

Citation for published version:
McCusker, GA & Power, J 2010, 'Modelling local variables: possible worlds and object spaces', Electronic Notes
in Theoretical Computer Science, vol. 265, pp. 389-402. https://doi.org/10.1016/j.entcs.2010.08.023

DOI:
10.1016/j.entcs.2010.08.023

Publication date:
2010

Link to publication

Postprint version made available in accordance with Elsevier publisher policies. Article should always be cited
as: McCusker, G., Power, J., 2010. Modelling local variables: possible worlds and object spaces. In: Selinger, P.,
ed. Proceedings, Twenty-sixth conference on the Mathematical Foundations of Programming Semantics, MFPS
2010. Elsevier.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161908943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.entcs.2010.08.023
https://researchportal.bath.ac.uk/en/publications/modelling-local-variables-possible-worlds-and-object-spaces(0ec154bc-34a7-43eb-9b08-17e847eec3ec).html

MFPS 2010

Modelling local variables: possible worlds and

object spaces

Guy McCusker1

Department of Computer Science
University of Bath

Bath BA2 7AY, United Kingdom

John Power2

Department of Computer Science
University of Bath

Bath BA2 7AY, United Kingdom

Abstract

Local variables in imperative languages have been given denotational semantics in at least two
fundamentally different ways. One is by use of functor categories, focusing on the idea of possible
worlds. The other might be termed event-based, exemplified by Reddy’s object spaces and models
based on game semantics. O’Hearn and Reddy have related the two approaches by giving functor
category models whose worlds are object spaces, then showing that their model is fully abstract for
Idealised Algol programs up to order two. But the category of object spaces is not small, and so in
order to construct a functor category that is locally small, and hence Cartesian closed, they need
to work with a restricted collection of object spaces. This weakens the connection between the
object spaces model and the functor-category model: the Yoneda embedding no longer provides a
full embedding of the original category of object spaces into the functor-category. Moreoever the
choice of the restricted collection of object spaces is ad hoc. In this paper, we refine the approach by
proving that the finite objects form a small dense subcategory of a simplified object-spaces model.
The functor category over these finite objects is therefore locally small and Cartesian closed, and
contains the object-spaces category as a full subcategory. All this work is necessarily enriched
in Cpo. We further refine their full abstraction result by showing that full abstraction fails at
order three.

Keywords: Denotational semantics, programming languages, imperative programming, algol-like
languages, local state, possible worlds, category theory.

1 Email: G.A.McCusker@bath.ac.uk
2 Email: A.J.Power@bath.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:G.A.McCusker@bath.ac.uk
mailto:A.J.Power@bath.ac.uk

McCusker, Power

1 Introduction

Over recent decades, there have been at least two major ways in which local
variables in imperative languages have been given denotational semantics. One
approach, developed in particular by O’Hearn and Tennent, building heavily
upon the work of others such as Oles, has been based on functor categories:
one constructs a small category W of worlds and models the language in
the functor category SetW or perhaps in CpoW to include recursion. The
various small categories W of worlds have gradually become of increasing
sophistication in order to model increasingly sophisticated features of local
variables, as outlined in the collection of articles [13].

The other approach we have in mind here has been that most associated
with Reddy [14]. He developed object spaces to model interference-controlled
Algol, recording the behaviour of stateful objects using traces. Reddy’s model
has been an important precursor of the game semantics of imperative pro-
grams [1,2], which provided the first fully abstract models of Idealised Algol.
These models were not given by functor categories but rather directly in terms
of natural but sophisticated structures on sets.

This leaves the question whether the two approaches can be unified. O’Hearn
and Reddy made a start on that question in [12], providing a fully faithful em-
bedding of a variant of Reddy’s category into a functor category, and describ-
ing a model of Idealised Algol in that category. Although a substantial step
forward, that still leaves a substantial step, indeed from a category-theoretic
perspective, a fundamental step, unresolved. Specifically the problem is one of
size: Reddy’s category is locally small but not small. If, as O’Hearn and Reddy
do, one makes an ad hoc restriction to a small subcategory, one loses funda-
mental category-theoretic structure such as completeness and cocompleteness
properties. But if one starts with a category W that is not small, then the
functor category SetW typically will not be locally small, again causing major
disruption, for instance not allowing one to conclude cartesian closedness.

We resolve that difficulty in this paper. Specifically, we address it by the
study of density: a small full subcategory D of a category C is dense if a canon-
ical functor embeds C fully into the functor category SetD, which is necessarily
locally small. Density is a fundamental notion within category theory [7] and
its use brings us to a very satisfactory situation: we have a functor-category
model of Idealised Algol, an object-spaces model of interference-controlled Al-
gol with no unnatural size restriction, and a full embedding between them.
There is one complication with this: we provably need not just density but an
enriched version of density, with enrichment in the category Cpo. We provide
a counter-example to show that ordinary density is insufficient in Section 5,
then show that we have the Cpo-enriched density we seek. The enriched
notion of density is a standard part of enriched category theory [6].

