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A Logic of Sequentiality*

Martin Churchill and James Laird

University of Bath, United Kingdom
{m.d.churchill, j.d.laird}@bath.ac.uk

Abstract. Game semantics has been used to interpret both proofs and
functional programs: an important further development on the program-
ming side has been to model higher-order programs with state by al-
lowing strategies with “history-sensitive” behaviour. In this paper, we
develop a detailed analysis of the structure of these strategies from a
logical perspective by showing that they correspond to proofs in a new
kind of affine logic.

We describe the semantics of our logic formally by giving a notion of
categorical model and an instance based on a simple category of games.
Using further categorical properties of this model, we prove a full com-
pleteness result: each total strategy is the semantics of a unique cut-free
core proof in the system. We then use this result to derive an explicit
cut-elimination procedure.

Key words: Game semantics, sequentiality, full completeness

1 Introduction

In recent years, it has proved fruitful to give semantics of proofs and programs
using game models. A proposition is represented as a game, corresponding to a
dialogue between a Proponent asserting the proposition and an Opponent at-
tempting to refute it. The (winning) strategies for Proponent provide us with
a syntax-independent meaning for proofs for the corresponding formulas. Inter-
estingly, there are typically winning strategies for dialogue games which do not
correspond to any proof (see e.g [5]) whereas (viewed through the Curry-Howard
correspondence) they are the denotations of programs in models of higher-order
programming languages with imperative features. For such languages, a wealth
of full abstraction and definability results have been established [4,1,12,14],
with applications in verification.

Our work attempts to give a logical description of such strategies. We develop
a logic where derivations correspond both to (winning) strategies on a natural,
basic notion of game, and to finitary stateful programs. There is a good reason
we achieve both in the same system: the simple game model we use contains
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2 M. Churchill, J. Laird

fully abstract models of an object-oriented language [22] and a coroutine-based
language [14].

Related work. Early game models give a computational meaning for for-
mulas of first-order classical logic (Lorenzen) and Linear Logic [5]. One problem
here is that there are winning strategies which do not correspond to any proof
— and even for formulas which are not provable, such as the MIX rule [5]. In
[3] a games model of multiplicative linear logic was given where every (history-
free, uniform) winning strategy is the denotation of some proof. In [17], a fully
complete games model was given for Polarised Linear Logic, with a similar full
completeness result with respect to a class of strategies with limited access to
history (innocent strategies). In our work, we provide a logic which provides a
full completeness result with respect to arbitrary history-sensitive strategies —
further each strategy is the denotation of a unique proof of a certain kind. This is
done by taking the (very natural, simple) games model itself as a starting point.
Similarly motivated work includes independence-friendly logic [8], computational
logic [11] and ludics [7].

It was first noted in [4] that history-sensitive game models have a notion of
state “built in”, and so they are well-suited to modelling imperative programs.
Various extensions to this model have been proposed, including languages with
expressive control operators [14] and higher-order store [1]. In [19], a fully ab-
stract game model is given for an object-oriented language using a very simple
class of game — games are just trees and strategies subtrees satisfying a deter-
minacy condition. It is this notion of game we will consider here.

Contribution. We develop a core proof system where proofs are in bijec-
tive correspondence with history-sensitive strategies. This core proof system is
focused — the rules that can be used to conclude a sequent (a list of formula)
are determined by the outermost connective in the head of that sequent. We
can extend this core proof system with rules such as cut, tensor and weakening.
By giving semantics to these rules, we can show that they are admissible: we
can explicitly eliminate them by calculating semantics and then computing the
corresponding core proof.

As the games model in question can be used to model (finitary) imperative
objects, so can this logic: cut corresponds to composition; tensor to aggregation
of methods into a single object; and so on. We will explore this informally, with
a particular example. More generally, we have a logic where the computational
content of a proof is a stateful program.

The semantics of the proof system are given using categorical axioms. The
requirements are based on a sequoid operator, and are a subset of those required
to model a coroutine calculus in [14]. Categorical axioms for full completeness
in the style of [2] are identified, and our game model satisfies these axioms.

