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ABSTRACT 

 

The aim of this study was to propose a novel automatic method for quantifying motor-tics caused 

by the Tourette Syndrome (TS). 

In this preliminary report, the feasibility of the monitoring process was tested over a series of 

standard clinical trials in a population of 12 subjects affected by TS. A wearable instrument, with an 

embedded three-axial accelerometer was used to detect and classify motor tics during standing and 

walking activities. An algorithm was devised to analyze acceleration data by: eliminating noise; 

detecting peaks connected to pathological events; classifying intensity and frequency of motor tics 

into quantitative scores. These indexes were compared with the video-based ones, provided by 

expert clinicians, which were taken as the gold-standard. Sensitivity, specificity and accuracy of tic 

detection were estimated, and an agreement analysis was performed through the least square 

regression and the Bland-Altman test. 

The tic recognition algorithm showed sensitivity=80.8±8.5% (mean±sd), specificity=75.8±17.3%, 

accuracy=80.5±12.2%. The agreement study showed that automatic detection tended to 

overestimate the number of tics occurred. Though, it appeared this may be a systematic error due to 

the different recognition principles of the wearable and video-based systems. Furthermore there was 

substantial concurrency with the gold-standard in estimating the severity indexes. 

The proposed methodology gave promising performances in terms of automatic motor-tics 

detection and classification in a standard clinical context. The system may provide physicians with 

a quantitative aid for TS assessment. Further developments will focus on the extension of its 

application to everyday long term monitoring out of clinical environments. 

 

 

Key Words: Tourette syndrome; automatic tic detection, accelerometers, wearable monitoring. 
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INTRODUCTION 

 

Tourette Syndrome (TS) is a chronic neurologic disorder characterized by the childhood onset of 

multiple motor and phonic tics that wax and wane over time [1,2]. A distinctive issue concerning 

the assessment of TS is the difficulty in quantifying and classifying objectively its various clinical 

manifestations. In fact, the wide range of visible and audible signs may induce subjectivity in the 

evaluation process, in spite of the rules set by literature for defining TS scores. Moreover: (i) 

symptoms vary unpredictably over time [3]; (ii) patients are able to suppress in part or totally their 

symptoms for minutes to hours [3]; (iii) situational stimuli can change tic expression [3,4,5]. 

Multiple variables such as frequency, number of tic-types, intensity, complexity, body distribution, 

suppressibility, and interference with normal activities are commonly considered to assess the 

severity of TS. 

The evaluation of TS is currently carried out either through clinical examination or through patient 

reports based on self-assessment of tic disorder. Both methods have strengths and weaknesses: 

patients’ reports are highly subjective and may be substantially different from the physician’s 

evaluation; clinical scores are a semi-quantitative measure, but still depend on the examiner opinion 

and experience. 

Goetz et. al. introduced a new method to evaluate TS symptom severity through a video-based tic 

rating scale [6]: specific domains of tic characterization (severity, frequency, body distribution) are 

examined through visual observation of video-recordings and assessed through the attribution of 

diagnostic scores correlated with well-known clinical severity scales (Yale Global Tic Severity 

Scale, YGTSS) [7]. The analysis of video-recordings is the standard reference for many TS studies, 

though it also lacks in objectivity and may lead to different medical interpretations. Therefore an 

automatic system based on wearable technologies and methods for the quantitative assessment of 

motor disorders may help to overcome this problem. 
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Wearable technologies (WT) have been exploited for gathering biological data in the long-term 

monitoring field [8-15]. They have been used to recognize motor activities [10,11], to define 

pathological features in Parkinson’s disease [12,13], and to observe patients during rehabilitation 

[14,15], giving the opportunity to reach mid or long-term data recordings in both clinical and home 

environments. 

Accelerometers are currently among the most widely studied wearable sensors for activity 

recognition, thanks to their accuracy in the detection of human body movements, small size, and 

reasonable power consumption [16]. Accelerometers may allow for continuous observation periods, 

suited to the changeable nature of the TS, without affecting the patient's daily activities. Despite 

their potentialities, methods based on wearable accelerometers have still not been exploited for the 

evaluation of TS motor disorders, probably because of the difficulty in recognizing tics during the 

execution of other motor activities. 