2

McCusker, Power

Our work is not a direct refinement of O’Hearn and Reddy’s, because we
do not work with the original formulation of the category of object spaces, but
with a simplification of it, along the lines developed in [8,10], which abandons
the coherence-space structure exploited by Reddy. The resulting category of
worlds has the advantage of being simpler to describe than Reddy’s category:
it is the category of free quantales over finite sets. It nevertheless gives rise to
the same model of interference-controlled Algol as Reddy’s category, and the
functor-category possesses the same full abstraction properties as claimed in
O’Hearn and Reddy’s work.

As an additional contribution, we refine O’Hearn and Reddy’s full abstrac-
tion result. In their paper, it was shown that the functor-category model was
fully abstract up to order two, that is, that for terms of order two and below,
equality in the model coincides with contextual equivalence in an appropri-
ate operational semantics. Their argument for full abstraction carries almost
directly over to our model. We give a counterexample to full abstraction at
order three, showing that this result is as far as one can go.

2 Two Algol-like Languages

This section briefly presents the syntax of a version of Idealised Algol, and its
interference-controlled variant. We omit details of the operational semantics,
which may be found in the literature; O’Hearn and Tennent’s edited collection
of articles is particularly useful [13].

The languages are built over three base types: comm, the type of com-
mands; nat, the type of natural-number valued expressions; and var, the
type of assignable variables. Idealised Algol itself is an applied simply-typed
lambda-calculus over these base types. Its types are therefore generated from
the base types via product and function operations, and its syntax is that
of the lambda-calculus together with a stock of constants for imperative pro-
gramming with recursion, as follows.

• 0 : nat

• succ : nat→ nat

• pred : nat→ nat

• ifzeroB : nat×B×B → B

• YA : (A→ A)→ A

• skip : comm

• assign : var× nat→ comm

• deref : var→ nat

• seqB : comm×B → B

• while : nat× comm→ comm

• new : (var→ comm)→ comm

• mkvar : (nat→ comm)× nat→ var

where B ranges over base types and A over all types.

The constants in the left column provide for arithmetic and recursion,

3

McCusker, Power

just as in PCF for example. The remainder provide a language of imperative
programs: skip is the do-nothing command; assign(V,N) stores the value of
expressionN in variable V ; deref(V) returns the value stored in V ; seq(C,M)
executes command C and then evaluates M — note that the variant where
B is comm is the familiar sequential composition of commands, while the oth-
ers allows expressions of type nat or var to have side-effects on the store;
while(M,C) repeatedly executes C until M becomes non-zero; ifzeroB pro-
vides for conditional branching; and new(λx : var.C) executes command C
in an environment where identifier x has been bound to a fresh memory cell.
Finally mkvar is a “variable constructor” which builds an expression of type
var out of a “write-method” of type nat → comm and a “read method” of
type nat. This object-oriented view of variables was proposed by Reynolds
in his paper The Essence of Algol [16] and is by now standard. Indeed, some
presentations including that of O’Hearn and Reddy go as far as identifying
var with the product type (nat → comm) × nat. It has been shown that the
presence of mkvar makes no difference to the notion of program equivalence
in this language [9].

Interference-controlled Algol consists of the affine lambda-calculus, with
products, over the same base types, with the same stock of constants, except
that Y is excluded. The affine lambda-calculus restricts function application
so that function and argument cannot share any identifiers. This leads to
a situation in which distinct identifiers can never be bound to interfering
program phrases, which makes program analysis more straightforward and
was Reynolds’s motivation for introducing the restricted language in Syntactic
Control of Interference (SCI) [15]. The SCI type system was later refined by
O’Hearn et al. [11], but we focus on the basic system here. Note that in this
system, the two components of a product may still share identifiers and thus
interfere, so the typing of constants such as while means that executing the
body of a loop may have an impact on future execution of the guard. This is
of course essential if one is to retain any interesting imperative programs.

These two languages can be equipped with an operational semantics, given
in terms of stores : functions from locations to natural numbers. The opera-
tional semantics consists of judgements s,M ⇓ s′, N , stating that term M in
store s evaluates to term N , altering the store to s′. Terms M and M ′ are con-
textually equivalent if, for every context C[−] such that C[M] and C[M ′] are
closed terms of type comm, C[M] ⇓ skip if and only if C[M ′] ⇓ skip; there are
no stores in these judgements because closed terms operate in empty stores.

