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Bacterial pathogens either hide  from, or modulate, the immune response to 1 

ensure their survival. Photorhabdus are potent insect pathogenic bacteria vectored by 2 

entomopathogenic nematodes which form a useful tool for probing the molecular basis 3 

of immunity. During the course of infection, Photorhabdus multiplies rapidly within the 4 

insect, producing a range of toxins that inhibit phagocytosis of the invading bacteria 5 

and eventually kill the insect host. We have recently established Photorhabdus bacteria 6 

as a tool to investigate immune recognition and defense mechanisms in model hosts such 7 

as Manduca and Drosophila. Such studies set the scene for examining gene-for-gene 8 

interactions between pathogen virulence factors and host immune genes and ultimately 9 

for understanding how some Photorhabdus species have made the leap to becoming 10 

human pathogens.  11 

 12 

The insect pathogen Photorhabdus 13 

Photorhabdus is a genus of entompathogenic bacteria within the family Enterobacteriaceae. 14 

In addition to being a highly virulent pathogen of insects, Photorhabdus also maintains a 15 

mutualistic relationship with nematodes from the family Heterorhabditidiae [1]. Phylogenetic 16 

analyses have defined three species of Photorhabdus, P. luminescens, P. temperata and P. 17 

asymbiotica whilst more than 12 species of nematodes have been described [2,3]. The 18 

relationship between the bacteria and the nematode is highly specific and nematodes will 19 

only maintain mutualistic associations with their cognate bacteria or very closely related 20 

strains. The genome sequences of two species of Photorhabdus, P. luminescens TT01 and P. 21 

asymbiotica ATCC43949 have recently been published facilitating a molecular insight into 22 

the complex nature of the Photorhabdus lifestyle [4,5]. In addition a program to produce a 23 

high quality draft sequence of the genome of the nematode partner of P. luminescens TT01, 24 

H. bacteriophora, is currently underway and this will enable a more complete understanding 25 
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of the molecular contributions of the nematode to this mutualistic association [6]. Here we 1 

review recent advances in our understanding of how an insect pathogen overcomes the insect 2 

immune system. We also examine the hypothesis that insect pathogens hone their skills on 3 

invertebrate hosts before attempting the transition to the infection of vertebrates.  4 

 5 

Life cycle of Photorhabdus 6 

Photorhabdus is found in the gut of a specialized stage of the Heterorhabditis nematode 7 

called the infective juvenile (IJ), a non-feeding stage that is morphologically and functionally 8 

analogous to the dauer juvenile of the free-living model nematode Caenorhabditis elegans 9 

[6,7]. In C. elegans the dauer juvenile is an alternative, developmentally arrested diapause 10 

stage that forms as a response to adverse environmental conditions [8]. However, the 11 

Heterorhabditis IJ is an obligate part of the nematode life cycle that is required for infection 12 

of insect larval hosts living in the soil (Figure 1). As well as acting as a vehicle for insect 13 

infection the IJ is also thought to act as a vector in the environment allowing dormant bacteria 14 

to persist in the IJ gut away from their insect hosts. Susceptible insect larvae are generally 15 

soft cuticled, soil dwelling larvae from the orders Coleoptera (beetles), Lepidoptera (moth 16 

and butterflies) and Diptera (flies). The IJ actively seeks out and infects the insect through 17 

natural openings (e.g. mouth, anus, and spiracles) or directly through the soft cuticle of the 18 

insect larvae using a buccal tooth-like appendage. Once inside the insect, the IJ responds to 19 

an unidentified signal and regurgitates Photorhabdus into the hemolymph where the bacteria 20 

begin to divide and rapidly proliferate [9]. After 2-3 days of bacterial growth, the insects 21 

succumb to septicemia with the concomitant conversion of the internal organs and tissues of 22 

the insect into bacterial biomass. This bioconversion is facilitated by the production of a wide 23 

range of bacterial toxins and hydrolytic enzymes [7,10]. At the same time that the bacteria are 24 

replicating in the insect, the IJ exits diapause and develops into an adult hermaphrodite 25 
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nematode in a process called IJ recovery. The nematode feeds on the bacterial biomass and 1 

nematode growth and development has an obligate requirement for the presence of a high 2 

density of Photorhabdus bacteria. The adult hermaphrodite lays eggs that hatch and develop 3 

through 4 juvenile stages into adult nematodes. Nematode reproduction continues for 2-3 4 

generations until conditions within the insect cadaver deteriorate to such an extent (due to an 5 

increasing nematode population and the decreased availability of bacteria as food) that the 6 

developing generation of juvenile nematodes are stimulated to enter diapause and form IJs 7 

that eventually emerge from the insect cadaver into the soil in search of new hosts. 8 

