 

 

22.896 

29.477 

29.631 

30.004 

 

22.926 

29.513 

29.660 

30.034 

 

0.073 

0.036 

0.029 

0.030 C-O 
70.067 

72.375 

70.126 

72.441 

0.029 

0.066 

CH2CHCO 25.131 25.183 0.052 CH2CH2CO 25.754 25.791 0.037 

CH2C=C 27.359 27.396 0.037 CH2CO 34.086 34.130 0.044 

CH3CH2CH2 32.188 32.225 0.037 C-OH 60.863 60.914 0.051 

CH2CO 34.086 34.130 0.044 

C=C 129.725 129.871 0.146 
C-O 

70.067 

72.375 

70.126 

72.441 

0.029 

0.066 

COOH 175.782 175.723 -0.049 C=O 175.782 175.733 -0.049 
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1
H-NMR spectra and assignment of peaks of microemulsion F. 
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13
C-NMR spectra and assignment of peaks of microemulsion F. 

 

 
 

 


