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OPTIMAL INPUT-OUTPUT STABILIZATION OF

INFINITE-DIMENSIONAL DISCRETE TIME-INVARIANT LINEAR


SYSTEMS BY OUTPUT INJECTION∗


MARK R. OPMEER† AND OLOF J. STAFFANS‡ 

Abstract. We study the optimal input-output stabilization of discrete time-invariant linear 
systems in Hilbert spaces by output injection. We show that a necessary and sufficient condition 
for this problem to be solvable is that the transfer function has a left factorization over H-infinity. 
Another equivalent condition is that the filter Riccati equation (of an arbitrary realization) has a 
solution (in general, unbounded and even nondensely defined). We further show that after renorming 
the state space in terms of the inverse of the smallest solution of the filter Riccati equation, the 
closed-loop system is not only input-output stable but also strongly internally ∗-stable. 
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1. Introduction. This is the second in a series of articles dealing in a novel way 
with the quadratic cost minimization problem for infinite-dimensional time-invariant 
linear systems in discrete and continuous time. In the first article [17] we investigated 
the discrete-time full information infinite-horizon linear quadratic problem, and here 
we will study a deterministic version of the discrete-time infinite-horizon Kalman 
filtering problem. In the forthcoming third part we will combine the results from 
these first two articles to examine coprime factorization and dynamic stabilization. 
The continuous-time equivalents will be the subject of subsequent articles. 

1.1. Stabilization by output injection. In [17] we studied the linear dynam­
ical system in discrete future time defined by 

(1.1) xn+1 = Axn + Bun, yn = Cxn + Dun, n  ∈ Z
+; x0 = z, 

where A : X → X , B : U → X , C : X → Y , and  D : U → Y are bounded linear 
operators; X , U , and  Y are Hilbert spaces; and Z+ is the set of nonnegative integers. 
Here we’ll study the same system in discrete past time: 

xn+1 = Axn + Bun, yn = Cxn + Dun, n  ∈ Z
−; x0 = z, 

(1.2) ∃N ∈ Z
+ : xn = 0 =  un ∀n ≤ −N, 

where Z− is the set of negative integers and the last line indicates that the sequences 
have support bounded to the left, which is a sufficient condition for the difference 
equations to make sense in past time. 
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A classical problem is to modify the properties of these systems by using either 
state feedback or output injection. State feedback was studied in [17], and here we 
focus on output injection. Output injection is of importance since it naturally occurs 
in observer design. In the case of state feedback one chooses the control u to be given 
by un = Kxn + vn, where  K : X → U is bounded linear (state feedback) operator, 
which in the future time setting results in the closed-loop state feedback system: 

xn+1 = (A + BK)xn + Bvn, n ∈ Z
+ , 

yn = (C + DK)xn + Dvn, n ∈ Z
+ , 

(1.3) 
un = Kxn + vn, n ∈ Z

+ , 

x0 = z. 

Here the input u of the original system plays the role of one of the two outputs of the 
closed-loop system, and the new input sequence to the closed-loop system is v. In  the  
case of output injection we relax the output equation in (1.2) by allowing a nonzero 
error term, wn := Cxn + Dun − yn, and injecting a multiple Hwn of this term back 
into the state equation in (1.2), where H : Y → X . Thus,  we  now  treat  y like an 
input. This leads to the following closed-loop output injection system: 

xn+1 = (A −HC)xn + (B −HD)un + Hyn, n ∈ Z
− , 

wn = Cxn + Dun − yn, n ∈ Z
− , 

(1.4) 
x0 = z, 

∃N ∈ Z
+ : xn = 0 =  un = yn ∀n ≤ −N. 

One typical goal is to make this closed-loop system stable, or at least input-output 
stable, in the sense that the mapping from the two input sequences u and y to the 
output sequence w is bounded from �2(Z−; U × Y ) to  �2(Z−; Y ). In the optimal 
version of this problem one not only requires this input-output map to be bounded 
but to have the smallest possible norm. 

A solution can be found in the following way by means of an optimal control 
problem if we assume for the moment (to avoid some technical issues to be discussed 
later) X , U , and  Y to be finite-dimensional and the system [ A B ] to be minimal. C D

For each z ∈ X we look for the infimum of 
�−1 (‖yn‖2 +‖un‖2 ) over all input n=−∞ Y U 

sequences u in (1.2) with finite support for which the final state satisfies x0 = z. It  is  
possible to find unique �2-sequences u and y and a corresponding sequence x tending �−1 2to zero as n → −∞ satisfying the first line of (1.2) which minimizes n=−∞(‖yn‖Y + 
‖un‖2 ) within this class of solutions. The optimal cost of a given final state z ∈ XU 
can be written in the  form  〈P−1z, z〉X for some bounded nonnegative self-adjoint 
invertible operator P , and the operator H is given by H = −(APC∗ + BD∗)SP 

−1 , 
where SP = I + DD∗ + CPC∗ . The operator P is the minimal nonnegative self-
adjoint solution of the so-called filter Riccati equation: 

APA ∗ − P + BB ∗ − (APC ∗ + BD ∗ )(I + DD ∗ + CPC ∗ )−1(CPA ∗ + DB ∗ ) = 0. 

The output injection H that we get in this way is optimal even in a stronger sense: 
if we replace wn in (1.4) by Wwn for some bounded linear operator W : Y → W , 
then it is not only still true that the same output injection operator minimizes the �2 

operator norm from the pair [ u
y ] to  Ww  but also the �2 to �∞ operator norm from 

the pair [ u
y ] to  Ww  as well as the �2 to W norm of the operator from [ u

y ] to  Ww−1. 
The optimal norm of all these operators is equal to the norm of (WSpW

∗)1/2 . 
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Since the �2 operator norm is the same as the H∞ norm of the transfer function, 
the above is a (very special) H∞ problem. The [ u

d ] to  Ww−1 norm gives the �2 norm 
of the impulse response, which equals the H2 norm of the transfer function, so that 
we also solve a (very special) H2 problem. 

In stochastic control theory the system (1.4) with this particular choice of H is 
known as the  Kalman filter,  and  x0 in (1.4) is interpreted as the minimal variance 
estimate of the state at time zero based on past values of [ u

y ] of a stochastic version 
of (1.2). We refer the reader to Green and Limebeer [9, section 5.3], Kwakernaak and 
Sivan [14, Chapter 6], or Kailath [10, section 7.2] for a discussion of the stochastic 
interpretation of (1.4). The first two of these references also contain more informa­
tion about the importance of output injection in observer design and, consequently, 
its importance in dynamic stabilization by output feedback through the separation 
principle. 

The transfer function of the system (1.4) has an additional interesting property. 
Let us denote the different transfer functions u � � �→ y, y → w, and  u → w of the systems 
(1.2) and (1.4) by, respectively, 

−1−G ( ) =  zC(I zA) B D,+zu,y 

U

Gy,w(z) =  zC(I − z(A − HC))−1H − I,  

Gu,w(z) =  zC(I − z(A − HC))−1(B − HD) +  D. 

Y

Then all of these are defined in a neighborhood of the origin and satisfy Gu,y (z) =  
−Gy,w(z)

−1Gu,w(z) in this neighborhood. The input-output stability of (1.4) implies 
that both Gy,w and Gu,w are stable transfer functions. This connects the Kalman 
filtering problem to the factorization approach to systems theory: the transfer function 
of the optimal closed-loop system (1.4) gives a left factorization of the transfer function 
of the original system (1.2). 

In this article we will show that, even in the infinite-dimensional nonminimal case, 
once the necessary condition that the transfer function Gu,y has a left factorization 

X

over H∞ of the unit disc is satisfied, the procedure outlined above to obtain an optimal 
output injection operator can be slightly modified so that it always applies. However, 
the operator P and the output injection operator H need no longer be bounded, their 
domains need not be dense in the original state space, and the “natural” state space of 
the optimal closed-loop system need not coincide with the state space of the original 
system. In the infinite-dimensional case this may happen even in the case where the 
original system is minimal. The solution of the filter Riccati equation can be used to 
renorm the state space, and with this new state space the closed-loop system is not 
only input-output stable but also internally stable in an appropriate sense. 

We continue this introduction in section 1.2 with some finite-dimensional non-
minimal examples, and we return to the infinite-dimensional case in section 1.3. In 
particular, there we give some simple infinite-dimensional examples that indicate pos­
sible applications of the theory. We compare our results to the existing literature in 
section 1.4, and in section 1.5 we give a brief outline of the remainder of the article. 

1.2. Two finite-dimensional examples. Already in the finite-dimensional 
case the above solution is a bit too restrictive. Minimality of the system is not needed. 
Without any change in the argument it can be replaced by the following weaker state 
coercive past cost condition: There exists a finite constant M such that all solutions 
of (1.2) satisfy ‖z‖2 ≤ M2 �−1 (‖yn‖2 + ‖un‖2 ). However, even this weaker n=−∞
condition is unduly restrictive: it is possible to slightly modify the solution so that 
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no assumption whatsoever of this type is needed in the finite-dimensional case. This 
is due to the fact that the problem is essentially an input-output problem, and we 
may at the outset replace the original system by a minimal realization of the same 
transfer function. In light of the infinite-dimensional case it is, however, instructive 
not to do this but to stay with the original realization even when it does not satisfy 
the state coercive past cost condition. In this case the operator P and therefore the 
output injection operator H are only defined on a subspace of the state space. The 
state space of the closed-loop system equals this subspace of the state space of the 
original system. We illustrate this with two simple examples. 