Remarkably a single IJ entering an insect larvae will result in the production of >100,000 IJs 9 

over a time scale of 2-3 weeks. This extremely efficient symbiosis not only provides a 10 

fascinating model system for studying bacteria-host interactions (Box 1), but also has 11 

previously led to the development of the Photorhabdus-Heterorhabditis complex as a 12 

commercial biopesticide (e.g. [11]).  13 

 14 

Transmission of Photorhabdus  15 

The gut of each IJ is initially colonized by 1-2 bacterial cells that replicate to produce a 16 

mature bacterial population of approximately 100 cfu (colony forming units) per IJ [12]. 17 

Colonization (or transmission) is a complex process and it was originally assumed that the IJs 18 

would be colonized horizontally by bacteria coming directly from the insect cadaver. 19 

However it now appears that transmission to the IJ is dependent on the bacteria first infecting 20 

the adult hermaphrodite [12]. Whilst the nematodes are feeding on Photorhabdus, some 21 

bacteria escape crushing by the pharynx (this is suggested to be an adaptation by 22 

Heterorhabditis to the symbiosis) and these bacteria enter the gut of the hermaphrodite where 23 

they invade specific cells called rectal gland cells (Figure 2). The bacteria replicate in these 24 

cells before colonizing the IJ nematode that also develops within the adult hermaphrodite, in 25 
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a process called endotokia matricida [12]. Recent genetic data has identified several bacterial 1 

genes that are involved in the transmission process [13,14]. Many of these genes are 2 

predicted to be involved in lipopolysaccharide (LPS) biogenesis (e.g. galE and galU) 3 

implicating an important role for the bacterial surface in colonization of the IJ. Interestingly, 4 

mutations in these genes also affect virulence against insect larvae suggesting a significant 5 

genetic overlap in the requirements for colonization of the nematode (i.e. transmission) and 6 

colonization of the insect (i.e. virulence) [13,14]. 7 

 8 

Insect immune responses to bacterial pathogens 9 

Insects have a multilayered immune system consisting of several defensive mechanisms that 10 

parallel many aspects of the vertebrate innate immune system [15]. The first line of defense 11 

involves the barrier epithelial response, which can fight against invading microorganisms by 12 

producing local antimicrobial peptides (AMPs) and reactive oxygen species (ROS). 13 

Activation of the innate immune system upon microbial recognition results in the induction 14 

of highly efficient humoral and cellular responses. Humoral responses are characterized by 15 

the transcriptional activation of numerous genes encoding AMPs targeted against bacteria 16 

and fungi [16]. The cellular arm of insect immunity is mediated by the activity of circulating 17 

hemocytes, which kill microbes directly through phagocytosis, the formation of hemocyte 18 

aggregates, nodulation and via encapsulation, or indirectly by releasing systemic signals [17]. 19 

An important component of both arms of the insect immune system is the phenoloxidase 20 

(PO) response , which deposits melanin at the site of an immune reaction and 21 

leads to the release of microbiocidal reactive intermediates [18]. Although the fat body and 22 

hemocytes (functionally equivalent to the mammalian liver and macrophages) are the major 23 

contributors of systemic reactions, epithelial responses in the gut are also crucial in 24 

combating bacterial infections. These immune defenses include regulation of the native 25 
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microbiota in the insect gut through AMPs [19], and cytotoxic effects employed by high 1 

concentrations of nitric oxide (NO), which also plays a signaling role by controlling innate 2 

immune responses to bacteria and parasites [20].  3 

Pathogens can either hide from the host immune system by avoiding detection because 4 

they lack immune elicitors on their cell surfaces, or they can suppress the immune response 5 

[20]. In this respect it is notable that Photorhabdus has evolved multiple virulence factors and 6 

strategies that can impair both humoral and cellular insect immune responses and to kill the 7 

host, which we discuss below.   8 

 9 

Photorhabdus and immune recognition 10 

To recognize invading pathogens insects use pattern recognition proteins (PRPs) that bind 11 

conserved pathogen associated molecular pattern (PAMP) molecules produced by 12 

microorganisms [22]. Three main PRPs, hemolin, immulectin-2 (IML-2) and peptidoglycan 13 

recognition protein (PGRP) have been studied in the insect model Manduca. Hemolin is a 14 

PRP exclusive to Lepidoptera which can bind both hemocytes and bacteria and is also 15 

implicated in opsonization or in trapping  bacteria in nodules formed by hemocytes [23]. 16 

IML-2 is crucial in protecting insects against Gram-negative bacteria and binds to serine 17 

proteases in plasma, which participate in activating pro-phenoloxidase (PPO) to active PO 18 

(described below) [23]. Finally, PGRPs also recognize peptidoglycan found in bacterial cell 19 

walls [24]. These three genes are expressed at low levels in unchallenged insects but are 20 

induced rapidly by infection of Manduca with Photorhabdus. Further, RNA interference 21 

(RNAi)-mediated knockdown of any of these genes results in increased susceptibility to 22 