Acknowledgements. The authors would like to thank Guy McCusker for
useful discussion and comments on earlier drafts; and Makoto Takeyama for the
insights provided by jointly formalising this work in the theorem prover Agda.
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2 Games and Strategies

2.1 Games

Our notion of game is essentially that introduced by [5], and similar to that of
[3,15].

Definition 1. A game is a tuple (Ma,\a,ba, Pa) where

— My is a set of moves
— )\A My — {O,P}
e We call m an O-move if Ag(m) = O and a P-move if Ay(m) = P.
— ba € {O, P} specifies a starting player
o We call s € M} alternating if s starts with a ba-move and alternates
between O-moves and P-moves. Write Mij for the set of such sequences.
- P4 C Mff is a nonempty prefir-closed set of valid plays.

For example, the game N of natural numbers is (qUN, {¢ — O,n — P}, 0, {e, q}U
{gn : n € N}) (where e denotes the empty sequence). We write o, p for the
“single move” games ({q},{q — 0},0,{¢,q}}) and ({¢},{q — P}, P.{c,q}})
respectively.

We will call a game A negative if b4 = O and positive if by = P. We
write A, B,C, ... for arbitrary games; L, M, N, ... for arbitrary negative games
and P,Q,R,... for arbitrary positive games. Define = : {O, P} — {O, P} by
—(0) = P and —~(P) = O.

2.2 Connectives

If X and Y are sets, let X +Y = {iny(z) : © € X} U {iny : y € Y}. We use
standard notation [f, g] for copairing. If s € (X +Y)* then s|; is the subsequence
of s consisting of elements of the form in;(z). If X; C X*, Y7 C Y™ define:

— X1HY1 Z{SE (X+Y)* : 8|1 €X1/\S|2 EYl}
- X1|_|_Y1 = {S S X1HY1 :Vt E S.t‘l :€:>t|2 :E}
- X1 +*Y1i{S€X1||Y1ZS|1:6\/S|2:€}

We describe operators on games in Table 1 with abbreviations M44p =
Ma + Mg, Ay = [Ma,Ag] and P§ = PN M$. A play in M ® N consists of
an interleaving of a play in M and a play in N. A play in M © N is also such an
interleaving, but with a further restriction: the first move must be in M. A play
in M&N consists of a play in M or a play in N. The only play in 1 is the empty
sequence. If M is a negative game, the positive game | M = p @ M prefixes all
plays with a single P-move. Each of these operators has a dual acting on positive
games.

We also have an operator (—)— inverting the role of Player and Opponent,
with A+ = (M4, —~0\4,~(ba), Pa). Linear implication can then be derived, with
M —o N = N <t M+ (this agrees with the definition of —o on negative games in
[15, 3] etc.).

4



4 M. Churchill, J. Laird

Table 1. Constructions on Games

N®L = (Mn+r, AN+, 0, (Py||PL)Sg.) QB8R = (Mg+r, A\o+r, P, (PolPr)SsR)
AQN = (Mayn, Aasn,ba, (PallPn)Son) A<Q = (Matq, Aatq,ba, (Pal Po)§40)
N&L = (MN+L,)\N+L,O,PN +* PL) Q@R: (MQ+R,>\Q+R,P,PQ +* PR)
TQ =0<Q JN =poON

1 =(0,0,0,{e}) 0 = (0,0, P,{e})

2.3 Strategies

As usual we define the notion of strategy as a set of traces.

Definition 2. A strategy o for a game (Ma,Aa,ba, Pa) is a subset of P4 sat-
isfying:

If o =@ thenby = P, and if ¢ € 0 then by = O.
If sa € o, then As(a) = P.

— If sab € o, then s € .

— If sa,sb € o, then a = 0.

Definition 3. A strategy on a game A is total if it is nonempty and whenever
s € 0 and so € Py, there is some p € M 4 such that sop € o.