 

Therefore, the aim of this study was to perform a first preliminary study on a novel wearable 

monitoring system for the automatic assessment of TS. The feasibility study was carried out on a 

sample of TS subjects to understand potentialities and applicability in the clinical environment. At 

this stage, we focused onto the stronger motor manifestations of TS, leaving to future refinements 

the issue of vocal tics, slight facial events or dystonic signs. We estimated the reliability of the 

automatic scoring compared with the video-based one (gold-standard). 
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METHODS 

 

Subjects 

Twelve TS patients (10 males and 2 females, age between 17-45 years) participated in the current 

study. The population presented a heterogeneous typology of motor tics, variable in body 

distribution, intensity, frequency and complexity. All patients were pharmacologically treated with 

neuroleptics or botulinum toxin and four of them had a Deep Brain Stimulation (DBS) implant. 

The study was approved by the competent Institutional Review Board. Subjects were properly 

informed about testing procedures, personal data treating and aims of the research, and they 

provided informed consent before participation. 

 

Instrumentation 

An actigraph based on a commercial system was used to detect pathological events (PROTHEO I, 

SXT – Sistemi per Telemedicina). The device consists in a plastic case (92x58x25 mm) containing 

a 3D acceleration sensor (LIS3L06AL, STMicroelectronics), a bluetooth® transmission module 

(PAN1540, Panasonic) and a rechargeable LiIon battery. 

The wearable device was supported by a software designed for collecting and manage data in 

applications requiring real-time monitoring of biosignals and movement (HIM, Sensibilab, 

Politecnico di Milano). 

 

Acquisition Protocol 

The videotape protocol proposed by Goetz et al. [17,18] involves 4 sessions of about 2.5 minutes. 

The patient is placed in a quiet room in front of a video-camera. Two body views are recorded, full 

frontal body, and head and shoulders only under two conditions, relaxed with the presence of the 

examiner, and relaxed with the patient alone. For this study we focused on the comparison between 
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the automatic system and the video-based procedure, referring to the full frontal body observation 

in presence of the examiner. Two characteristics of the motor-tics were evaluated: intensity and 

frequency. 

The main challenge of the process was to discriminate tics from normal movements only through 

accelerations. We asked subjects to perform two motor tasks: standing, to evaluate the system 

performance when the tic acceleration is remarkably identifiable from the base signal; walking, to 

assess it when tic acceleration may be hidden by normal movements waveforms. Six-minutes 

acquisitions were performed for each subject (2 trials of 3 minutes each). The device was positioned 

with a band on the chest for the early 3 minutes and on the dorsal area (L2-L3 level) for the last 3 

minutes. The trial session was defined as:  

 1 min standing, with arms close to the body sides; 

 1 min random walking across the room; 

 another 1 min standing stage. 

Motion data were recorded by a computer near the trial location. Two kinds of data were collected: 

videotape recordings and triaxial acceleration signals. Acceleration data were calibrated, digitized 

and recorded by a remote processing unit through bluetooth® transmission (fig. 1-A). 

 

Data Processing 

The videotape recordings were submitted to an experienced physician that rated a tic severity score 

focusing on intensity and frequency domains of the video-based scales proposed by Goetz et al. [6]. 

The rater was blinded for acceleration data. Two severity scores were provided for each subject: IST, 

index of intensity, and FST, index of frequency. 

To our knowledge, there is no previous information in literature regarding the analysis of 

acceleration signals for the conditions shown by TS. In order to detect the intensity and frequency 

of the tic, processing of acceleration signals was designed to discriminate symptomatic episodes 

from common activities, which in this application represent an unwished "noise". 
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The algorithm was specifically developed to analyse TS activity, was implemented in Matlab® 

(Mathworks Inc.), and consisted of 2 main steps, which were both independent from any video 

reference and thus made the procedure completely automatic. 