We first return to the state coercive past cost condition mentioned earlier. A 
simple example where this condition is not satisfied is 

0 0  1 
A = , B  = , C  = 1, 0 , D  = 0. 

0 2  1 

This can be seen as follows. For any natural number n >  1, the input sequence 
n n{u }k∈Z− defined by u = 2k+1δ−n,k (delta is the Kronecker delta) reaches the state k k 

x0 = [  01 ]. Since the second component is unobservable, the infimum of the cost to 
reach [ 01 ] is clearly zero, but [ 01 ] � 0 so that the state coercive past cost condition = 
does not hold. We consider the filter Riccati equation 

APA ∗ − P + BB ∗ − (APC ∗ + BD ∗ )(I + DD ∗ + CPC ∗ )−1(CPA ∗ + DB ∗ ) = 0  

for this system. It is easily computed that the unique solution is the indefinite matrix 

1 3 3  
3 3 1  

so that the filter Riccati equation has no nonnegative self-adjoint everywhere defined 
solution. It does have a nonnegative definite self-adjoint solution defined on a proper 
subspace of the state space, namely, the identity on the subspace spanned by [ 10 ]. By 
a (possibly not everywhere defined) solution we mean a self-adjoint operator P with 
domain D(P ) such that 

〈 � APA ∗ − P + BB ∗ − (APC ∗ + BD ∗ )(I + DD ∗ + CPC ∗ )−1(CPA ∗ + DB ∗ ) 
� 
x, x〉 

is equal to zero for all x ∈ D(P ). For a finite-dimensional system, a nonnegative 
self-adjoint solution, with D(P ) equal to the orthogonal complement of the unob­
servable subspace, always exists. The corresponding output injection operator H is 
defined by the same formula as in the minimal case, followed by the orthogonal pro­
jection onto the range of P (the operator C∗ maps into the domain of P so that those 
equations are well-defined). 

The output injection corresponding to the indefinite solution of the filter Riccati 
equation is H = −01 (but this output feedback is not relevant for the problem 
at hand). The output injection operator derived from the (not everywhere defined) 
nonnegative self-adjoint solution of the filter Riccati equation is in this case the zero 
operator Y → R(P ), where R(P ) is the image of P which in the example is the 
subspace of the state space spanned by [ 10 ]. 

The optimal closed-loop system is only defined on the subspace R(P ). This is 
the system with A = 0,  B = [1, 0], C = 1,  and  D = [0, −1]. Note that this op­
timal closed-loop system is exponentially stable. In the finite-dimensional case this 
will always be true. In the infinite-dimensional case the optimal closed-loop system 
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will not necessarily be exponentially stable, but it will be stable in a weaker sense 
(Theorem 7.2). 

Later in this article we will consider the following output coercive past cost 
condition: There exists a finite constant M such that all solutions of (1.2) satisfy 
‖Cz‖2 �−1 ‖2 ‖2 

UYY ≤ M2 (‖yn +‖un ). This condition becomes a triviality for finite-n=−∞
dimensional systems: it is always satisfied. 

The main problem with the above example was that it was unobservable, which 
led to some final states having zero cost. It is also interesting to see what happens 
when we have an uncontrollable system, which can lead to some final states having 
infinite cost. A particular example is 

0 0  1 
A = , B  = , C  = 1, 1 , D  = 0. 

0 2  0 

For this system the subspace spanned by [ 01 ] is unreachable. The smallest nonnegative 
self-adjoint solution of the filter Riccati equation is P = [  1 0  ]. The optimal cost for 0 0  
reaching the state z is 〈P−1z, z〉, and this illustrates that the subspace spanned by [ 01 ] 
(the orthogonal complement of the reachable subspace) has infinite cost. In contrast 
to the unobservable case, we could now in principle use the same formulas as in the 
minimal case for the optimal closed-loop system, but the natural state space for the 
optimal closed-loop system is, as before, R(P ), which in this case is the subspace 
spanned by [ 10 ] (the reachable subspace). 

1.3. The infinite-dimensional case. We saw earlier that the transfer function 
of the optimal closed-loop system provides a left factorization of the transfer func­
tion of the original system. As we will show in this article, this carries over to the 
infinite-dimensional case. In the finite-dimensional case every transfer function has 
a left factorization, but this is not true in the infinite-dimensional case. The func­√ 
tion 1 + 2z is not meromorphic on the unit disc (it has an essential singularity in 
z = −1 ), and therefore, it does not have a left factorization over H∞ of the unit disc. 2 
From its Taylor series 

∞ � (−1)n(2n)! 
z n ,

(1 − 2n)(n!)22n 

−1�
2 2 2 2‖ ‖ ≤ ‖ ‖ ‖ ‖satisfy Cz M ( +y un n UYY

n=0 

we can, however, construct a realization on the state space �2(Z≥1) as  

(−1)n(2n)!
(Ax)n = 4xn+1, (Bu)n = u, Cx = 4x1, D  = 1. 

(1 − 2n)(n!)28n 

So this is an example of a transfer function that does not have a left factorization over 
H∞. No output injection operator that is stabilizing in any meaningful sense exists 
for such a transfer function. 

The “correct” state space assumption on the original system is the output coercive 
past cost condition: There exists a finite constant M such that all solutions of (1.2) 

). This condition is satisfied for any n=−∞
realization of a transfer function that has a left factorization over H∞ of the unit 
disc, and its being satisfied for some realization implies that the transfer function has 
such a left factorization (Theorem 6.10). 

When we replace the state space of the original system (which is assumed to 
satisfy the output coercive past cost condition) with the natural state space for its 
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optimal closed-loop system (which is the closure in an appropriate norm of the range 
of the operator P ), then the original system with this state space does satisfy the 
state coercive past cost condition (Theorem 3.11). Finding a state space on which 
the state coercive past cost condition is satisfied is therefore not a prerequisite for 
the solution of the optimal output injection problem, but it is a consequence of this 
solution. The optimal closed-loop system with this renormed state space is internally 
stable in a suitable sense (Theorem 7.2). 

We’ll next illustrate these facts by means of three infinite-dimensional examples, 
which due to space constraints are relatively simple. They are primarily intended to 
highlight some of the specific features of the theory and to point out some directions 
of where to look for possible applications, without any claim of completeness. 

Consider the following formal set of (identical) scalar difference equations indexed 
by k ∈ Z+: 

1k k k k k x + u , y  = x , n  ∈ Z+ .xn+1 = n n n n2 

We can write this as an abstract system, 

xn+1 = Axn + Bun, yn = Cxn, 

where 

1 
A = IX , B  = IL(U ,X ), C  = IL(X ,Y ),

2 

and IL(H ,K ) denotes the inclusion operator of H into K . Here  X , U , Y are Hilbert 
sequences spaces (e.g., weighted �2 spaces). For well posedness of this system (i.e., 
boundedness of the operators), it is obviously necessary and sufficient to choose U ⊂ 
X ⊂ Y with continuous inclusions. It is not difficult to see, given U and Y such that 
U ⊂ Y with continuous inclusion, that for any state space X wedged in between the 
input and output space, the state coercive past cost condition is satisfied. Note that 
when U is strictly contained in Y , then there are infinitely many such spaces. The 
state space with the strongest possible norm so that the system is well posed and the 
state coercive past cost condition is satisfied is of particular interest (in this case—of 
course, up to similarity—it equals U ). This will be studied in a more abstract setting 
at the end of section 3 (in terms of what is there called the completed Ip-compression). 

Next we treat two examples that are slightly outside the scope of this article since 
they also use some results that will only be presented in later articles in this series. 
However, they are important for the motivation of the present article, and the ideas 
(if maybe not all the details) are hopefully simple enough for the reader to follow. 

Let us consider the wave equation on the interval [0, 1] with some rather special 
boundary conditions as follows: 

wtt = wξξ , wt(t, 0) − wx(t, 0) = u(t), w(t, 1) = 0, y(t) =  wt(t, 0) + wx(t, 0). 

At this moment we will treat this as a formal equation, and we do not yet choose a state 
space. Using the D’Alembert solution, it can be easily calculated that y(t) =  u(t − 2) 
for t ≥ 2, and if we assume zero initial conditions, then y(t) =  0 for  t ∈ [0, 2]. 
So the output is just a delayed version of the input (due to the specific boundary 
conditions). It follows that the transfer function is e−2s. Since this transfer function 
is itself in H∞ of the right half-plane, it trivially has a left factorization over H∞ of 
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the right half-plane. Using, e.g., the Cayley transform between continuous time and 
discrete time (details will be given in [16]) and the results in this article, it follows that 
there exists a state space on which the state coercive past cost condition is satisfied. 
Not surprisingly, the finite energy space W 1,2(0, 1) × L2(0, 1) is such a state space. 
If we equip this space with the energy norm, then the optimal cost operator both 
for future time (treated in [17]) and for past time is the identity (in future time the 
optimal control is clearly zero, and the cost is simply equal to the energy of the initial 
condition; in past time the optimal input is chosen zero for t < −2, and on [−2, 0] it is 
chosen so as to reach the given final state; the required cost is the energy of this final 
state, the corresponding optimal output is equal to zero). It follows that the energy 
space is—up to similarity—the only state space on which both the state coercive past 
cost condition and the finite future cost condition hold. So from a control theory point 
of view, this is the only reasonable state space to consider the formal wave equation 
on to make it into a properly posed problem. 