2.4 Imperative Objects as Strategies

Semantics of a full object-oriented language can be given by interpreting types
as games and programs as strategies [22]. As an example, we describe the inter-
pretation of a imperative object as a strategy on an appropriate game. We will
later see how this object can be represented as a proof in our system.

We shall consider a simple counter object with two methods: a void press()
method and a nat read() method, returning the number of times the press
method has previously been invoked. For simplicity here, we will allow the read
method to be called only once, and thus its type may be represented by the
game N. The type of press — a command that may be repeated indefinitely
— may be represented as a negative game X* in which Opponent and Player
alternately play q and a respectively. To combine these into an object, we use
the operator ®.

The strategy count : X* ® N representing this counter is {s € Ps-gnN : 5(5)}
where §(s) holds if s = € or s = tqra; or s = tgamo where s contains m
occurrences of a;. An example play in count is
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2*QN
q 0]
a P
q 0]
a P
q O
2P

By contrast with the history-free strategies which denote proofs of linear logic
in the model of [3], this strategy is history-sensitive — the move prescribed by
the strategy depends on the entire play so far. It is this property which allows
the state of the object to described implicitly, as in e.g. [4].

3 The Logic WS

3.1 Proof system

We will now describe a proof system in which formulas represent (finite) games,
and each proof of a formula represents a (total) strategy on the corresponding
game. This logic is polarised — positive and negative formulas will represent
positive and negative games, respectively.

The positive and negative formulas are defined as follows:

P=0||N|PsQ |P®Q|P<Q |PoON
N:=1|1P|N®M|M&N |N@M|N<P

Define an operation —* on formulas (inverting polarity) as follows:

PeQ)t =PteQt (P1Q)t =PtoQt
©N)t = MbeNL (Mo Nt =Mt aNt
)L :PL&QL (P®M)L:PL<]ML

(t Pt =| PL (M&N):Y =MLto Nt (M<aP)t =MtoPL

Linear implication is defined M — N = N < M*.

A sequent of WS is a non-empty sequence of formulas - A1,..., A,. Seman-
tically, the comma A, B will represent a left merge — A <1 B if B is positive or
A @ B if B is negative — and is therefore left-associative.

The proof rules for WS are defined in Table 2. Here M, N range over negative
formulas, P, Q over positive formulas, I, A over lists of formulas, and I'?, AP over
lists of formulas with polarity p. The rules are partitioned into core rules and
admissible rules — we will show that any proof is denotationally equivalent to
one which uses only the core rules. Note that the core rules have a particular
shape: none of them are multiplicative on sequents, all operate on the first (or
head) formula of the sequent and the only connectives corresponding to a choice
of introduction rule are ’® and . Within this core, therefore, proof search is
particularly simple.
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The admissible rules include more familiar sequent-calculus style tensor and
cut rules. These permit the embedding of multiplicative-additive linear logic by
using the lifts to change polarities where necessary, as in [16,17,21]. Note that,
whilst our notion of polarity differs from that of MALLP, the proof rules for the
multiplicative connectives and lifts can be derived in WS (the roles of 1 and |

are switched).

The non-core rules have also been chosen to facilitate representing finitary
imperative objects in WS. For example, the P, corresponds to composition of
functions, the P to aggregating objects, and P,k to hiding part of the object

from the outside world.

Table 2. Proof rules for WS

Core rules:
Pl — oy FANT FAPT
F1r O FAoNT SFaAapT
by TMN, T FN,M,T FPQ, T b FQ,P T
® FMoN, T T PeQ T 2 T peQ T
bo M, T FN,T b FP I 5 FQ, T
FM&N, T Y Treor " Tpeor
Ft (PoQ), I _ H(PQN), I P
pit— ol — Pt
FP,Q, T Ft PN, T Ft P
FL (M ®N), I’ . HL(NaP), T FN
_ ) 7 P
Py Fl M,N,T Pl Fl N,P,T v H N
Other rules:
AT, A FAT,A FA,T,M,N,A FATPQ,A
H ) Ps P
YR ATL A FAT,0 A FAT,M®N,A FA T, P9Q, A
P, I FLN, T . FADLPQA __ FATMN,A
Yo FLLN. T Y FATLLQPA Y FATLNMA
F M, T, AT FN,Af FAT M A b FAT A
"™E M, TN, AT, AT RATA AP A
FAT,NS Iy FN, AT Py ——— - FI,P,A
cut FN Nt Poi — 5 =5 1
FAT AT T , FI,P &Py, A