The first step, “recognition”, aimed to maximize tic acceleration spikes in comparison with normal-

movements accelerations. Spikes are fast changes in the acceleration signal and correspond to 

abrupt and instantaneous changes in postures or natural movements (e.g. walking). We 

subsequently carried out: a non-linear median filtering; a NEO filtering (Non-linear Energy 

Operator [19]); and an adaptive thresholding. The median filter was used to identify and subtract the 

baseline from the acceleration signal. The NEO filter was used to emphasize acceleration spikes 

over the waveform baseline that represents a noisy background. The adaptive thresholding was used 

to discriminate spikes due to tic events from the ones determined by normal movements. It was 

based on the variance of the spectral distribution of the subject’s motion activity (fig. 1-B). 

The second step, “classification”, assigned intensity and frequency scores (INEW, FNEW) to the tic 

activity of each subject according to preset ranges of, respectively, the absolute measure of the 

acceleration, and the number of events over time (fig. 1-C). INEW  and FNEW ranged between 0 and 4 

and were implemented on the base of the well-known scores expressed in the video-based tic rating 

scale proposed by Goetz et al. [6] and in the YGTSS [7]. 

The intensity scale, in g=9.81 m/s: 

0. barely perceptible: 0≤Inew<0.5;  

1. visible: 0.5≤Inew<1;  

2. some problem: 1≤Inew<1.5; 

3. impaired function: 1.5≤Inew<2; 

4. no function: Inew≥2. 

 

The frequency scale, in tics/s over 2s-windows: 

0.  no tics; 
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1.  0≤Fnew<0.083; 

2.  0.083≤Fnew<0.16; 

3.  0.16≤Fnew<0.25; 

4.  Fnew≥0.25. 

 

The INEW scale intervals were designed to compensate the sensitivity gap between the 

accelerometric device and a human scorer. INEW ranges were set referring to the highest and the 

lowest severity case occurred inside the trial population. 

 

**** Insert Figure 1 near here **** 

 

The algorithm parameters for automatically detecting motor-tics were chosen to maximize 

sensitivity (SEN), specificity (SPE) and accuracy (ACC) in respect of the tics recognized by the 

human expert. Videotape analysis allowed to identify the timeline of actually occurred tics (fig. 1). 

Differences in performance between the frontal and dorsal positioning of the actigraph were 

assessed by applying Mann-Witney tests (P=0.05) to SEN, SPE and ACC (tab. 1). 

We compared scores from the automatic system (INEW, FNEW) and from the gold-standard 

counterparts (IST, FST) by counting the number of concordances and by using Wilcoxon tests 

(P=0.05). This comparison was useful to assess the agreement between the quantitative measure of 

the device and the qualitative rating system of the physician’s analysis. 

Furthermore we performed a least-square regression analysis and a Bland-Altman (B-A) plot [20] 

on frequency values (in tics/s) from our methodology and from the gold-standard. The correlation 

and the B-A analyses were not applied to the intensity index because the video-based system does 

not provide quantitative measures in terms of accelerations, but only a qualitative observation and a 

0-4 ordinal classification. 
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RESULTS 

 

Sensitivity, specificity, accuracy of the tic recognition algorithm showed mean values that ranged 

between 75.8 and 80.8% for both the adopted configurations (tab. 1). Results showed that the 

evaluated positions did not interfere with tic recognition ability: percentage differences between 

frontal and back positioning were about 1.9, 2.5, 0.1% for mean SEN, SPE and ACC; Mann-Witney 

tests did not evidence significant changes between the two conditions (P=0.77, P=0.95, P=0.89). 

 

**** Insert Table 1 near here **** 

 

Classification scores manifested 96% (intensity) and 54% (frequency) of concordances between the 

videotape protocol and the wearable system. Wilcoxon tests evidenced significant differences 

between FNEW and FST (P<0.001). The maximum difference between the indexes was always of one 

point of the scoring scale. 

FNEW and FST appeared linearly distributed, with a R
2
=0.91. All the trials were included in the 

Confidence Interval (CI) identified in the Bland-Altman plot, with a range of 0.11 tics/s [CI=(-0.02; 

0.09)]. 
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DISCUSSION 

 

The aim of the current study was to develop a wearable actigraph and a tic-detecting algorithm for 

the automatic quantification of motor alterations caused by the Tourette Syndrome. A preliminary 

analysis about the potentialities and applicability in a clinical environment was carried out: the 

system performances were compared with the standard video-based analysis. 