Finally, we consider the heat equation on the interval [0, 1] with the Neumann 
boundary control at one end and the Dirichlet observation at the same end: 

wt = wξξ , wξ(t, 0) = u(t), w(t, 1) = 0, y(t) =  w(t, 0). 

The transfer function is easily seen to be in H∞ of the right half-plane so that it 
trivially has a left factorization over H∞. As above, it follows that there exists a state 
space on which the state coercive past cost condition is satisfied. Actually, there are 
many state spaces on which both the state coercive past cost condition and the finite 
future cost condition are satisfied. Any of the spaces W s,2(0, 1) with s ∈ (−2

1 , 12 ) will 
do (essentially because the system is well posed and exponentially stable on all of these 
spaces). So this heat equation example is very different in nature from the above wave 
equation example: now there are infinitely many nonisomorphic state spaces that are 
perfectly reasonable from a control theory perspective. 

1.4. The literature. The stabilization by output injection problem is of course 
classical since it appears naturally in observer and filter designs. The stochastic finite-
dimensional version goes back to Kalman [11] and Kalman and Bucy [12]. There are 
many deterministic estimation problems that also have the Kalman filter as their 
solution and therefore can be interpreted as deterministic versions of the Kalman 
filtering problem. The best known is probably the H2 output estimation problem 
(see, e.g., [7] for the finite-dimensional case). Another deterministic interpretation of 
the Kalman filter (which differs from our approach) is given in Willems [20], where 
also the history of this issue is further addressed. The problem that we study is, 
however, really a special H∞ problem instead of the H2 problem. Due to the special 
nature of this H∞ problem, it can be solved using the filter Riccati equation instead 
of the more complicated H∞ Riccati equation. In essence the special case of the H∞ 

problem treated here is the output estimation equivalent (and the problem studied in 
[17] was the full information equivalent) of the special output feedback H∞ problem 
from Glover and McFarlane [8]. Their solution was also based on the control and 
filter Riccati equation instead of the H∞ Riccati equations. Our approach is radically 
different from the one in [8] since our solution is based directly on the linear quadratic 
optimal control problem, whereas [8] is based on the solution of the Nehari problem. 

In the infinite-dimensional case the final state estimation problem was treated for 
continuous-time deterministic systems in Weiss and Rebarber [19]. This problem was 
solved there solely by duality; the optimal control problem on the negative time axis 
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that we consider here was not explicitly treated, and in particular, the coercive cost 
conditions were not identified. 

Unbounded solutions to Riccati equations seem to have first been systemati­
cally studied in Da Prato and Delfour [5, 6]. We also mention the work of Arov, 
Kaashoek, and Pik [1] and Arov and Staffans [2] on unbounded solutions of the 
Kalman–Yakubovich–Popov inequality in discrete and continuous time, respectively. 

1.5. Outline of the article. In section 2 we recall some basic definitions con­
cerning discrete time-invariant infinite-dimensional systems. The open-loop final state 
optimal control problem mentioned above is solved in section 3, and in section 4 the 
results on the initial state optimal control problem from [17] are reviewed. Duality is 
treated in section 5 and then applied to the optimal control problems in section 6. 
Finally, in section 7 the closed-loop final state optimal control problem is treated. 

2. Discrete-time systems. In this section we collect definitions and known 
results on discrete-time systems that are needed in this article. A collection of bounded 
operators A,B,C,D as before will be called a node and will often be denoted as [ A B ].C D

We first associate some operators on sequences spaces to the dynamical systems 
(1.1) and (1.2). In the following definition �pc(Z

−; H ) with  1  ≤ p ≤ ∞ is the subspace 
of �p(Z−; H ) consisting of sequences with compact support, and s(Z+; H ) is  the  
space of all sequences Z+ → H . 

Definition 2.1. 
• The input map B : �p(Z−; U ) → X is the map that sends { } to z:c un n∈Z− 

∞ 

Bu = AkBu−k−1. 
k=0 

• The output map C : X → s(Z+; Y ) is the map that sends z to {yn} ∈Z+ :n

(Cz)n = CAn z. 

• The future input-output map D : s(Z+; U ) → s(Z+; Y ) is the map that sends 
{un} ∈Z+ to {yn} ∈Z+ :n n

n−1 

(Du)n = CAkBuk + Dun. 
k=0 

• The past input-output map D− : �c
p(Z−; U ) → �c

p(Z−; Y ) is the map that 
sends {un} ∈Z− to {yn} ∈Z− :n n

n−1 

(D−u)n = CAn−1−kBuk + Dun. 
k=−∞ 

If we equip �pc(Z
−; U ) with its natural LF topology and s(Z+; H ) with its natural 

Fréchet topology, then the above maps are continuous. 
Definition 2.2. A state z is called finite-time reachable if there exist sequences 

u, x, y such that (1.2) holds. The set of finite-time reachable states is denoted by Ξ−. 
If the closure of Ξ− equals X , then the node [ A B ] is called controllable.C D

Note that Ξ− = R(B). 
Definition 2.3. A state z is called unobservable if for initial condition z and 

zero input u, the output y of the system (1.1) is zero. The set of unobservable states 
is denoted by N . The node [ A B ] is called observable if N = {0}.C D
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Note that N = N(C). 
Definition 2.4. The node [ A B ] is called C D

•	 exponentially stable if r(A) < 1 (spectral radius), 
•	 strongly stable if limk→∞ A

kz = 0  for all z ∈ X , 
•	 strongly ∗-stable if limk→∞ A

∗kz ∗ = 0  for all z ∗ ∈ X ′ , 
• input stable if B extends to a bounded operator �2(Z−; U ) → X ,

• output stable if C is a bounded operator X → �2(Z+; Y ),

•	 input-output stable if D restricts  to a  bounded operator  �2(Z+; U ) → 
�2(Z+; Y ), 

•	 strongly internally stable if it is strongly stable, input stable, output stable, 
and input-output stable, 

•	 strongly internally ∗-stable if it is strongly ∗-stable, input stable, output stable, 
and input-output stable, 

Exponential stability implies strong internal stability and strong internal ∗­
stability, but the converse is not true. As announced in the introduction, by changing 
the norm in the state space, we will be able to make the optimal closed-loop system 
strongly internally ∗-stable, but it will in general not be exponentially stable. 

3. The final state optimal control problem. In this section we investigate 
the open-loop final state optimal control problem introduced in the introduction. The 
synthesis of the optimal control as an output injection is considered in section 7. 

We first define some spaces and operators that allow us to rephrase the open-loop 
final state optimal control problem in a form appropriate for the application of a 
standard optimization technique (the orthogonal projection lemma). 

For a finite-time reachable state z define 

Wc(z) =  
y ∈ �2 

c(Z
−; Y × U ) :  ∃x such that (1.2) holds 

u 

the set of compactly supported input-output trajectories with z as final state. Further 
define 

Gc := 
y ∈ �2 

c(Z
−; Y × U ) :  ∃x, z such that (1.2) holds 

u 

the set of compactly supported input-output trajectories. Note that Gc is the inverse 
graph of the past input-output map. 

Define the operator 

Jc : Gc → X , Jc 
y 

= z, 
u 

where u, y, and  z are related by (1.2); i.e., Jc maps a compactly supported input-
output trajectory to the corresponding final state. 

Further define the operator 

Γp : Gc → s(Z+; Y ), Γp = CJc, 

that maps a compactly supported input-output trajectory on Z− to the corresponding 
output on Z+ when the input is chosen to be zero on Z+. Finally, define the set of 
stable past input-output trajectories G as the closure of Gc in �2(Z−; Y × U ). Note 
that G is the closure of the inverse graph of the past input-output map considered as 
an unbounded operator �2(Z−; U ) → �2(Z−; Y ). 
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To obtain a satisfactory theory for the final state optimal control problem men­
tioned in the introduction, it is crucial to extend Γp to G . For that we make the 
following assumption. 

Definition 3.1. A node satisfies the output coercive past cost condition if there 
exists an M > 0 such that for all z ∈ Ξ− and all [ u

y ] ∈ Wc(z) 

‖Cz‖Y ≤ M 
� y � 

. � u � 
�2(Z−;Y ×U ) 

A stronger condition (which ensures that Jc extends to G ) is the following. 
Definition 3.2. A node satisfies the state coercive past cost condition if there 

exists an M > 0 such that for all z ∈ Ξ− and all [ u
y ] ∈ Wc(z) 

‖z‖X ≤ M 
� y � 

. � u � 
�2(Z−;Y ×U ) 

Remark 3.3. The output coercive past cost condition is equivalent to CJc : Gc → 
Y extending to a bounded operator G → Y and is equivalent to Γp : Gc → s(Z+; Y ) 
extending to a bounded operator G → s(Z+; Y ), where this latter space is equipped 
with its natural Fréchet space topology. The state coercive past cost condition is 
equivalent to Jc : Gc → X extending to a bounded operator G → X . 