3.2 Imperative Objects as Proofs in WS

We now show how a bounded version of our counter can be represented in WS.
Write T for | 0. If @0T =g T and ®pq1 =ar T B (P, T) then N,, =1 (£, T)
represents the type of numbers at most n. Similarly, if 10A =g 1 and !, 1 A =g4f

AQ!, A then !, X represents a switch that can be pressed at most n times.
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We may derive a proof count,, F!,, >’ ®N,, for any n by induction. The crux of
the proof is the concluding application of the P® rule: this partitions interactions
in 1, X ® N,, into those that start in 1,27 (with a press) and those that start in
N,, (with a read).

1 2
count,, county,

H,X N, FN,, 1,2
count, F,, X ® N,

P®

We first define count), ,,, for m > n by induction on n. The base case is simple.
For count,llﬂ,m, we have:

count}L m countfL m
YN N,y
T n b m T m»s *n
Ffé T1LYN, 1TLI LN, PTPl FN, 1,5
F(10!,%), N, ? FNp, (18!,5)
© py_raehD) N,
FL (18, 5) @ N,
o L H(asLE) 9N,

T eLY), N,
P;@ F 1.0, 5. N,
- (1 105, 2), N
PPT® F(10,%) o N,,
o L 10LT) ON,)
T 10h2),N,,
PP e N,
count}, 1, Flony1 2, Nop,

For count? , F1 (®,T),!, %, we first strip away the head 1, requiring a proof
count%’m F @, T,!,%. This proof uses the difference between m and n to deter-
mine the result of read.

.!com,,LJrl
count? - T M
n,n+ta If(; F1,0, X P1 Floii2,1
Py F®niaT, X Pl F1®l,41X
count?  F T & (@nyal), InX o H (1®4,11Y)
b, S N>

count} ), FT@®(BnT), i1 X

We omit the simple proofs countg,o and !com,,.
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4 Categorical Semantics for WS

We now describe a categorical model of WS, together with a principal, motivating
example based on games and strategies. It will be based on the notion of sequoidal
category [14]. We use notation n : F = G : C — D to mean n is a natural
transformation from F' to G with F,G :C — D.

4.1 WS-categories
Definition 4. A sequoidal category consists of:

— A symmetric monoidal category (C,1,®) (we will call the relevant isomor-
phisms assoc, li, ri and sym)

— A category Cs

— A right-action @ of C on Cs (that is, a functor _ @ _: Cs x C — Cs with
natural isomorphisms unit : A@I = A and pasc: A@(B®C) = (AoB)oC
satisfying some coherence conditions [10])

— A functor J : Cs — C

— A natural transformation wk : J(1) @ = J(_@ _) satisfying some coherence
conditions [12]

An inclusive sequoidal category is a sequoidal category in which Cs is a full-
on-objects subcategory of C containing the monoidal isomorphisms and wk; and
J is the inclusion functor.

We can identify this structure in a category of games, based on the con-
structions in Section 2. Let G be the category whose objects are negative games
and an arrow M — N is a strategy on M — N. Composition of strategies is
by “parallel composition plus hiding”, and identities are copycat strategies, as
defined in [3]. In fact this category has been studied extensively in e.g. [15,6,
19], and has equivalent presentations using graph games [9] and locally Boolean
domains [13]. G can be enriched with symmetric monoidal structure based on
the tensor ® and unit I.

A strategy on M —o N is strict if it responds to any first move in N with
some move in M (if at all). Define G, to be the subcategory of G consisting of
only the strict strategies. Then we can extend the left-merge operator @ to an
action G5 X G — G,. There is a natural copycat strategy wk: M @ N - M o N
in G, satisfying the required axioms [14], and we have our sequoidal structure.