3 Object spaces (simplified)

Reddy’s object spaces model of interference-controlled Algol [14] was the first
to interpret higher-order imperative programs not using functions from start-

4

McCusker, Power

ing states to finishing states, but by recording the behaviour of stateful objects
using traces. As such, it is an important precursor of the game semantics of
imperative programs[1,2] which were the first fully abstract models of Ide-
alised Algol. Perhaps more surprisingly, Reddy’s model is itself fully abstract
for interference-controlled Algol, though this was not known until more re-
cently [8]. In this section we present a simplified version of Reddy’s category,
which does away with the coherence relation at the expense of allowing non-
determinism into the model. Nondeterminism is a conservative extension of
Idealised Algol, in both its regular and interference-controlled flavours, so this
makes no difference to our results on full abstraction, while simplifying the
technical details considerably.

Let A, B and C be sets. We use PA to denote the power-set of A, and
A∗ for the set of finite sequences drawn from A. Let f : A → PB∗ and
g : B → PC∗ be any functions. Define the composite g ◦ f : A → PC∗ as
follows. For any a ∈ A, (g ◦ f)(a) is the set

{s1 · · · sn | ∃b1, . . . , bn.b1 . . . bn ∈ f(a) ∧ ∀i ∈ {1, . . . , n}si ∈ g(bi)}
where s1 · · · sn is the concatenation of sequences s1, . . . , sn.

This notion of composition is associative, and the map A → PA∗ which
sends each a to {[a]}, the singleton set containing the singleton sequence, is an
identity for it. We therefore have a category FQ, so named because it turns
out to be the category of free quantales over sets.

Alternatively we may present this category as the Kleisli category SetPT ,
where T is the monad delivering the free monoid on a set. The composite
functor PT itself becomes a monad by virtue of a distributive law

λ : TP −→ PT
whose action is as follows. For any set A, λA takes a sequence [S1, . . . , Sn] of
subsets of A to the set of sequences

{a1 . . . an | ∀i ∈ 1, . . . , n.ai ∈ Si.}
The first author has shown that the opposite of this category gives rise

to a model of interference-controlled Algol which is essentially the same as
Reddy’s object spaces model, and that this model is fully abstract [8,10]. This
presentation also has much in common with the development of Engeler-style
models of the lambda-calculus in [5], and with the relational models presented
in [3]; the connections remain to be explored.

In fact when modelling interference controlled Algol, it turns out to be
more convenient to work with (the opposite of) the Kleisli category for P
on T -Alg, the category of algebras for the monad T , that is, the category
of monoids. This gives access to some additional objects which makes the
formulation of the model simpler. However, for all intents and purposes FQop

is the category which houses the fully abstract model of interference-controlled
Algol in op. cit., and so it is this category we shall use.

5

McCusker, Power

3.1 Semantics of Interference-Controlled Algol

We now review the semantics of the types and constants of the language
in FQop. Objects of the category are sets, and a map A→ B can be seen as
a relation between A∗ and B. Disjoint union of sets gives a product in this
category (because it gives a coproduct in Set and hence also in SetPT). The
larger category (T−AlgP)op has a monoidal closed structure, where the tensor
product is given by cartesian product of sets, and the internal hom A(B is
given by the set A∗×B. In FQop the monoidal structure is not available, but
the function types are, and this is enough to enable us to model the language.

The types are interpreted as shown below, where N denotes the set of
natural numbers:

[[nat]] = N

[[comm]] = {∗}
[[var]] = {write(n), read(n) | n ∈ N}

[[A×B]] = [[A]] + [[B]]

[[A→ B]] = [[A]]∗ × [[B]].

(In some later calculations, we will identify the base types comm, nat and var

with the sets they denote in this model.)

We now turn our attention to the constants. For each constant c : A we
define [[c]] as an element of [[A]]. We use juxtaposition to denote concatenation
of sequences, and identify a singleton sequence with its single element. When
working with disjoint unions of sets, as in the semantics of product types, we
use superscripts to indicate which component of the disjoint union a given
element belongs to, so that for example in N + N + N, n3 is the value n in
the rightmost component.

Note that a sequence s ∈ var∗ consists of elements write(n) and read(m).
We say that such a sequence is a cell-trace if the value in each read(−) entry
matches the most recent write(−) entry: the kind of behaviour one would
associate with a memory cell. If no write(−) has yet occurred, we allow read(0)
to occur, modelling a cell with the default initial value of zero. Cell traces are
therefore generated by the regular expression

read(0)∗ · (Σn∈Nwrite(n) · (read(n)∗))∗ .

Armed with this, we give the semantics of constants as follows.