Not only Jc but also its closure will play an important role. This closure will allow 
us to interpret the notion of final state for some noncompactly supported input-output 
trajectories. In general, Jc need not be a closable operator. However, the closure of 
the graph of Jc always defines a closed linear relation (or multivalued operator) which 
we will denote by J . The development of a satisfactory theory does not hinge on J 
being single-valued. Multivaluedness of J relates to ill posedness of the dynamical 
system defined on Z− when the compact support assumption is not made. We recall 
some basic definitions regarding multivalued operators. 

Definition 3.4. A multivalued operator (or relation) T : H1 → H2 is a subspace 
VT of H1 × H2. The operator T is called closed when the subspace VT is closed. We 
have the following for the domain, kernel, range and multivalued part of T , respec­
tively: 

D(T ) =  {h1 ∈ H1 : ∃h2 such that (h1, h2) ∈ VT }, 
N(T ) =  {h1 ∈ H1 : (h1, 0) ∈ VT }, 
R(T ) =  {h2 ∈ H2 : ∃h1 such that (h1, h2) ∈ VT }, 
M(T ) =  {h2 ∈ H2 : (0, h2) ∈ VT }. 

Lemma 3.5. If the node [ A B ] satisfies the output coercive past cost condition, C D

then M(J ) =  N(C). 
Proof.  We denote the  closure  of  Γp by Γp. Since  Γp = CJ , we have  z ∈ M(J ) 

if and only if Cz ∈ M(Γp). Since under the output coercive past cost condition Γp is 
single-valued, M(Γp) =  {0}, and it follows that z ∈ M(J ) if and only if Cz = 0; i.e., 
M(J ) =  N(C). 

Lemma 3.6. If the node [ A B ] is observable and satisfies the output coercive past C D

cost condition, then Jc is a closable operator. 
Proof. From Lemma 3.5 and observability it follows that M(J ) =  {0} so that J 

is single-valued. Hence Jc has a closed extension that is a single-valued operator, so 
it is a closable operator. 
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We define Ξp := R(J ). This space has the interpretation of finite cost reachable 
elements in the state space X . For  z ∈ Ξp we define �� � � � � 

W (z) :=  
y ∈ D(J ) :  J 

y 
= z 

u u 

the set of stable input-output trajectories with z as final state. The final state optimal 
control problem consists of finding the element of minimal norm in W (z). To solve 
that problem we utilize the following well-known orthogonal projection lemma. 

Lemma 3.7. Let H be a Hilbert space and K be a nonempty closed subspace of 
H . Define, for h0 ∈ H , the affine set 

K (h0) :=  {h ∈ H : h = h0 + k for some k ∈ K }. 
Then there exists a unique hmin ∈ K (h0) such that 

‖hmin‖ = min  ‖h‖. 
h∈K (h0 ) 

The vector hmin is characterized by the fact that K (h0) ∩ (H � K ) =  {hmin}. 
Proof. A proof can be found in many books, e.g., [13, section 3.2]. 
Applying this orthogonal projection lemma to our problem gives the following. 
Lemma 3.8. For any z ∈ Ξp the space W (z) has a unique element of minimal 

norm which is characterized by the fact that it is in �2(Z−; Y × U ) � W (0). 
Proof. Apply the orthogonal projection lemma (Lemma 3.7) with H = 

�2(Z−; Y × U ) and  K = W (0). Then W (z) takes the role of K (h0). We have that 
W (0) = N (J ) is a closed subspace since J is closed and W (z) is nonempty since 
z ∈ Ξp. 

We define the set Gopt := D(J ) � W (0). This set has the interpretation of the set 
of all optimal input-output trajectories with a final state in X . We restrict J to this 
set to obtain the (possibly multivalued) operator 

Jr : Gopt → X . 

This operator is clearly closed, injective, and has range Ξp. We further define 

Ip : Ξp ⊂ X → Gopt, Ip = Jr 
−1 , 

the closed operator that maps a final state to the corresponding optimal input-output 
trajectory. We note that N(Ip) =  M(Jr) =  M(J ) so  that  Ip is not injective if 
J is multivalued (i.e., in that case two different final states have the same optimal 
input-output trajectories). Note that 

(3.1) IpJ = P�2 (Z−;Y ×U )	W (0)|D(J ), 

the orthogonal projection onto �2(Z−; Y × U ) � W (0), since both equal the map 
that sends an input-output trajectory to the optimal input-output trajectory with 
the same final state. 

For the final state optimal control problem only the subspace Ξp of finite cost final 
states is of importance; the rest of the state space should be ignored. The norm in the 
state space is also not relevant in the final state optimal control problem. There is a 
more natural seminorm on Ξp associated with the final state optimal control problem. 
On Ξp we define the seminorm 

‖z‖p := ‖Ipz‖�2(Z−;Y ×U ). 
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Note that since Ip is a closed operator, the associated nonnegative symmetric 
sesquilinear form 〈Ipz1, Ipz2〉�2(Z−;Y ×U ) in X is closed. 

The following lemma shows that the space Ξp and the seminorm on it interact 
well with the node [ A B ] if the output coercive past cost condition is satisfied. C D

Lemma 3.9. If the node [ A B ] satisfies the output coercive past cost condition, C D

then it maps Ξp×U into Ξp×Y , and its restriction to Ξp×U is bounded with respect 
to the seminorm ‖ · ‖p. 

Proof. The operator B obviously maps into Ξ−, the space of finite-time reachable 
states. Since Ξ− ⊂ Ξp, certainly B maps into Ξp. Since the input u defined by u−1 = v, 
uk = 0  for  k <  −1 reaches Bv, we  have  

‖Bv‖2 
p = ‖IpBv‖2 

�2(Z−;Y ×U ) ≤ ‖v‖2 
U + ‖Dv‖2 

Y . 

So B is bounded with respect to the seminorm ‖ · ‖p. Note that the output coercive 
past cost condition was not used for this. 

For z ∈ Ξp we have that for all [ y ] ∈ W (z)u� � �� � �


‖Cz‖Y = 
� 

Γp 
y � ≤ M 

� y � 
, � u � � u � 

0 Y �2(Z−;Y ×U ) 

where we have used that  Γp : G → s(Z+; Y ×U ) is a bounded operator. In particular, 
the above holds for the element of minimal norm in W (z): [ u

y ] =  Ipz. This shows that 
C is bounded with respect to the seminorm ‖ · ‖p. 

If z = J [ u
y ], then Az is the image under J of the trajectory obtained by shifting 

[ y ] one place to the left and adding [ Cz ] at the last position. It follows that Az ∈ Ξpu 0 
if z ∈ Ξp and that 

‖IpAz‖�2 
2(Z−;Y ×U ) ≤ ‖Ipz‖�2 

2(Z−;Y ×U ) + ‖Cz‖Y 
2 

or, equivalently, that 

‖Az‖2 
p ≤ ‖z‖2 

p + ‖Cz‖2 
Y . 

Using that C is bounded with respect to the seminorm ‖ · ‖p, it follows that A is 
bounded with respect to this seminorm. 

If Ip is injective, then ‖ · ‖p is a norm, and Lemma 3.9 shows that we can extend 
the restriction of the node to Ξp × U to a node whose state space is the comple­
tion of Ξp under the norm ‖ · ‖p. This resulting node will be called the completed 
Ip-compression of the node [ A B ]. Its significance will be clear from Theorems 3.11 C D

and 7.2 below. In general (when Ip is not necessarily injective), the situation is slightly 
more complicated but essentially the same. On the set PX 	N Ξp, the seminorm ‖ · ‖p 

is in fact a norm since N = N(Ip) by Lemma 3.5. Lemma 3.9 shows that, under the 
output coercive past cost condition, the conditions of [17, Theorem B.14] are satisfied 
so that the completed Ip-compression of the node [ A B ] exists. This has state space C D

Xp, the completion under the ‖ · ‖p norm of PX 	N Ξp. In  case  Ip is injective these 
two procedures obviously coincide. 

Note that Xp need not be contained in the state space X . 
The completed Ip-compression has Jc, J , and  Ip operators which we will denote 

by Jc 
Xp , J Xp , and  Ip 

Xp , respectively. 
Lemma 3.10. If the node [ A B ] satisfies the output coercive past cost condition, C D

then Jc = PX 	N JXp | .Gc 
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Proof. This follows directly from [17, Theorem B.16]. 
Theorem 3.11. The completed Ip-compression satisfies the state coercive past 

cost condition and is observable. The operator Ip 
Xp is a unitary map onto its range. 

The operator J Xp is a partial isometry with kernel W (0). 
Proof. Using (3.1) we have the following for [ u

y ] ∈ Gc: 

� y � � y � �J Xp � �IXp J Xp �= � c u � � p c u � 
p �2(Z−;Y ×U ) 

= �� 
P�2 (Z−;Y ×U )	N(J Xp ) u

y �� 

�2(Z−;Y ×U ) 

≤ 
� y � 

, � u � 
�2 (Z−;Y ×U ) 

which shows that Jc 
Xp : Gc → Xp is bounded. It follows that the state coercive past 

cost condition is satisfied. 
We just showed that Jc 

Xp has a single-valued bounded extension to G , and since 
the state coercive past cost condition is satisfied (which implies the output coercive 
past cost condition), it follows from Lemma 3.5 that N(CXp ) =  {0} so that the 
completed Ip-compression is indeed observable. 