Definition 5. An inclusive sequoidal category is Cartesian if C is Cartesian and
Cs is a sub-Cartesian Category (we will write ta for the unique map A — 1.) It
is decomposable if the natural transformations dec = (wk,wk osym) : A® B =
(AQB)x (B@A) :Cs x Cy — Cy and dec® =t; : [ = 1: Cy are isomorphisms
(so, in particular, (C,®,1) is an affine SMC).

A Cartesian sequoidal category is distributive if the natural transformations
dist = (m; @ide, 2 @ide) : (Ax B)@C = (A@C)x (B@C) : CsxCs xC — Cs
and dist® = tipc : 1@ C = 1:C — Cs are isomorphisms.
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M&N is a product of M and N in our category of games, and the empty
game [ is a terminal object. In our sequoidal categories the decomposability and
distributivity isomorphisms above exist as natural copycat morphisms [14].

Definition 6. A sequoidal closed category is an inclusive sequoidal category
where C is symmetric monoidal closed and the map f — A(f o wk) defines a
natural isomorphism As : Cs(B @ A,C) = C4(B, A — C). Define app, : (A —o
B)@ A — B as A;'(id).

In a symmetric monoidal closed category, if f: A — B let A;(f): 1 - A — B
denote the name of f, and A;l the inverse operation. We can show that G is
sequoidal closed, with the internal hom given by —o.

Proposition 1. In any sequoidal closed category, —o restricts to a functor CP x
Cs — Cs with isomorphisms unit_, : [ — A= A and pasc_, : AQ B — C =
A — (B —C) inCs.

Proof. We need to show that if g is in Cs then f —o ¢ is in C,. This follows
from the fact that f — g = As(g o app, o (id @ f)). We can define unit_, :
I — A = A by unit_, = app, o unit™" and unit"} = A,(unit). We can define
pasc_, : A®B — C = A — (B — C) by A,A4(app, o pasc™') and pasc_) =

As(appg o (appg @ id) o pasc). O

We have yet to discuss representation of positive games in our categorical model.
We will exploit the fact that a strategy on the positive game P is precisely a
strategy on the negative game PL —o o. The object o satisfies an additional
special property: an internalised version of linear functional extensionality [2].
This property differentiates our model from that of Conway games and models
without local alternation [12].

Definition 7. An object o in a sequoidal closed category satisfies linear func-
tional extensionality if the natural transformation Ife : (B — 0) @ A = (A —o
B) —0 0:CxC% — C4 given by As(app, o (id @ app)opasc™?) is an isomorphism.

Definition 8. A WS-category is a distributive, decomposable sequoidal closed
category with an object o satisfying linear functional extensionality.

G is a WS-category. We can also consider the subcategory Gy of finite negative
games and total strategies. The sequoidal structure on G and G, restricts to Gy
and its subcategory of strict and total strategies G¢ s, providing another instance
of a WS-category.

Proposition 2. G and Gy both support the structure of a WS-category.
Previous work of the second author [14] shows that if a WS-category has a well-

behaved fixed point of A @ _ for any A, then one can give a fully abstract model
of a functional language with coroutines in that category.
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4.2 Semantics of Formulas and Sequents

Let C be a WS-category. We give semantics of both positive and negative formu-
las as objects in C below. Note that in our semantics of formulas, [A] = [A1].
However, the polarity of a formula will affect the type of proofs of that formula,
as will be seen.

[0] =1 [1] =1

[tN]  =[N]—o [LP] =[P]—o
[M® N] = [M] @[N] [PeQ] =[P]®[Q]
[M&N] = [M] x [N] [PoQ] =[P]x[Q]
[MoN]=[M]o[N] [P<@Q] =[P]2[Q]

[M<Q] = [Q] — [M] [PoN] = [N] — [F]

We consider our list-connective comma to be a binary operator associating
to the left. Then [A, B] is [A] @ [B] if A and B are of the same polarity, and
[B] — [A] otherwise.