• [[0]] = 0

• [[succ]] = {(n, n+ 1) | n ∈ N}
• [[pred]] = {(n+ 1, n) | n ∈ N}
• [[ifzeroB]] = {(01v2, v) | v ∈ B} ∪ {(n1v3, v) | n ∈ N, n 6= 0, v ∈ B}
• [[skip]] = ∗

6

McCusker, Power

• [[assign]] = {(n2write(n)1, ∗) | n ∈ N}
• [[deref]] = {(read(n), n) | n ∈ N}
• [[seqB]] = {(∗1v2, v) | v ∈ B}
• [[while]] = {01 ∗2 01 ∗2 . . . 01 ∗2 m1, ∗) | m ∈ N,m 6= 0}
• [[new]] = {((s, ∗), ∗) | s is a cell-trace}.
• [[mkvar]] = {(n2, read(n)) | n ∈ N} ∪ {((n . . . n, ∗)1,write(n)) | n ∈ N}
In the semantics of while, the expression 01∗201∗2 . . . 01∗2 denotes any element
of the regular language (01∗2)∗, including the empty sequence; and similarly
n . . . n in the semantics of mkvar denotes any sequence of the form nnnnn . . . n.

4 O’Hearn and Reddy’s model of Algol

In [12], O’Hearn and Reddy present a model of full Idealised Algol obtained
from Reddy’s object-spaces model by means of the (enriched) Yoneda embed-
ding. The approach is as follows. To model Idealised Algol, one requires:

• a Cartesian closed category, to model the typed lambda-calculus

• a stock of objects to interpret the base types of the language, together with
maps between them to interpret the constants forming the simple imperative
language at the core of Idealised Algol

• a fixed point combinator to interpret recursion: for each type A, a map
[[[A]]⇒ [[A]]]→ [[A]] with appropriate properties

• a map [[[var]]⇒ [[comm]]]→ [[comm]] to interpret new.

The object spaces model gives us enough to interpret the base types and the
simple constants, but is not Cartesian closed: though it has products, it lacks
exponentials; and in the absence of exponentials it does not make sense to ask
whether fixed points and new can be interpreted.

O’Hearn and Reddy’s proposed solution involves embedding the category
of object spaces in a Cartesian closed category, using the Yoneda embedding.
The idea is that an appropriate category of presheaves over the object-spaces
model is Cartesian closed and contains the object spaces as a full subcate-
gory. This immediately satisfies the first two requirements on a model. Fixed
points are obtained by working with Cpo-enriched categories, and it turns
out that direct consideration of the interpretation of var → comm allows the
construction of the semantics of new.

Setting aside recursion for now, let us illustrate the semantics of new in
the functor category SetFQ. FQop embeds fully in this category via the
Yoneda embedding, with an object A represented by the covariant hom-functor
FQ(A,−). Products are given pointwise. Apart from a size issue, which we
will address later, the category would have exponentials: given functors F and

7

McCusker, Power

G : FQ→ Set, the exponential [F ⇒ Q] is the functor taking an object X to
the set of natural transformations

FQ(X,−)× F −→ G.

In particular, [[[var]]⇒ [[comm]]](X) is the set of natural transformations

FQ(X,−)× FQ([[var]],−) −→ FQ([[comm]],−).

Since FQ has coproducts given by disjoint union of sets, and using the Yoneda
lemma again, this is the same as the hom-set

FQop(X + [[var]], [[comm]]).

So our interpretation of new must give, for each X and in a natural way, a
map from elements of this hom-set, that is, relations between

(X + {read(n),write(n) | n ∈ N})∗ and {∗}
to elements of [[comm]][X] = FQop(X, {∗}), that is, relations between X∗ and
the singleton set. We define [[new]] as follows:

[[new]][X](f) = {(s � X, ∗) | (s, ∗) ∈ f, s � [[var]] is a cell-trace}.
Note both the similarity with the interpretation of new in the object-spaces

model, and the difference: the key distinction that in this model, the sequence
s contains not only the variable-events for reading and writing, but also events
from the set X, in an interleaved fashion. It is this that makes the interpreta-
tion of Algol work: events from X interrupt the flow of events in the variable,
and allow us to record interfering behaviour.

However, there is an important size issue to overcome. When claiming that
exponentials exist, we asserted that [F ⇒ G](X) is given by the set of natural
transformations FQ(X,−)×F −→ G. Since FQ is not a small category, there
is no reason to believe that this collection of natural transformations is a set
at all. In the absence of a detailed argument to this effect, we cannot claim
that SetFQ is Cartesian closed, so we cannot use it to model Idealised Algol.

O’Hearn and Reddy are aware of the size issue: their paper clearly states
that the functor-category construction they use applies only to small cate-
gories. But the category of object spaces is not small, and as written, their
work applies the construction directly to this category, so the essential prop-
erty of Cartesian closure for their model has not been established.

The category of object spaces is locally small (hom-sets really are sets), so
one could remedy this situation straightforwardly by restricting attention to
the full subcategory on some set of objects. But what set should we choose?
At this point a tension emerges between the desire to make the construction
work and the desire to have a mathematically natural and appealing model.
A quick fix could be provided by restricting to (for instance) just those objects
used in the interpretation of base types and their products, but immediately
one loses the distinction between the syntax and its model: good models
should be constructed entirely independently of syntactic considerations.