By definition of norms, Ip 
Xp is an isometry, so it is a unitary map onto its range. 

By definition of the norm and (3.1), we have for g ∈ D(J Xp ) 

‖J Xp g‖p = ‖Ip 
Xp J Xp g‖�2(Z−;Y ×U ) = ‖P�2(Z−;Y ×U )	W (0)g‖�2(Z−;Y ×U ), 

which implies that J Xp is a partial isometry with kernel W (0). 
Remark 3.12. Define Ip,− := Ip|Ξ− . Similarly, as for the completed Ip ­

compression, it can be shown that the completed Ip,−-compression is well-defined. 
It  has as state  space  Xp,−, the completion of PX 	N Ξ− under the norm ‖ · ‖p, and  is  
controllable, observable, and satisfies the state coercive past cost condition. 

4. Recap of the initial state optimal control problem. In this section we 
review the relevant results from [17], which by the duality theory of the next two 
sections will lead to synthesis of the optimal output injection in section 7. 

The system under study in this section is the initial state problem (1.1) with the 
associated cost function 

�∞ 
n=0 ‖un‖2 + ‖yn‖2. For  z ∈ X , define 

V (z) :=  
u ∈ �2(Z+; U × Y ) :  ∃x such that (1.1) holds 
y 

the set of stable input-output trajectories with z as initial state. Further define Ξf 

as the subspace of X consisting of those z for which V (z) is nonempty. This is the 
subspace of finite future cost states (denoted by Ξ+ in [17]). 

The orthogonal projection lemma guarantees that, for z ∈ Ξf , V (z) has a unique 
element of minimal norm. This provides us with a closed operator If : Ξf ⊂ X → 
�2(Z+; U × Y ) � V (0), the future minimizing cost operator, which maps a finite cost 
initial state to the corresponding optimal input-output trajectory. 

Definition 4.1. The finite future incremental cost condition is the condition 
BU ⊂ Ξf (equivalently, Ξ− ⊂ Ξf ). The finite future cost condition is the condition 
Ξf = X . 
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If the finite future incremental cost condition holds, then the operator 

Γf := IfB : �2 
c(Z

−; U ) → �2(Z+; U × Y ) 

that maps a compactly supported past input to the corresponding optimal future 
input-output trajectory is well-defined and bounded. If the finite future cost condition 
holds, then If : X → �2(Z+; U × Y ) is bounded. 

On Ξf define the seminorm 

‖z‖f := ‖Ifz‖�2(Z+;U ×Y ). 

Lemma 4.2. If the node [ A B ] satisfies the finite future incremental cost condition, C D

then it maps Ξf ×U into Ξf×Y , and its restriction to Ξf×U is bounded with respect 
to the seminorm ‖ · ‖f . 

Proof. This follows from [17, Lemma 4.8] with q = qf . 
Similarly to Xp, the state space Xf is defined as the completion under the ‖ · ‖f 

norm of PX 	N Ξf . The restriction of the node mentioned in Lemma 4.2 extends 
continuously to a node with this state space. That node is called the completed 
If -compression (the completed qf -compression in [17]), and it satisfies the finite fu­
ture cost condition and is observable. Similarly, we can define If,− := If |Ξ− and 
the completed If,−-compression (the completed qf

−-compression in [17]) which has as 
state space Xf,−, the completion of PX 	N Ξ− under the norm ‖ · ‖f , satisfies the 
finite future cost condition and is both controllable and observable. 

Note that Xf and Xf,− need not be contained in the state space X . 

Remark 4.3. Denote the If operator of the completed If -compression by If 
Xf ; 

then If 
Xf is an isometry onto its range (which equals the closure of the range of the 

If operator of the original node that the completed If -compression was constructed 

from). The inverse of If 
Xf (defined on the range of If 

Xf ) is a unitary map that sends 
the optimal input-output trajectory to the initial state. 

The following is the standard control algebraic Riccati equation rewritten in a 
way (using sesquilinear forms) that easily allows for unbounded solutions. 

Definition 4.4. The triple (q, s,K) is called a (nonnegative) solution of the 
control Riccati equation of the node [ A B ] ifC D

1.	 q is a closed nonnegative symmetric sesquilinear form in X whose domain 
satisfies AD(q) ⊂ D(q), BU ⊂ D(q); 

2.	 s is a bounded nonnegative symmetric sesquilinear form on U ; 
3.	 K : D(q) → U is a linear operator; 
4.	 for all z ∈ D(q), u ∈ U we have 

Y +‖u‖2(4.1) q(Az+Bu,Az+Bu)+‖Cz+Du‖2 
U = q(z, z)+s(Kz−u,Kz−u). 

The solution is called classical when D(q) =  X . 
Remark 4.5. In part one [17] of our series we gave several equivalent formulations 

of the control Riccati equation. Among them is the following in terms of operators 
instead of sesquilinear forms. The triple (Q,S,K) is called a (nonnegative) solution 
of the operator control Riccati equation of the node [ A B ] if  C D

1.	 Q is a closed nonnegative self-adjoint operator in X whose domain satisfies 
AD(Q1/2) ⊂ D(Q1/2), BU ⊂ D(Q1/2); 

2.	 S is a bounded nonnegative self-adjoint operator on U ; 
3.	 K : D(Q1/2) → U is a linear operator; 
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4. for all z ∈ D(Q1/2), u ∈ U we have 

‖Q1/2(Az + Bu)‖X 
2 + ‖Cz + Du‖Y 

2 + ‖u‖U 
2 = ‖Q1/2 z‖X 

2 + ‖S(Kz  − u)‖U 
2 . 

The solution is called classical when D(Q) =  X . 
To discuss transfer functions, we use the following notation: H∞ denotes the 

Hardy space of uniformly bounded holomorphic functions, and D denotes the unit 
disc. The transfer function of the node [ A B ] is defined in a neighborhood of zero by C D

zC(I − zA)−1B + D. A node is called a realization of a holomorphic function defined 
in a neighborhood of zero if that function is the transfer function of the node. We note 
that any holomorphic function defined in a neighborhood of zero has a realization (in 
fact, it has infinitely many). 

Definition 4.6. Let G : D(G) ⊂ C → L(U , Y ) be holomorphic at the origin. 
MA function  N ∈ H∞(D, L(U , U × Y )) is called a right factorization of G if M(z) 

is invertible for all z in a neighborhood of the origin and G(z) =  N(z)M(z)−1 in a 
neighborhood of the origin. 

Theorem 4.7. Let G : D(G) ⊂ C → L(U , Y ) be holomorphic at the origin, and 
let [ A B ] be a realization of G. The following are equivalent conditions. C D

• [ A B ] satisfies the finite future incremental cost condition. C D

• The control Riccati equation of [ A B ] has a (nonnegative self-adjoint) solu-C D

tion. 
• G has a right factorization. 

Under these equivalent conditions, the triple (qf , sf ,Kf), defined by 

qf (z1, z2) :=  〈Ifz1, Ifz2〉�2(Z+;U ×Y ), 

sf (u, v) :=  〈u, v〉U + 〈Du,Dv〉Y + qf (Bu,Bv), 

Kfz = PU (Ifz)0, 
is the smallest nonnegative self-adjoint solution of the control Riccati equation. Here 
PU is the canonical projection U × Y → U . 

Proof. This follows from [17, Theorem 6.3] combined with [17, Theo­
rem 3.14]. 

We consider the closed-loop system 

xn+1 = (A + BK)xn + BEwn, n ∈ Z
+ , 

yn = (C + DK)xn + DEwn, n ∈ Z
+ , 

(4.2) 
un = Kxn + Ewn, n ∈ Z

+ , 

x0 = z, 

where E : W → U is a bounded linear operator and K : D(K) ⊂ X → U is a linear 
operator with a domain that is A-invariant and that contains the image of B. For  

nsuch a K, the  map from  {wn} ∈Z+ to {[ uy ]} ∈Z+ in (4.2) (with z = 0) is well-defined n n n

on the sequences with compact support. 
Theorem 4.8. Assume that the finite future incremental cost condition 

holds. Then Kf minimizes both the L(�1(Z+ , W ), �2(Z+ , U × Y )) and the 
nL(�2(Z+ , W ), �2(Z+ , U × Y )) norm of the map from {wn}n∈Z+ to {[ uy ]}n∈Z+ in n 

(4.2) (with z = 0), where K ranges over all linear maps D(K) ⊂ X → U with a 
domain that is A-invariant and that contains the image of B. The operator Kf also 
minimizes the L(W , �2(Z+ , U ×Y )) norm of the map w0 → [ uy ] over the same set of 
feedback operators. 
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These minimum norms all equal the square root of sup‖v‖=1 sf (Ev,Ev).

Proof. The statements on the L(�1(Z+ ,W ), �2(Z+ ,U × Y )) and L(�2(Z+ ,W ),


�2(Z+ ,U ×Y )) norms follow directly from [17, Theorem 5.1]. The statement about the 
L(W , �2(Z+ ,U × Y )) norm follows from slightly adapting the proof of [17, Theorem 
5.1] as follows: the lower bound proof remains unchanged, and in the upper bound 
proof v now has to be chosen as v0 = Ew0 and vk = 0  for  k >  0. 