 

The sensitivity, specificity and accuracy of the tic-detection process were around 80%. This result is 

appreciable because it means that the algorithm was robust to differentiate tics from normal 

movements. It provided a good compromise between false positives and false negatives, despite a 

few limiting factors. (i) To our knowledge, this study represents the first proposal for an automatic 

and quantitative assessment of motor tics. Hence, due to the lack of standards, we designed the 

steps and set the parameters of the algorithm to optimize all the performance indicators (ACC, SPE 

and SEN) over the whole population. (ii) The system had not specifically devised to detect and 

evaluate the facial tics, which are common manifestations in TS. At this initial stage we preferred to 

focus onto the gross motor manifestations of TS, leaving to future developments the identification 

of a wider spectrum of TS-related events, including the less easily detectable. (iii) The wearable 

device consisted of a single sensor which was fixed on the trunk of the patient, independently from 

the possible different locations and intensities of tic bursts. The idea behind this was to test an 

unobtrusive, simple device that could work despite the inter- and intra-individual variability in tic 

expression and in different motor conditions (standing and walking). Tic acceleration patterns 

measured at the trunk are an indirect measure of the actual ones occurring in different body areas. 

Their characteristics (intensity and frequency content) are subject- and symptoms-dependent. 

Nevertheless, the system was able to detect pathological events far from the device location, 

provided that the phenomenon was intense enough. 
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The system accuracy, specificity and sensitivity may be improved by developing more effective 

detection algorithms. However, the definition of minimal requirements for detecting performances 

is needed. The limit of acceptance may be set only after a thorough debate among experts in the 

field [21], on the base of experience and of clinical goals/risks, like it has been done for other well 

established clinical tests (e.g. insomnia and sleep apnoea). In addition, spread sensors positioning 

and/or individual calibration procedures may enhance the efficacy of the detection system. 

Applying additional sensors may help in identifying peripheral low-intensity events, but may 

threaten the ecology and unobtrusiveness of the test. Patient-specific pre-calibration may solve the 

issue of variability in tic expression within and between individuals. This could allow the tic 

recognition algorithm to work in an optimal condition for each TS subject, with a proper intensity 

scale modulation and a specific frequency filtering. 

 

In the classification stage, tic-intensity scores consistently matched the ones provided through 

standard clinical methods. Frequency indexes, FNEW and FST, often manifested a one-point 

difference on the scoring scale, but the two measures had a significant correlation, when expressed 

in tics/s. This may relate to the definition of the 0-4 scoring intervals of FNEW, which referred to the 

gold-standard ones. However, the sensitivity of the two measuring systems is very likely to be 

different, because our method is based on automatic recognition while the traditional one relies on 

human abilities. Hence, a point for future improvements may be the adjustments of FNEW scoring 

ranges, which may be settled by exchanging data and experiences from different labs/research 

groups on larger sample sizes. 

 

The least square regression analysis and the Bland-Altman plot evidenced that the new method had 

a good accuracy in terms of tic-frequency estimation. Though, as mentioned above, the automatic 

detection procedure appeared to have a slight bias in estimating the number of tics occurred. The 
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confidence interval identified by the B-A analysis proved that the difference between FNEW and FST 

may be wide enough to produce a scoring error of one point of the frequency scale. 

 

In this study we focused only on tic-intensity and tic-frequency domain. However, the collected 

acceleration signal processing are likely to retain additional information, that may be realistically 

used to assess other tic features: anatomical distribution of tic events, that may be evaluated by 

analysing acceleration patterns distinctly along the three directional sensing axis and/or by 

adding/distributing further sensors (e.g. accelerometers, gyroscopes) on the body; complexity and 

muscular involvement, that may be correlated to duration and shape of accelerometric waveforms 

produced by tic events. These features may be evaluated in future, to provide a more thorough and 

accurate characterization of motor disorders associated to TS. 