8

McCusker, Power

A more satisfying path to solution lies in identifying a small dense sub-
category C of FQop and considering the functor category SetC. This is the
approach we take in the remainder of the paper.

5 A small dense subcategory

Let C be a category with a small full subcategory D, with inclusion functor
J : D ↪→ C. Recall that D is dense in C if the functor C → SetDop

taking
X to C(J−, X) is full and faithful. Equivalently, every object of C arises as
a colimit of D-objects in a canonical way; see Mac Lane [7].

Our goal is to find a small dense subcategory of FQop closed under finite
products. The category of presheaves over this will then be Cartesian closed,
and FQop will fully embed in this category in a product-preserving fashion.
We will then be able to provide semantics for Idealised Algol along the lines
indicated above.

As a first attempt, consider the full subcategory of FQop whose objects
are finite sets. We call this category FQop

f . It can equivalently be given as
the subcategory with objects the natural numbers, that is, finite sets of the
form {0, 1, . . . , n} for some n ∈ N, which is clearly a small category. Every
object of FQop is a colimit of a diagram of these objects. Given sets A and B
with A ⊆ B, the relation taking an element a ∈ A to the singleton sequence
[a] provides maps in FQop from A to B and back:

inA,B : A→ B = {([a], a) | a ∈ A}
outB,A : B → A = {([a], a) | a ∈ A}

Note that outB,A◦inA,B = idA, and that if A ⊆ B ⊆ C then inA,C = inB,C◦inA,B,
and similarly for the out maps. Now given any object X of FQop, the diagram
consisting of all finite subsets of X and all inA,B maps between them has
colimit X, with the maps inA,X forming the colimiting cone. Thus one might
expect that the finite sets are dense in FQop, but unfortunately this is not the
case, as the following counterexample shows.

Consider the set R of real numbers. If FQop
f is to be dense in FQop,

there should be a bijective correspondence between maps R→ 1 in FQop and
natural transformations

FQop(J−,R)→ FQop(J−, 1)

where 1 is the singleton set. Given such a natural transformation α and sets
X ⊆ Y ⊆ R, naturality implies that α(inY,R) ◦ inX,Y = α(inY,R ◦ inX,Y) =
α(inX,R). Thus the maps α(inX,R) : X → 1 form a cocone over the inX,Y , and
hence there is a unique map f : R→ 1 such that f ◦ inX,R = α(inX,R) for every
finite X ⊆ R. Density of FQop

f amounts to the statement that α(g) = f ◦ g
for all maps g : X → R, rather than just for the in maps.

9

McCusker, Power

We now define a natural transformation α for which this does not hold.
Given a finite set X and a map f : X → R in FQop, α(f) is the relation on
X∗ × 1 defined by

{(s, ∗) | (s, x) ∈ f for uncountably many x}.

To see that this is natural, consider any f : X → R and g : Y → X. If
some (t, ∗) ∈ α(f) ◦ g, there must be (s, ∗) ∈ α(f) such that s = x1 . . . xn,
t = t1 . . . tn and for each i, (ti, si) ∈ g. This means there are uncountably
many x such that (s, x) ∈ f , and hence also (t, x) ∈ f ◦ g for uncountably
many x, so that (t, ∗) ∈ α(f ◦ g). Hence α(f) ◦ g ⊆ α(f ◦ g). For the other
inclusion, suppose (t, ∗) ∈ α(f ◦ g) for some t. Then there are uncountably
many x such that (t, x) ∈ f ◦ g. For each such x there is some sx such that
(sx, x) ∈ f , and sx = sx

1 . . . s
x
n, t = tx1 . . . t

x
n with each (txi , s

x
i) ∈ g. But the

sx are drawn from the countable set X∗, so there must be some s such that
sx = s for uncountably many x. It follows that (s, x) ∈ f for uncountably
many x, hence (s, ∗) ∈ α(f) and then (t, ∗) ∈ α(f) ◦ g as required.

However, for every finite X ⊆ R, α(inX,R) = ∅. The unique mediating
map f : R → 1 is also the empty relation, but it is clearly not the case that
α(g) = ∅ ◦ g for all g. Hence FQop

f is not dense in FQop.

We do not know of a straightforward way to remedy this situation in the
non-enriched case. Fortunately, as should be clear from the above counterex-
ample, the failure of density results from a discontinuity in the components
of the natural transformation α, which can be eliminated by working with
Cpo-enriched categories rather than ordinary categories. Since we intended
all along to move to the Cpo setting, so as to recover a semantics of recursion,
this is harmless, though the picture is perhaps more delicate than one would
like.