Remark 4.9. The operator underlying the closed-loop system (4.2) is generally 
not a node with state space X (because K is generally not bounded on X ), but it 
does become a node with state space Xf once we replace [ A B ] with its completed C D

If -compression. This resulting closed-loop node equals what is called the completed 
qf -compression of the graph closed-loop node in [17, Theorem 5.3]. Hence, by that 
theorem, it is strongly internally stable. 

5. Duality of discrete-time systems. In this section we reconsider duality for 
discrete-time systems in order to investigate the duality between the initial state and 
final state optimal control problems in the next section. The duality that we consider 
is somewhat nonstandard (e.g., we identify �2(Z−) with �2(Z+) instead of with �2(Z−) 
itself). This is to make the duality between the initial state and final state optimal 
control problems work. See Remark 5.3 for a further elaboration on this issue. 

We consider the adjoint of the node [ A B ] as an operator from X ′ × Y ′ toC D

X ′ × U ′, where  H ′ denotes the dual space of the Hilbert space H . A dual space is 
not identified with the Hilbert space itself unless this is explicitly stated. We denote 
the duality product between H and its dual H ′ by 〈·, ·〉H ,H ′ and consider this to 
be linear in the H component and antilinear in the H ′ component. 

∗ 
The dynamical system that we associate to [ A B ] is the following initial state C D

problem: 

(5.1) xn
∗ 
+1 = A ∗ xn

∗ + C ∗ yn
∗ , un 

∗ = B ∗ xn
∗ + D ∗ yn

∗ , n ∈ Z+; x0 
∗ = z ∗ 

with state space X ′, input space Y ′, and output space U ′. Throughout we apply the 
theory from section 4 to this dual system. To indicate the distinction between spaces 
associated to the primal system and the dual system, we often use the subscript d, so,  
e.g., Vd(z ∗) is the space introduced in the beginning of section 4 consisting of stable 

∗input-output trajectories but now for the dual system with initial state z . 
We define the weighted �p spaces 

�p(Z−; U ) =  {u : Z− → U : (r −n un)n∈Z− ∈ �p(Z−; U )},r

�p(Z+; Y ) =  {y : Z+ → Y : (r −n yn)n∈Z+ ∈ �p(Z+; Y )}.r

Any continuous linear functional on �2 
r(Z

−; H ) is  of the  form  
∞ 

(5.2) 〈h− , h+ 
−n−1 n 〉H ,H ′ 

n=0 

for some h+ ∈ �r
2(Z+; H ′), and any such h+ through the expression (5.2) gives rise 

to a continuous linear functional on �2 
r(Z

−; H ). Similarly, any continuous antilinear 
functional on �2 

r(Z
+; H ′) is  of  the  form  (5.2)  for  some  h− ∈ �2 

r(Z
−; H ), and any such 

h− gives rise to a continuous antilinear functional. So we may treat �2 
r(Z

−; H ), and 
�2 
r(Z

+; H ′) as each other’s duals. With some abuse of notation, we denote the duality 
product by 

∞ 

(5.3) 〈h−, h+〉�2(H ) := 〈h− , h+〉H ,H ′ .−n−1 n

n=0 
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The dual of �1 
r(Z

+; H ) can similarly be identified with �∞ 
r (Z

−; H ′) through the 
expression (5.2). The dual of the subspace �∞ 

0(Z
−; H ) of  �∞(Z−; H ) consisting of r, r 

those sequences h such that limk→−∞ r
−khk = 0 can be identified with �1 

r(Z
+; H ′) 

through (5.2). 
If r > r(A), the spectral radius of A, then the input map extends to a bounded op­

erator �2 
r(Z

−; U ) → X , and the output map is a bounded operator X → �r
2(Z+; Y ). 

The input map B of the node [ A B ] is adjoint to the output map Cd of the dual node C D∗ 
[ A B ] in the sense that C D

〈Bu, z ∗ 〉X ,X ′ = 〈u, Cdz ∗ 〉�2(U ). 

[ A BThe past input-output map of the node C D ] extends to a bounded operator 
∗ 

�2(Z−; U ) → �2(Z−; Y ), and the future input-output map of the dual node [ A B ]r r C D

restricts to a bounded operator �r
2(Z+; Y ′) → �r

2(Z+; U ′). With the above identifi­
cation of dual spaces, these operators are adjoints. Similarly, the restriction of the 
future input-output map of the adjoint node to a bounded operator �1 

r(Z
+; Y ′) → 

�2 
r(Z

+; U ′) and the extension of the past input-output map to a bounded operator 
�2(Z−; U ) → �∞ 

0(Z
−; Y ) are adjoint operators with the above identification of dual r r,

spaces. 
The following lemma characterizes duality in terms of trajectories without explicit 

reference to the node. It can be derived from [3, Lemma 4.6], but for the reader’s 
convenience we include a direct proof. 

∗ 
Lemma 5.1. If [ u

y ] ∈ Gc, z = Jc [ u
y ], and  y 

∗ is a trajectory of (5.1) with initial 
u 

condition z ∗, then  � � � � �� ∗ 
(5.4) 〈z, z ∗ 〉X ,X ′ = R 

y
,

y 
,∗ u u 

�2(Y ×U ) 

where the operator R is defined by 

R : �2(Z−; Y × U ) → �2(Z−; Y × U ), R 
y 

= 
−y

, 
u u 

∗ 

and we have used the duality (5.3). Conversely, if [ y 
∗ ] ∈ s(Z+; Y ′ × U ′) and z ∗ ∈ X ′ 

u ∗ 

satisfy (5.4) for all [ u
y ] ∈ Gc with z = Jc [ u

y ], then  [ y 
∗ ] is a trajectory of (5.1) with 

u∗initial condition z . 
Proof. The first part of the lemma simply follows by substitution. The converse 

follows by iteratively applying the assumption as follows. Apply (5.4) with [ u
y ] the  

sequence that is zero everywhere except at position −1 where it equals [ Dv ] with v 
v ∈ U arbitrary. It follows that �� � � �� ∗ 

〈v, u ∗ 
0 − D ∗ y0 

∗ 〉U ,U ′ = 
−Dv 

, 
y0 = 〈Bv, z ∗ 〉 = 〈v,B ∗ z ∗ 〉,∗ v u0 

which, since v was arbitrary, implies u ∗ 
0 = B∗ z ∗ + D∗ y0 

∗ . Taking the element of Gc 

whose second component is zero everywhere except at position −2 where it equals v 
and whose first component is the corresponding output (i.e., Dv at position −2, CBv 

∗ ∗ ∗ ∗at position −1, and zero elsewhere) gives u1 = B∗A∗ z + D∗ y1 + B∗C∗ y0 . Continuing 
∗ ∗ 

in this fashion shows that [ y 
∗ ] is an input-output trajectory of the node [ A B ] withC Du∗initial condition z as desired. 
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We will also use the following adjoint of R: 

∗ ∗ 
R ∗ : �2(Z+; Y ′ × U ′) → �2(Z+; Y ′ × U ′), R ∗ y −y

= .∗ ∗ u u 

Since we do not identify the dual of a Hilbert space with itself, a subspace V of a 
Hilbert space H has two orthogonal subspaces: the subspace V ⊥ ⊂ H ′ of continuous 
linear functionals on H that are zero on the subspace V and the subspace H � V 
that is the orthogonal complement of V in the sense that V ⊕ (H � V ) =  H . In this  
article we use both of these notions of orthogonal subspace and use the notations ⊥ 
and � as above to distinguish these two notions. 

Remark 5.2. We identify the dual G′ of a closed subspace G of H by the corre­
sponding subspace of H ′ so that 〈g, g′〉G,G′ = 〈g, g′〉H,H′ for all g ∈ G and g′ ∈ G′ . 
Under this identification G′ = H ′ � G⊥ and G⊥ = (H � G)′. In particular,  we  have  
G ′ = �2(Z+; Y ′ × U ′) � G ⊥ . 

Remark 5.3. The above duality setup is somewhat nonstandard. We would, in 
principle, lose nothing by using the standard duality setup (i.e., identifying the dual 
of a Hilbert space with the Hilbert space itself and sequences spaces on Z+ with 
sequence spaces on Z+) which has dual systems running backward in time. However, 
in [16] we will consider an optimal control problem on Z where the  state has  to  pass  
through a target state x0 at n = 0, and this problem naturally breaks down into a final 
state problem on Z− and an initial state problem on Z+. This is our  main  reason  for  
wanting to study final state systems defined on Z− and therefore to identify the dual 
of an initial state system defined on Z+ to be a final state system defined on Z−. The  
Kalman filter is also most naturally posed on Z−, which is another reason for treating 
the equivalent optimal output injection problem on Z− as well. Not identifying the 
state space X with its dual is appropriate since we want to identify the “natural state 
space” Xp on which to consider the final state problem as the dual of the “natural 
state space” Xf,d on which to consider the initial state problem for the dual system 
(Lemma 6.6). The only reason for not identifying U and Y with their respective duals 
is consistency. 

6. Duality between the optimal control problems. The next lemma relates 
the spaces G and Vd(0) of stable past and future input-output trajectories. 

Lemma 6.1. We have RG = Vd(0)
⊥ . 