 

In conclusion, a novel wearable measurement system was proposed for the automatic recognition 

and classification of motor tic features due to the Tourette Syndrome. The proposed paradigm has a 

high potentiality, using such device as a simple, portable and cost-effective support system. In 

addition, new indexes were defined to quantify tic frequency and intensity according to the medical 

scales which are currently in use and represent the standard for clinical evaluations. The system 

may be further improved in terms of: accuracy, extending its capabilities also to facial and vocal 

tics; focus on the individual; use during other types of motor activities. Though, the preliminary 

results are promising, and the method may emerge as a conventional tool for both clinical 

investigations and home-environment/long-term monitoring of TS motor disorders. To reach this 

goal and to create the bases for the definition of new standards, efforts should be spent to increase 

the trial database and to stimulate the collaboration and the exchange of experiences between 

different research groups. 
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FIGURES AND TABLES 

 

 

Figure 1. Example of the data processing workflow concerning a single clinical trial on a TS 

subject. A) Acceleration signal acquired through the wearable device, the subject was in standing 

position for the first 60 s and was walking in the last 60 s. B) The processed signal after NEO 

filtering and thresholding: (o) indicates the tic events identified by the algorithm; (•) represents tics 

actually occurred and identified by the physician. C) Classification of the intensity of each 

recognized event in a 0-4 rating score.  
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Table 1. Sensitivity (SEN), specificity (SPE) and accuracy (ACC) percentage performances (mean 

and standard deviation) of the automatic tic-recognition algorithm. SEN, SPE and ACC were 

averaged over all testing trials and reported for both frontal (FRONT) and dorsal (BACK) device 

positioning. M-W column reports P-values of the Mann-Witney tests between FRONT and BACK 

conditions. 

  FRONT BACK M-W 

SEN 
  

   

SEN =
TP

TP + FN
 80.8 (8.5) 78.9 (9.2) 0.77 

SPE 
  

   

SPE =
TN

TN + FP
 75.8 (17.3) 78.3 (12.8) 0.95 

ACC 
  

   

ACC =
TP +TN

TP + FN +TN + FP
 80.5 (12.2) 80.4 (7.7) 0.89 

     

TP= true positives; TN= true negatives; FP= false positives; FN= false negatives. 
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SUPPLEMENTARY MATERIAL 

The main aim of the signal processing adopted in this paper was to automatically recognize the 

onset of tic events in the background of accelerations produced by normal movements. Digitized 3-

axial acceleration signals were the inputs of the algorithm, whose output consisted of an array of 

instants of tic-occurrence. These time-events may be easily represented on the time-scale and 

compared with the tic set manually identified by the physician through videotape inspection. This 

comparison allowed to assess the algorithm performances in terms of sensitivity and specificity of 

tic recognition. 

Tic Recognition 

Recognition of tics from video recordings and from acceleration signals were completely 

independent and were eventually compared only after they had performed their identification of 

pathological events. This means that the experienced physician who carried out the patient’s 

assessment according to Goetz’s methodology [1] was completely blind for acceleration data. 

Similarly, the algorithm for the detection of pathological spikes was completely automatic and did 

not rely on visual observation of recordings. 

The algorithm consisted of 3 subsequent steps. 

i) Non-linear median filtering (NMF). NMF was applied to remove the signal “baseline”, which 

may be related to posture, non-pathological slow movements and breathing. The use of NMF 

implies the proper selection of Ω (order of the median filter) which may affect the sensitivity of 

tic recognition. 

ii) NEO (Non-linear Energy Operator) filtering [2]. It represents a frequency-independent energy 

estimator that has been already used to detect noisy spikes in biological signal processing. NEO 

involves a thresholding procedure, whose aim is to distinguish between spikes due to tics and 

spikes due to fast non-pathological movements. NEO’s thresholding involves the choice of 
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another critic parameter, m, that influences the degree at which accelerations were assigned to 

possible pathological events 

iii)  Adaptive thesholding. We assumed that the spectral distribution of the acceleration signal 

tends to spread over a larger range of frequencies when the subjects turns from standing to 

walking (Figure 1). The variance of the spectrum may thus be seen as a movement dependent 

factor. This quantity was used to tune the adaptive thresholding involved in the NEO filter and 

to provide a self-calibration of the algorithm that relies on the amount of motor activity. 