4.3 Semantics of Contexts

A context is a nonempty list of formulas. If I" is a context, we give semantics
[I']° for b € {+, —} as endofunctors on C, below.

fel* =idc, lel~ = idc,
[ M = [M] — []" [I,P]~ =[P] — [~
o PIT =t elP] M) =1 o[M]

We have [A,I'] = [I']°([A]) where b is the polarity of A. We can construct
isomorphisms dist, r : [I']°(Ax B) = [I']°(A)x [I']°(B) and dist]  : [I']°(1) =1
by induction on I', with [I"](7) o dist;lp =m.

4.4 Semantics of Proofs

While the semantics of formulas are independent of polarity, semantics of proofs
are not. If p - A, I' is a proof, we define [p - A, I'] as an arrow C(I,[A, I']) in
the case that A is negative, and as an arrow in C([A, I'],0) in the case that A is
positive. Semantics of the core rules and P, are given in Table 3 (interpretation
of the remaining admissible rules in a WS-category is omitted for the sake of
brevity).

In the semantics of P, we use an additional construction. If 7: I — [N, A]
define (strict) 7y, : [M, T, N*] — [M, I, A] to be unit_, o (T —o idpar,rp)
if |A] = 0 and pasc™, o (A™"A;'r —o idpas,rp) if |A] = n + 1. Define (strict)
o o [P, I, A] = [P, I,N*] to be (idpry @ 7) o unit™ ! if [A] = 0 and (id @
A" AT ) 0 ((idgp,ry @ sym) o pasc™ )™ if [A| = n + 1.
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Table 3. Categorical Semantics for WS (core rules, plus cut)

P [I'] (dec®) "o (dist® ;) ' ot: [~ 1,17

p o:[FM,N, I 7:[F N,M,I] o:[FM,I7] 7:[F N, I
® [I'] (dec™) odist='y o (o, 7) : [F M @ N, I'] dist_' o (0,7) : [F M&N, I']
c:[FQ,P1I7 o:[FPQ,I7
P T wkosym)  [- PoQ. I o T wk) < - P50, T
. o:[F P A4] P&, o:[FQ,A4]
go[A]T(m): [F P®Q,A] go[A]T(m) : [F P®Q, A]
p 1t o:[FT(P?Q),I] " o:[F P]
[I'] (pasc_, o (sym —id)) oo : [F1 P,Q, I] Ar(o) : [ P]
P o:[FT(P@N),I] Pl o:[F NJ

[[]”(feYHoo:[F+ P,N,ITJ
o:[FL (M ®N),I]

unit— o (¢ —o id) : [H} NJ
o:[FL (N<P), I

PT

oo [T ((sym —o id) o pasc™}) : [F} M, N, T ago [I]"(ife) : [FL N, P, I

P o:[FM, [Nt 1] 7:[F N, A"] o:[FA PRI
Dl Gy oo [F M LAY, ] o:[FA<PI]
P, a:[[I—P,F,NL,Fﬂ] 7:[F N,AT] o o:[FAN,I]
o]t (rgh) s [F P AT, I o:[FA@N,TI]

5 Full completeness

We now prove a full completeness result for the model of WS in Gy: every total
strategy on a game denoted by a formula is the denotation of a unique core proof
of that formula (i.e. one which only uses the core rules). This exhibits a strong
correspondence between syntax and semantics, and establishes admissibility of
all non-core rules.

We first give categorical axioms in the style of [2], capturing the properties
of a WS-category which enable us to prove full completeness and observe that
they are satisfied by G;. Rather than identifying a class of categorical models
with many or varied examples (precluded by the strength of the result itself),
these axioms allow us to give a rigorous and abstract proof of full completeness
using the structure of a WS-category.

Definition 9. A complete WS-category is a WS-category such that:

la The unique map i : @ = C(I,0) is a bijection.

1b The map d = [A\f.f o, Ag.f oma] : C(M,0) + C(N,0) = C(M x N,o0) is a
bijection. (m-atomicity [2]).

2 The map - —0:C(I,M) = C(M —o 0,1 — 0) is a bijection.
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These axioms capture the properties of determinacy, totality and the object o
— it is straightforward to show:

Proposition 3. Gf is a complete WS-category.