∗Proof. It immediately follows from (5.4) with z = 0  that  RGc ⊥ Vd(0). By 
continuity of R, we conclude that RG ⊥ Vd(0) so that RG ⊂ Vd(0)

⊥ . 
We now prove that (RGc)

⊥ ⊂ Vd(0), which through Vd(0)
⊥ ⊂ (RGc)

⊥⊥ = RGc = 
∗ RGc = RG gives the desired other inclusion. So assume that [ y 
∗ ] is orthogonal to 

u ∗ RGc. Then [  y 
∗ ] satisfies (5.4) for all [ u

y ] ∈ Gc with z ∗ = 0, and it follows from Lemma 
u ∗ 

5.1 that [ y 
∗ ] is a trajectory of the dual system with initial condition zero. Since 

u ∗ 

by assumption [ y 
∗ ] ∈ �2(Z+; Y ′ × U ′), we have that it is an element of Vd(0) as u 

desired. 
Lemma 6.2. We have R∗(�2(Z+; Y ′ × U ′) � Vd(0)) = G ′ . 
Proof. Denote the identification map implicit in (5.3) by I : �2(Z−; Y × U ) → 

�2(Z+; Y ′ × U ′) (i.e., if we would identify Y and U with their respective duals, then 
it is simply the reflection). Then it is easily seen that I∗R∗IR = I. From Lemma 6.1 
it follows that RG = Vd(0)

⊥ so that IRG = �2(Z+; Y ′ × U ′) � Vd(0). We conclude 
that I∗R∗(�2(Z+; Y ′ × U ′) � Vd(0)) = G from which the result follows using that I∗ 

is an isomorphism from G ′ onto G . 
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Lemma 6.3. The input-output trajectory to final state map Jc for the node [ A B  ]C D∗ 
and the future minimizing operator If,d of its dual node [ A B  ] are related by C D  

(6.1) Jc 
∗ = R ∗ If,d 

as unbounded operators X ′ → G ′ . 
∗ 

Proof. The basic duality relationship (5.4) with z ∗ ∈ Ξf,d and [ y 
∗ ] =  If,dz ∗ gives 

u 
for [ u

y ] ∈ Gc as follows: � � � � � � � � 
∗ ∗ Jc 

y 
, z  = R 

y
, If,dz . 

u u 
X ,X ′ �2(Y ×U ) 

By Lemma 6.2 we have R∗If,dz ∗ ∈ G ′, so the above can be rewritten as � � � � �� � � 
∗ ∗ Jc 

y 
, z  = 

y
,R ∗ If,dz , 

u u 
X ,X ′ G ,G ′ 

which shows that Jc and R∗If,d are adjoint to each other. So we still need only to 
show D(If,d) ⊃ D(Jc 

∗). By definition � � � � � 
$ 

D(Jc 
∗ ) =  z ∗ ∈ X ′ : ∃ 

y
$ ∈ G ′ such that ∀ 

y ∈ Gc u u � � � � �� � � �� 
$ ∗ Jc 

y 
, z  = 

y
,

y
$ . 

u u u
X ,X ′ G ,G ′ 

Using Lemma 6.2 it follows that � � � � � 
# 

D(Jc 
∗ ) =  z ∗ ∈ X ′ : ∃ 

y
# ∈ �2(Z+; Y ′ × U ′) � Vd(0) such that ∀ 

y ∈ Gc u u � � � � � � � � �� 
# ∗ Jc 

y 
, z  = R 

y
,

y
# . 

u u u
X ,X ′ �2 (Y ×U ) 

# 
Using Lemma 5.1 it follows from the equality in the domain definition that [ y 

# ] is  
u 

a trajectory of the dual node for initial condition z ∗. So  z ∗ ∈ D(Jc 
∗) has finite cost, 

and so z ∗ ∈ D(If,d). Hence Jc 
∗ = R∗If,d. 

Theorem 6.4. The node [ A B  ] satisfies the output coercive past cost condition if C D∗ 
and only if its dual node [ A B  ] satisfies the finite future incremental cost condition. C D  

Proof. The output coercive past cost condition implies that CJc : Gc → Y extends 
to a bounded operator G → Y . By [18, Theorem 13.2], its adjoint equals Jc 

∗C∗. It  
follows that Jc 

∗C∗ is a bounded operator Y ′ → G ′. In particular, the range of C∗ is 
contained in the domain of Jc 

∗, which by Lemma 6.3 equals Ξf,d. This is exactly the 
finite future incremental cost condition for the dual node. 

Conversely, assume that the range of C∗ is contained in Ξf,d. The operator Jc 
∗C∗ 

is closed as it is the adjoint of the densely defined operator CJc (we again use that 
(CJc)

∗ = Jc 
∗C∗ by [18, Theorem 13.2]). By the range assumption, Jc 

∗C∗ is defined 
on all of Y ′ so that by the closed graph theorem it is a bounded operator Y ′ → G ′ . 
Since (CJc)

∗ is a bounded (and everywhere defined) operator, the operator CJc is 
closable, and its closure is the bounded operator ((CJc)

∗)∗. Thus,  CJc extends to a 
bounded operator G → Y . So the output coercive past cost condition holds. 

In the next proposition, we again use the weighted �2 space duality from (5.2). 
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Lemma 6.5. The map Γp : Gc → s(Z+; Y ) for the node [ A B  ] and the map C D∗ 
(Z−; Y ′) → Vd(0) for the dual node [ A B  ] are related by Γf,d : �2 

c	 C D  

Γ ∗ 
p = R ∗ Γf,d. 

Proof. Using Lemma 6.3 we have 

Γ ∗ 
p = (CJc) ∗ = Jc 

∗ C ∗ = R ∗ If,dBd = R ∗ Γf,d. 

As the next lemma shows, the dual space of the state space of the completed 
Ip-compression can be identified with the state space of the completed If -compression 
of the dual node of the completed Ip-compression. 

Lemma 6.6. Any bounded linear functional on Xp can be identified with an ele­
∗ ment z of (Xp)f,d through 

(6.2) 〈z, z ∗ 〉Xp,X ′ = IXp z, R ∗ I(Xp)f,d z ∗ . 
p p f,d 

�2(Y ×U ) 

This duality is with respect to the pivot space X in the sense that 

〈z, z ∗ 〉Xp,X ′ = 〈z, z ∗ 〉X ,X ′ 
p 

if z ∈ Xp ∩ X and z ∗ ∈ (Xp)f,d ∩ X ′. Moreover, this duality is norm-preserving in 
the sense that ‖z ∗‖(Xp)f,d 

equals the Xp 
′ norm of the corresponding functional. 

∗Proof. It is easily seen that for a given z ∈ (Xp)f,d, the expression (6.2) defines a 
bounded linear functional on Xp, so it remains to prove the converse. By the duality 

between �2(Z−; Y ×U ) and  �2(Z+; Y ′ ×U ′) and the identification of Xp with R(Ip 
Xp ), 

it follows that any linear functional on Xp must be of the form 

Ip 
Xp z, v 

�2 (Y ×U ) 

for some v ∈ �2(Z+; Y ′ ×U ′). We have R(Ip 
Xp ) =  D(Jr 

Xp ) =  D(J Xp ) �N(J Xp ), so 
we may assume that v ∈ N(J Xp )⊥. So  v ∈ R(J Xp ∗) since  J Xp as a partial isometry 
has closed range. Applying Lemma 6.3 to the completed Ip-compression (and using 
that Jc 

∗ = J ∗) then gives the result. 

That the duality is with respect to X follows from (5.4) with [ y ] =  Ip 
Xp z and u 

∗ (Xp)	 (Xp)
[ y 

∗ ] =  If,d 
f,d z ∗. The norm preservation follows from the fact that If,d 

f,d , R, and  
u 

Ip 
Xp are isometries. 

Lemma 6.7. The operator J Xp is a coisometry. 
Proof. According to Lemma 6.3, this is equivalent to showing that If,d : Xp 

′ → 
�2(Z+; Y ′ ×U ′) is an isometry. By the identification of the dual space in Lemma 6.6, 
this, in turn, is equivalent to If,d : (Xp)f,d → �2(Z+; Y ′ × U ′) being an isometry, 
which is true by definition of the norm in (Xp)f,d. 

The filter Riccati equation of the node [ A B  ] is simply the control Riccati equation C D∗ 
of the dual node [ A B  ] .C D  

Definition 6.8. The triple (p, r, T ) is called a (nonnegative) solution of the filter 
Riccati equation of the node [ A B  ] ifC D  

1.	 p is a closed nonnegative symmetric sesquilinear form in X whose domain 
satisfies A∗D(p) ⊂ D(p), C∗Y ⊂ D(p); 

2.	 r is a bounded nonnegative symmetric sesquilinear form on Y ; 
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3. T : D(p) → Y is a linear operator; 
4. for all z ∈ D(p), y ∈ Y we have 

(6.3)

p(A ∗ z+C ∗ y,A ∗ z+C ∗ y)+‖B ∗ z+D ∗ y‖U 

2 +‖y‖Y 
2 =p(z, z)+r(Tz−y, T z−y).


The solution is called classical when D(p) =  X . 
Remark 4.5 can be applied to the filter Riccati equation to obtain an operator 

version instead of a sesquilinear form version of the filter Riccati equation. Similarly, 
[17, Appendix A] can be applied to obtain other equivalent forms. 