 

Figure 1. Example of spectrogram from analyzed data. Frequency spectral density of the 

acceleration signal over 512-samples windows is reported through a colorimetric scale. 0-60 and 

120-180 time intervals refer to a standing session while during the 60-120 period the subject was 

walking. The spectrum variance over time (blue dotted line) may distinguish between the motor 

tasks. 

Therefore we continuously determined the threshold (T) over 2-seconds windows. T depended on: 

the NEO algorithm, and the variance of the spectrum of acceleration signal over time, in a “the 

higher the variance, the higher the limit” non-linear fashion. Equations [1] and [2] report a more 

detailed description of the formula. 
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[1]: 

   

T =
C

N
× (NEO(a(n))Q( f (n))
n=1

N

å  

- C is a scaling factor depending on the spectral variance; 

- N is the number of samples; NEO(a(n)) is the NEO filtering of acceleration; 

- Θ denotes convolution and f(n) is a 6-point Bartlett window. 

[2]: 

  

C =m· varspectrum  

- varspectrum is the variance of the distribution of the spectrum, 

- m is a coefficient to be determined. Particularly, m is one of the two parameters on which the 

sensitivity/specificity/accuracy analysis was based. 

Hence, every acceleration peak identified and isolated through the NEO algorithm and the 2-sec 

windowing that goes over the time-dependent value of the threshold T is chosen as a probable tic 

event and consequently classified through the intensity scale (fig. 2): 

INEW (g=9.81 m/s): 

5. barely perceptible: 0≤ INEW <0.5; 

6. visible: 0.5≤ INEW <1; 

7. some problem: 1≤ INEW <1.5; 

8. impaired function: 1.5≤ INEW <2; 

9. no function: INEW ≥2. 

The algorithm provides both a local information about the intensity of each recognized tic and an 

overall severity classification based on intensity/frequency of tics. The INEW/FNEW indexes were 

calculated through a mean over local intensity values and through a (number of tics)/(time period) 

ratio respectively. 
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Figure 2. Example of the recognition/classification process. In a 180-seconds period the algorithm 

found 15 tic events and classified almost all of them in the first class (visible), with a maximum in 

the fourth class (no function). 

Performance Evaluation 

The identification of tics does not rely only on the determination of the threshold (hence on m), but 

also on the order of the median filter that was used to subtract the baseline from the initial 

acceleration waveform (hence also on parameter Ω). 

We performed a parameter-dependent evaluation of the algorithm based on the correspondence of 

actual tics (recognized through the videotape) and the estimated ones. Therefore we set up our 

sensitivity/specificity/accuracy analysis both on m and on Ω, following these steps: 

1) we estimated specificity and sensitivity as functions of the two parameters (SPE(m,Ω), 

SEN(m,Ω)), for each subject (Figure 3); 

2) we averaged results from single subjects over the whole population; 

3) we plotted a graph, where the average dependence of SEN and SPE upon m and Ω is 

represented by 3D surfaces (Figure 4). This representation may be reconducted to the 

information provided by the ROC curve in a mono-dimensional domain (i.e. only 1 

parameter considered, Figure 5). Therefore we used it to determine the values of m and Ω 
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that represent the “best compromise” in terms of detection performances, and that were used 

for the comparison of the automatic algorithm with the gold-standard. 

 

 

Figure 3. Performance indexes (i.e. sensitivity/specificity percentages) in dependence parameters m 

and Ω are represented through colorimetric scales. The more the color is near dark red the more the 

algorithm was able to recognize actual tics. 
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Figure 4. Sensitivity, specificity and accuracy surfaces in the 3D space. The performance planes 

intersect at a certain value of m (8-10) that may ensures a good compromise between 

sensitivity/specificity. 

It may be observed that parameter Ω has, on average, less influence on performance than parameter 

m. The choice of m may thus represent an important factor of improvement in detection 

potentialities, in particular referring to the individual. Tuning m individually through a specifically 

designed calibration phase at the beginning of the acquisition may be a way to enhance the 

automatic tic-recognition performances. 

 

 

 

Figure 5. ROC curve averaged over the whole population, relative to the variation of parameter m, 

when Ω is made constant. It may be seen as a one-dimensional approximation of a 

multidimensional information obtained averaging the 3D surface along its less variable direction 

(i.e. the Ω axis). 
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