We can then prove the following full completeness result.

Theorem 1. In any complete WS-category, if o : [+ I'] then o is the denotation
of a unique core proof reify (o) F I.

Informally, reify may be seen as a kind of semantics-guided proof search proce-
dure: given a strategy o, reify finds a proof which denotes it. It is defined by
considering the outermost connective in the head formula of I, to which the
core rule is always applied:

— If the head formula is a negative unit, then o is the unique strategy on the
terminal object. By axiom (la) it cannot be a positive unit.

— If the outermost connective is ® or &, then we may reverse the associated
rule (which corresponds to a bijection which holds for any WS-category) to
decompose the head formula.

— If the outermost connective is & —i.e. I' = Py & P, " — then by axiom (1b),
o corresponds to a projection 7; (representing a unique choice of introduction
rule for @) composed with a strategy on [+ P;, I'"']. If the outer connective
in *@, then similar reasoning applies.

— If the outermost connective is a lift (1 or |) then we may force it outwards
through I" using the rules $7,1%,] 7, ]* (which correspond to isomorphisms
in any WS-category) until we obtain a sequent consisting of a single, lifted
formula. This lift may be “reversed” either by applying axiom (2) (for |) or
by definition of the semantics (1).

Formally, reify is defined inductively in Table 4.
Proposition 4. reify, is a well-defined, terminating procedure.

Proof. We define a measure fd on formulas by

— fd(0) = fd(1) = 2
— fd(t A) =fd(] A) =2+ fd(A)
— fd(A® B) = (fd(A) x fd(B)) + 1 for ® € {8, &,0,<,®,7%}

We extend this to sequents inductively with fd(I", A) = (fd(I") x fd(A)) + 1. We
then define (A, I') = (fd(A, I'), | A|) where |A] is the size of A, and consider the
well-founded lexicographical ordering on N2. Informally, reducing ¢ consists of
(first priority) moving lifts outwards, and (second priority) simplifying the head
formula. Then reify - is defined by induction on ¢(I"). It is routine to see in each
case the call to the inductive hypothesis decreases the ¢-measure (note that if
M is a proper subformula of N then fd(M) < fd(N) and _, I" is monotonic with
respect to fd). O
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Table 4. Reification of Strategies as Core Proofs

reify; (o) =P1
reify,p(0) = P 1 (reify (A7} (0)))
reifys . (0) = P 1 (reifyy gy (1T~ ((sym —o id) o pasc= o 0))
reify,p yr(0) = P17 (reify,pon), r ([17] (Ife)))
reify yren,r(0) = P&(reify,, p(m1 odist— r o o)) (reifyy p((m2 o dist_ r o 0))
(o) =P ® (reifyy n r(mio a’), reify v s, (2 © "))
where o’ = dist_ r o [I'] " (dec) o o
reify yon r(0) =P @ (reify 4 n (o))
reify yqp p(0) =P < (reify, p (o))
reify, x (o) =P | (reify (- — 0) " (unit=} 0 0)))
reify v ar,r(0) = P L™ (reify (vgur),r(oo [1]1" (pasc_, o (sym — id))))
reify, v p,r(0) =P W (reif}’¢(N<1P),r(‘7 o [IT*(ife™)))
reify poyo (o) = [P @1 oreifyp, 1, P @ oreify, p]od (o0 distjﬁlp)
reify prog (o) = [P®1 oreifyp g 1, PR2oreifyg p p]od™! (o o [I] " (dec) o dist ')

reifYM®N,F

We can complete the proof of Theorem 1 by showing that reify gives an inverse
to [[—]]p:

Lemma 1. 1. For all o : [ I'] we have [reify(0)] = o.
2. For any core proof p b I' we have reify -([p]) = p.

Corollary 1. In any complete WS-category, morphisms C([M], [N]) correspond
(bijectively) to core proofs of = N, M=*.