Definition 6.9. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic at the origin. 
A function  [M̃, Ñ] ∈ H∞(D,L(Y × U ,Y )) is called a left factorization of G if M̃(z) 
is invertible for all z in a neighborhood of the origin and G(z) =  M̃(z)−1Ñ(z) in a 
neighborhood of the origin. 

Theorem 6.10. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic at the origin, and 
let [ A B ] be a realization of G. The following are equivalent conditions. C D

• [ A B ] satisfies the output coercive past cost condition. C D

• The filter Riccati equation of [ A B ] has a (nonnegative self-adjoint) solution. C D

• G has a left factorization. 
Under these equivalent conditions, the filter Riccati equation of [ A B ] has the smallest C D

(nonnegative self-adjoint) solution (pp, Tp, rp) with domain Ξf,d. 
Proof. According to Theorem 6.4, the output coercive past cost condition implies 

that the dual node [ A B ] satisfies the finite future incremental cost condition. Theorem C D

4.7 then shows that the dual node has a solution to its control Riccati equation. This 
implies that the original node has a solution to its filter Riccati equation. 

If the node has a solution to its filter Riccati equation, then the dual node has a 
solution to its control Riccati equation. It follows from Theorem 4.7 that the transfer 
function of the dual node has a right factorization: Gd(z) =  N(z)M(z)−1 . Realizing 
that the transfer function of the original node G and that of the dual node Gd are 
related by Gd(z) =  G(z̄)∗, we obtain  G(z) =  M̃(z)−1Ñ(z) with M̃(z) :=  M(z̄)∗ and 
Ñ(z) :=  N(z̄)∗. So the transfer function of the original node has a left factorization. 

Assuming that the transfer function of the original node has a left factorization, 
it is easily seen, as above, that the transfer function of the dual node has a right 
factorization. It follows from Theorem 4.7 that the dual node satisfies the finite future 
incremental cost condition. Theorem 6.4 then shows that the original node satisfies 
the output coercive past cost condition. 

Existence of the smallest solution follows from the existence of the smallest solu­
tion (qf ,Kf , sf ) of the control Riccati equation of the dual node. 

Remark 6.11. As mentioned in the introduction, the transfer function of the 
closed-loop system (1.4) provides the left factorization of the transfer function of the 
open-loop system. This factorization is, in fact, weakly coprime (see Mikkola [15]), 
but it may not always be strongly coprime (i.e., the Bézout coprime). This question 
is treated in detail in the forthcoming (part three of this series of articles) [16]. 

7. The optimal output injection problem. We consider the closed-loop sys­
tem 

xn+1 = (A −HC)xn + (B −HD)un + Hyn, n ∈ Z
− , 

wn = WCxn + WDun −Wyn, n ∈ Z
− , 

(7.1) 
x0 = z,


∃N ∈ Z
− : xn = 0 =  un ∀n ≤ −N,




5105 OPTIMAL INPUT-OUTPUT STABILIZATION 

where W : Y → W is a given bounded linear operator and H : Y → Xe is a bounded 
linear operator. Here W is a Hilbert space, and Xe is a Hilbert space that contains 
PX 	N Ξp as a dense subspace and is such that the restriction of the node [ A B ] to  C D

PX 	N Ξp × U extends continuously to a bounded linear operator from Xe × U to 
Xe × Y . 

Theorem 7.1. Assume that [ A B ] satisfies the output coercive past cost condition. C D

Define Hp : Y → Xp by 

(7.2) Hpy = J Xp PG g, 

where g−1 = [  y 
0 ] and gn = 0  for n <  −1 and PG is the orthogonal projection 

�2(Z−; Y × U ) → G . 
Then Hp minimizes both the L(�2(Z− ,Y ×U ), �∞(Z− ,W )) and the L(�2(Z− ,Y × 

nU ), �2(Z− ,W )) norm of the map from {[ uyn ]}n∈Z− to {wn}n∈Z− in (7.1), where  H 
ranges over all linear maps Y → Xe with Xe a Hilbert space that contains PX 	N Ξp 

as a dense subspace and is such that the restriction of the node [ A B ] to PX 	N Ξp×UC D

extends continuously to a node with Xe as state space. The operator Hp also minimizes 
nthe L(�2(Z− ,Y × U ),W ) norm of the map {[ y ]} →� w−1.un n∈Z− 

Denote the smallest nonnegative self-adjoint solution of the filter Riccati equation 
of [ A B ] by (pp, Tp, rp). Then the minimum norms mentioned above all equal the C D

square root of sup‖h‖=1 rp(W
∗h,W ∗h). 

Proof. The assumption that PX 	N Ξp ⊂ Xe implies that PX 	N Ξ− ⊂ Xe and so 
ensures that the extended node has the same transfer function as the original node. 
In particular, it too satisfies the output coercive past cost condition (this follows from 
Theorem 6.10). So the dual of the extended node satisfies the finite future incremental 
cost condition by Theorem 6.4. 

We have that K := −H∗ is a bounded operator from Xe 
′ to Y ′ and that E := W ∗ 

is a bounded operator from W ′ to Y ′. Obviously, the domain of K (which equals the 
whole state space Xe

′) is  A∗-invariant and contains the range of C∗. The adjoint of 
the closed-loop system (7.1) considered as a dynamical system on Z+ then is 

x dn+1 = (A ∗ + C ∗ K)x dn + C ∗ Ewn
∗ , n ∈ Z

+ , 

u ∗ 
n = (B ∗ + D ∗ K)x dn + D ∗ Ewn

∗ , n ∈ Z
+ , 

(7.3) −yn 
∗ = Kxd

n + Ewn
∗ , n ∈ Z

+ , 
d ∗ x0 = z ; 

i.e., it is the closed-loop system (4.2) of the adjoint node of the extended node with 
an additional minus sign in the third equation. 

From the above it follows that the search over H in the optimal output injection 
problem translates to the search over K in the optimal feedback problem. 

By the discussion in section 5, the input-output maps of (7.1) and (7.3) are 
adjoints when both are considered �2 → �2 and also when considered �1 → �2 and 

∗ 
n�2 → �∞, respectively. Also the maps {[ uyn ]} ∈Z− → w−1 and w ∗ � y 
∗ ]} ∈Z+ are� → {[

n n 0 u n
n 

adjoints. 
From the fact that the operator norm of an operator equals that of its adjoint 

and Theorem 4.8, it follows that the square root of sup‖h‖=1 rp(W
∗h,W ∗h) is a lower 

bound for all three operator norms considered and that this lower bound is reached for 
H = −K∗ . The formula for Hp follows once we show that Hp = −K∗ as operators f,d f,d

Y → Xp, which we now obtain. 
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We have, for y ∈ Y and z ∗ ∈ (Xp)f,d = Xp 
′ (this equality of spaces follows from 

Lemma 6.6), 

〈Hpy, z ∗ 〉Xp,X ′ = 〈J Xp PG g, z ∗ 〉Xp,X ′ , 
p	 p 

which by Lemma 6.6 equals 

IXp J Xp PG g, R ∗ I(Xp)f,d z ∗ .p f,d 
�2(Y ×U ) 

By (3.1) the above equals 

PG g, R ∗ I(Xp)f,d z ∗ .P�2 (Z−;Y ×U )	N(J Xp ) f,d 
�2(Y ×U ) 

By Lemma 6.3 we can omit the projection onto the orthogonal complement of the 

kernel in this last formula. By Lemma 6.2 and Remark 5.2 we have R∗I(Xp)f,d z ∗ ∈f,d 

�2(Z+; Y ′ × U ′) � G ⊥ so that the projection onto G may also be omitted. Hence 

〈Hpy, z ∗ 〉Xp,X ′ = 〈Rg, I(Xp)f,d z ∗ 〉�2 (Y ×U ) = −〈y,Kf,dz ∗ 〉Y ,Y ′ , 
p f,d 

where the last equality holds by definition of Kf,d and R. This proves that Hp given 
by (7.2) is indeed the optimal output injection. 

The formula (7.2) shows that the optimal output injection Hpy for the node 
[ A B  ] is the final state of the dynamical system associated to that node for some C D  
input defined on Z− in terms of y. 

Theorem 7.2. Assume that [ A B  ] satisfies the output coercive past cost condition. C D  
Then the closed-loop system of the completed Ip-compression with the optimal output 
injection is strongly internally ∗-stable. 

Proof. The proof of Theorem 7.1 shows that the dual of the closed-loop system 
of the completed Ip-compression with the optimal output injection is the closed-
loop system of a completed If -compression with the optimal state feedback. From 
Remark 4.9 it follows that this latter system is strongly internally stable. The result 
immediately follows. 

Remark 7.3. Many of the operators defined here are closely related to analogous 
operators introduced in [4]. More precisely, the completed Ip-compression is a pas­
sive observable and backward conservative input/state/output system if we equip its 
output space Y with the (equivalent) inner product induced by the quadratic form r 
in Definition 6.8 and use U × Y as the input space. With regard to this system, the 
coisometry J Xp coincides with the input map BΣi/s/o in [4, section 10], the isome­
try If,d is the output map of the adjoint system, and the two Hankel operators Γp 

and Γf,d can be interpreted as compressions of the past/future map ΓΣ in [4] and its 
adjoint. 
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