We let Cpo denote the category of directed-complete partial orders, pos-
sibly without bottom element, and continuous functions. Recall that a Cpo-
category has hom-cpos rather than hom-sets, with composition being a con-
tinuous function on hom-cpos. The categories FQ, FQop and FQop

f can be
seen as a Cpo-categories: given sets X and Y , FQ(X, Y) is the collection of
relations between X and Y ∗, ordered by inclusion. It is straightforward to
verify that composition is continuous.

The Cpo-functor-category CpoFQ has as its objects all Cpo-functors from
FQ to Cpo, that is, functors whose actions on morphisms are continuous.
Maps between Cpo-functors boil down to ordinary natural transformations
between the underlying ordinary functors; but note that the components of
such natural transformations are maps in Cpo and therefore continuous func-
tions. In this setting, FQop

f is a dense subcategory of FQop.

Theorem 5.1 FQop
f is dense in FQop. Dense here means that the functor

from FQop to CpoFQf taking an object X to FQop(J−, X) : FQf → Cpo is

10

McCusker, Power

fully faithful as a Cpo-functor, i.e. that each of its actions on hom-cpos is an
order isomorphism.

Proof. We must show that the action of the functor in question on hom-cpos
is injective, surjective and reflects order.

For injectivity, observe that if f, g : X → Y are distinct maps of FQop,
there must be some pair (s, y) ∈ X∗ × Y that appears in f but not g (or
vice versa). We must show that the natural transformations FQop(J−, f) and
FQop(J−, g) are distinct. Let A ⊆ X be any finite subset that contains all the
elements of s. Instantiating the natural transformations at A and applying
to the morphism inA,X gives the two maps f ◦ inA,X and g ◦ inA,X , and one of
these contains the pair (s, y) while the other does not, as required. A similar
argument shows that the functor’s action on hom-cpos reflects order.

More interesting is the question of surjectivity. Let α : FQop(J−, X) →
FQop(J−, Y) be any natural transformation. Just as in the non-enriched case,
there is a unique f : X → Y such that α(inA,X) = f ◦inA,X for all finite A ⊆ X:
concretely, this f consists of all those pairs (s, y) such that (s, y) ∈ α(inA,X) for
some A. It remains to show that α = FQop(J−, f), that is, that α(g) = f ◦ g
for any finite set A and map g : A→ X.

But for any finite B ⊆ X, applying the naturality square for α

FQop(JB,X) FQop(JB, Y)

FQop(JA,X) FQop(JA, Y)

αB

FQop(outX,B ◦ g,X)

αA

FQop(outX,B ◦ g, Y)

to the element inB,X of FQop(JB,X) means that αA(inB,X ◦ outX,B ◦ g) =
αB(inB,X) ◦ outX,B ◦ g = f ◦ inB,X ◦ outX,B ◦ g. The set of maps

{inB,X ◦ outX,B ◦ g : A→ X | B ⊆ X,B finite}
is directed, with supremum g. Hence by continuity of αA, αA(g) = f ◦ g as
required. 2

The situation at which we have arrived is satisfactory, but somewhat del-
icate. The functor category CpoFQf is locally small and Cartesian closed,
and contains FQop as a full subcategory, so we are in a position to give se-
mantics to Idealised Algol as explained by O’Hearn and Reddy. The move to
Cpo-categories was on the agenda from the outset, because of the desire to
model recursion using fixed points. However, Cpo-enrichment plays a double
role, because FQop

f fails to be dense without it; this makes the construction
less flexible, and the fact that we have used directed completeness rather than
ω-completeness in the density argument raises difficulties, because Cpo is not
locally presentable while ωCpo is. Nevertheless, we have identified a small

11

McCusker, Power

category of “worlds”, namely FQf , whose functor category provides a model
of Idealised Algol.

Theorem 5.2 The model of Idealised Algol in CpoFQf is fully abstract up to
order two.

Proof. The proof follows that of O’Hearn and Reddy. Some small alterations
are needed because FQop lacks the coherence structure of Reddy’s original
object spaces model, so contains some nondeterministic elements. However,
adding nondeterminism to Idealised Algol is a conservative extension (see [10]
for instance) so this makes no difference to the result. 2

6 Failure of full abstraction at order 3

We now give a counterexample to full abstraction, that is to say, a pair of
terms which are contextually equivalent in Idealised Algol but have distinct
denotations in the functor-category model. The type of these two terms are
of third order, so we have a sharp result: the model is fully abstract to order
two, but no further.

The terms are of the form λf : (comm→ comm)→ comm.Mi where M1 and
M2 are defined by:

M1 = new(λx.f(λc.x := 0; c;x :=!x+ 1; c; if !x ≥ 2 then Ω else x := 0)

M2 = f(λc.c; c)

Here we make use of some syntactic sugar, using infix operators ; and := in
place of the functions seq and assign, ! for deref, and standard arithmetic
and boolean operations which are readily definable.