Proof. Such morphisms correspond to C(I,[M] — [N]) =C(I,[M,N-+]). O
Corollary 2. All non-core proof rules are admissible.

Proof. Let p b I" be a proof. We can construct the proof p’ = reify([p]) v I
using only the core rules. By Lemma 1, we have [p'] = [p] (and p’ is the unique
such core proof). O

This yields reduction-free normalisation from proofs to core proofs.

6 Cut Elimination

We have shown that the non-core rules are admissible via a reduction-free eval-
uation with respect to a particular complete WS-category. However we do not
know that such a procedure is sound with respect to any other WS-category. We
will address this here in the case of (a restricted form of) cut elimination, by
defining a corresponding syntactic procedure.

We describe a procedure to transform a core proof of - A, I, N+ and a core
proof of = N, P into a core proof of - A, I, P. We proceed by induction. The
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interesting cases are the lifts: if A =1 Q and I" = € then 1 @, N must have
been concluded from F Q9N+, ie. - Q, N+ or - N+, Q. In the first case we
can apply the inductive hypothesis, but in the second case we cannot. We need
an auxiliary procedure cuty which turns core proofs of - N+,Q and - N, P
into a core proof of H QP (from which we can deduce F1 @, P as required).
If we think of this procedure as a representation of strategy composition, this
corresponds to the situation when some player is set to play in IV next and so
the next observable move could be in @ or P.

Some cases of cut and cut, are given in Table 5 using a term notation based
on the names of the core proof rules. All other cases just use the inductive
hypothesis in an obvious way. We use a third trivial procedure symP>*® mapping
core proofs of - P2Q, I to core proofs of - Q9P, .

Table 5. Cut Elimination for Core Rules (key cases)

A Icut:F ATLNIXx+FN,P —FATI,P
_e cut(P1T (P 1 (P®i(y))),g9) = P T* (P 1 (P®1(cut(y,9))))
—e cut(P1F (P 1 (P®2(y))), 9) = P 1T (P 1 (cut2(y, 9)))

i —e cut(P L (PL(P<a(y).g) =PI (P (P<(eut(y,9))))

Q Icuty :FQ,INtxFQT, It P —F NtgP
}oe cuta(P LY (PL(P<y)(P1F (P (PB1y))) = symPe(cutz(y',y))
}oe cuta(PLY (P (P<y)(P1Y (P1(PB2y)) = Poa(cut(y’,y))

Despite the fact that we are emulating the mechanics of strategy composition
in WS, we can show that the procedure is sound with respect to any WS-category.

Proposition 5. In any WS-category, [cut(p1,p2)] = [Peut(p1,p2)]-

7 Further Directions

We first consider how exponentials can be introduced into WS. There are several
different exponentials on games which one might wish to represent. As presented
here all formulas represent finite games (total strategies on unbounded games
do not compose, in general). The non-repetitive backtracking exponential of
Lamarche [15, 6] preserves finiteness, and the categorical properties characteris-
ing it can be used to give a variant of WS with exponentials, with a corresponding
full completeness result and contraction as a non-core rule. It is possible to then
embed full polarised linear logic [17] in such a system.

Other exponentials do not preserve finiteness of games, for example the least
fixed point !A = A®!A, which can be used to model stateful computation. In
this case, totality can be retained by formulating a notion of an exponential with
variable bounds including formulas such as !, A representing a family of (finite)
games. In this system contraction would be represented by !, A®!,A —ol, 1 A.
Alternatively, we may abandon totality, and develop a type theory with fixed
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points, defining !4 = pX. A @ X. Extending WS to infinite games via such fixed
points (cf. [20]) is a future direction of this project. This will allow representation
of imperative objects over infinite datatypes in WS, as well as methods that can
be used arbitrarily many times. Thus, such an extension would be a natural
setting for formal embedding of a programming language such as Lingay [18].

It is possible to extend WS with propositional variables, representing arbi-

trary games. In such an extension proofs represent total uniform history-sensitive
strategies. Finally, we have formalised some of this work in the theorem prover
Agda — including WS, its game semantics, and reification of strategies as proofs.
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