Lemma 6.1 The terms λf.M1 and λf.M2 are contextually equivalent.

Proof. Equivalence of these terms is established by analysing their denota-
tions in the fully abstract game semantics [2]. We shall not detail the games
model here, but give the equivalence proof for those readers familiar with the
model.

The game denotation of the term

f(λc.x := 0; c;x :=!x+ 1; c; if !x ≥ 2 then Ω else x := 0)

is a strategy on the game

((comm4 → comm3)→ comm2)× var→ comm1.

Subscripts on the comm games are used to identify the four occurrences, and
we tag their run and done moves similarly. The strategy plays as follows:

• when O plays run1, play run2

• when O plays done2, play done1

12

McCusker, Power

• when O plays run3, play write(0), and when O then plays ok, play run4. We
refer to this occurrence of run4 as a first invocation of the move.

• when O plays done4 in response to a first invocation of run4, play read; O
then plays some value n, and P plays write(n+ 1); O then plays ok, and P
plays run4 — this is a second invocation.

• when O plays done4 in response to a second invocation of run4, play read;
when O plays a value n, play write(0) if n ∈ {0, 1}, otherwise make no
response; when O plays ok, play done3.

If we strip out all the var moves from these plays, we obtain the strategy
for the term f(λc.c; c). Therefore, to establish equivalence we need only show
that if O’s play in var is a cell-trace, then O’s answer n to the read in the final
paragraph above is always 0 or 1. This is done by induction on the length of
a play according to the above strategy: we show that

• when a first invocation of run4 is played, the last write carried value 0

• when a second invocation of run4 is played, the last write carried value 1

• when done4 is played in response to a first invocation, the last write carried
value 0

• when done4 is played in response to a second invocation, the last write
carried value 0 or 1

• when done3 is played, the last write carried value 0.

The interesting cases concern the done4 moves. When done4 is played, the
previous move must have been either run4, so the last write was either 0 (for
a first invocation) or 1 (for a second invocation); or done3, in which case the
last write was 0. Thanks to the bracketing discipline for question and answer
moves in the games model, these are the only two possibilities, so the proof is
complete. 2

Lemma 6.2 The denotations of λf.M1 and λf.M2 are distinct in the model
in CpoFQf .

Proof. The terms will be distinguished by applying them to a particular
element of the denotation of (comm → comm) → comm). This is most readily
described as a natural transformation α : [[comm → comm]] −→ [[comm]]. Its
component at X is the map

αX : FQop
f (X + comm, comm) −→ FQop

f (X, comm)

which takes a map g to the relation

{(s1s
′
1s2s

′
2s3s

′
3, ∗) | (s1 ∗ s2 ∗ s3, ∗) ∈ g, (s′1 ∗ s′2 ∗ s′3, ∗) ∈ g}.

It is straightforward to verify that this is a natural transformation.

The denotation of the argument term

λc.x := 0; c;x :=!x+ 1; c; if !x ≥ 2 then Ω else x := 0

13

McCusker, Power

is the natural transformation [[var]] → [[comm → comm]] whose component at
X is given by the map FQop(X, var) → FQop(X + comm, comm) which takes
a map h to the set of pairs (s1 ∗ s2s3 ∗ s4, ∗) where h contains (s1,write(0)),
(s2, read(m)), (s3,write(m+ 1)) and (s4, n) for some m ∈ N and n ∈ {0, 1}.

Composing these two gives us the denotation of

f(λc.x := 0; c;x :=!x+ 1; c; if !x ≥ 2 then Ω else x := 0)

when f is bound to α. It is the natural transformation [[var]]→ [[comm]] whose
component at X is the map FQop(X, var) → FQop(X, comm) taking h to
the relation consisting of all pairs (s1s

′
1s2s3s

′
2s
′
3s4s

′
4, ∗) where h contains the

pairs (s1,write(0)), (s′1,write(0)), (s2, read(m)), (s′2, read(m′)), (s3,write(m +
1)), (s′3,write(m′ + 1)), (s4, n) and (s′4, n

′) for some m,m′ ∈ N and n, n′ ∈
{0, 1}.

By our density result, this natural transformation must correspond to an
element of FQop(var, comm), and the appropriate element is the relation con-
taining all pairs

(write(0)write(0)read(m)write(m+ 1)read(m′)write(m′ + 1)read(n)read(n′), ∗)
where m,m′ ∈ N and n, n′ ∈ {0, 1}. This relation is the denotation of

λx.f(λc.x := 0; c;x :=!x+ 1; c; if !x ≥ 2 then Ω else x := 0).

Finally, applying new to this results in the empty set, because none of the
sequences of var-actions in the above relation is a cell-trace. We therefore
conclude that applying [[λf.M1]] to α results in the empty relation.

On the other hand, a similar and much simpler calculation shows that
applying [[λf.M2]] to α gives the relation {(ε, ∗)} (the denotation of skip),
which is non-empty, completing the proof. 2

Corollary 6.3 The model of Idealised Algol in CpoFQf is not fully abstract
for terms of order 3.

7 Future work

Taking our lead from O’Hearn and Reddy, we have shown how a small and
simple category may be used as a category of worlds in a functor-category
model of Idealised Algol. As O’Hearn and Reddy remarked, these “worlds”
are of a rather different character to others in the literature, which generally
correspond to the possible shapes of the store. We suggest that worlds in
our model be understood as describing possible observations one can make
of programs. Perhaps there are other notions of world following this idea
which give rise to interesting and useful models, and connections with presheaf
models of concurrency [4].

Though we claim that our simplified notion of object space gives rise to
essentially the same model as O’Hearn and Reddy’s approach, it is nevertheless

14

McCusker, Power

natural to ask whether one can find a small dense subcategory of Reddy’s
original category of object-spaces. We believe that a similar approach will
work, though we have not studied it in detail. Perhaps more interesting is
to ask whether the fully abstract games models can be reconciled with the
functor category approach: is there a fruitful way of viewing the games model
as a functor category?

References

[1] Abramsky, S. and G. McCusker, Linearity, sharing and state: a fully abstract game semantics
for Idealized Algol with active expressions (extended abstract), in: Proceedings of 1996 Workshop
on Linear Logic, Electronic notes in Theoretical Computer Science 3 (1996), pp. 2–14.

[2] Abramsky, S. and G. McCusker, Linearity, sharing and state: a fully abstract game semantics
for Idealized Algol with active expressions, in: O’Hearn and Tennent [13] pp. 297–329 of volume
2.

[3] Bucciarelli, A., T. Ehrhard and G. Manzonetto, A relational model of a parallel and non-
deterministic λ-calculus, in: LFCS ’09: Proceedings of the 2009 International Symposium on
Logical Foundations of Computer Science (2009), pp. 107–121.

[4] Cattani, G. L. and G. Winskel, Presheaf models for concurrency, in: Computer Science Logic:
10th International Workshop Proceedings, Lecture Notes in Computer Science 1258 (1997),
pp. 58–75.

[5] Hyland, M., M. Nagayama, J. Power and G. Rosolini, A category-theoretic formulation of
engeler-style models of the untyped λ-calculus, in: Proc. MCFSIT 2004, Electronic Notes in
Theoretical Computer Science volume 161, 2006, pp. 43–57.

[6] Kelly, G. M., “Basic Concepts of Enriched Category Theory,” Cambridge University Press,
1982.

[7] Mac Lane, S., “Categories for the Working Mathematician,” Springer-Verlag, Berlin, 1971.

[8] McCusker, G., A fully abstract relational model of syntactic control of interference, in:
Proceedings, Computer Science Logic (CSL) 2002, Lecture Notes in Computer Science 2471
(2002), pp. 247–261.

[9] McCusker, G., On the semantics of the bad variable constructor in Algol-like languages,
in: S. Brookes and P. Panangaden, editors, Proceedings, Nineteenth Conference on the
Mathematical Foundations of Programming Semantics, Montreal 2003, Electronic Notes in
Theoretical Computer Science (2003).

[10] McCusker, G., A graph model of imperative computation, Logical Methods in Computer Science
6 (2010), pp. 1–35, doi:10.2168/LMCS-6(1:2)2010.

[11] O’Hearn, P. W., A. J. Power, M. Takeyama and R. D. Tennent, Syntactic control of interference
revisited, Theoretical Computer Science 228 (1999), pp. 211–252.

[12] O’Hearn, P. W. and U. Reddy, Objects, interference and the Yoneda embedding, in: M. Main
and S. Brookes, editors, Mathematical Foundations of Programming Semantics: Proceedings of
11th International Conference, Electronic Notes in Theoretical Computer Science (1995), pp.
487–514.

[13] O’Hearn, P. W. and R. D. Tennent, editors, “Algol-like Languages,” Birkhaüser, 1997.

[14] Reddy, U. S., Global state considered unnecessary: Object-based semantics for interference-free
imperative programs, Lisp and Symbolic Computation 9 (1996), pp. 7–76.

[15] Reynolds, J. C., Syntactic control of interference, in: Conf. Record 5th ACM Symposium on
Principles of Programming Languages, 1978, pp. 39–46.

[16] Reynolds, J. C., The essence of Algol, in: Proceedings of the 1981 International Symposium on
Algorithmic Languages (1981), pp. 345–372.

15

	Introduction
	Two Algol-like Languages
	Object spaces (simplified)
	Semantics of Interference-Controlled Algol

	O'Hearn and Reddy's model of Algol
	A small dense subcategory
	Failure of full abstraction at order 3
	Future work
	References