Photorhabdus [25]. Interestingly, silencing of IML-2 prevented normal activation of PO, 23 

which was linked to the impaired ability of the insect to encapsulate the bacteria [24]. It now 24 

remains to be investigated whether the protective effects of hemolin and PGRP mediate 25 
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downstream signaling events that initiate the direct expression of antibacterial effectors. It 1 

would also be interesting to measure immune recognition gene expression upon 2 

Photorhabdus infection in Drosophila, as a previous study did not look at the transcription of 3 

any genes involved in the recognition of pathogens but merely at the antimicrobial peptide 4 

effectors released upon pathogen recognition [26]. These studies elegantly demonstrate how 5 

RNAi can be used to dissect the interactions between Photorhabdus and the insect immune 6 

system at the level of individual genes. 7 

 8 

Photorhabdus and humoral responses 9 

As a consequence of the activation of signaling pathways dependent on immune recognition, 10 

the invading pathogens are either restricted or destroyed by antimicrobial effectors [27]. 11 

Although in insects antimicrobial reactions also include cell-mediated responses, the best 12 

known effectors of the insect immune system are AMPs, which are secreted into the 13 

hemolymph [28]. Following Photorhabdus challenge and initial detection of the bacteria by 14 

PRPs, certain genes encoding different antibacterial peptides (attacin, cecropin, lebocin, 15 

lysozyme and moricin) have high levels of gene transcription in the Manduca fat body, which 16 

implies that the antibacterial responses of the insect host are not only deployed but exert an 17 

important (although ultimately ineffective) defense against infection by these pathogens [29]. 18 

Interestingly, older Manduca larvae are less able to induce the transcription of PRP and AMP 19 

mRNA suggesting a critical role for host age or developmental stage in bacterial immune 20 

challenge [29].  21 

Photorhabdus can also be used to probe signaling pathways and several other features of 22 

host-pathogen interactions (Box 2). It has been shown that the Manduca immune system can 23 

be efficiently primed by prior infection with non-pathogenic bacteria so that immunity to 24 

infection by Photorhabdus is subsequently enhanced [30]. Using systemic RNAi to prevent 25 
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the upregulation of single immune genes in Manduca revealed that the effects of individually 1 

silencing any one PRP gene were greater than silencing any one AMP gene. This was 2 

because knockdown of any one PRP was able to block translation and secretion of multiple 3 

AMPs in the hemolymph leading to lower Photorhabdus growth and slower death of the 4 

insect host. This also suggests that Photorhabdus is sensitive to the action of AMPs. 5 

However, the AMP response may not be equally important in all Photorhabdus-insect 6 

interactions. Experiments in Drosophila showed that four AMP genes (Metchnikowin, 7 

Drocomycin, Attacin and Diptericin) were expressed upon Photorhabdus infection in wild 8 

type flies [26]. However, mutants with defects in their Toll and Imd signaling pathways 9 

(pathways within which binding of pathogens to PRPs results in transcriptional activation of 10 

the AMP genes [2]) and wild type flies died at similar rates following infection. This suggests 11 

that in Drosophila other signaling pathways, perhaps those involving cellular immune 12 

mechanisms, may be more important in defense against Photorhabdus. These studies begin to 13 

show how the combination of Drosophila genetics with the genetic manipulation of the 14 

entomopathogenic bacterium can increase our understanding of host-pathogen interactions in 15 

a gene-for-gene fashion. 16 

 17 

Photorhabdus and cellular responses 18 

Following release of Photorhabdus into the hemolymph by the IJ nematode, the first response 19 

of the insect immune system is to phagocytose or encapsulate the invading bacteria [31]. 20 

Indeed, Photorhabdus infection in Manduca promotes the appearance of hemocytes with an 21 

extreme spreading  ability [32]. The presence of these spreading cells in response to 22 

Photorhabdus, as well as to other pathogens, is not a pathological effect of infection but a 23 

discrete reaction of the insect immune system. Evidence also suggests that these spreading 24 

cells might play a role in nodule formation. One type of cytokine involved in the hemocyte 25 
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spreading process is the Plasmatocyte Spreading Peptide or PSP. The PSP precursor protein, 1 

proPSP, is expressed in the fat body, but not hemocytes, in response to Photorhabdus 2 

challenge and RNAi-mediated knockdown of proPSP in both the fat body and hemolymph 3 

plasma significantly increases susceptibility to Photorhabdus and leads to a reduction in 4 

overall cellular immune response [33]. However, despite the fact that mRNA levels of 5 

Hemolin, PGRP, and several AMPs but not IML-2 are increased in Manduca hemocytes 6 

during Photorhabdus infection [28], the role of these proteins in modulating hemocytic 7 

defenses is uncharacterized.  8 

Previous work has also shown that upon Photorhabdus injection into caterpillars, the 9 

bacteria grow rapidly and they are able to persist within Manduca while the number, viability 10 

and phagocytic competence of hemocytes are dramatically decreased. Interestingly, in vitro 11 

incubation of hemocytes with Photorhabdus supernatants causes distinct changes in the actin 12 

cytoskeleton morphology of different hemocyte cell types [34]. Additionally, Photorhabdus 13 

can inhibit phospholipase A2 that catalyzes the first step of eicosanoid biosynthesis, which is 14 

important for hemocyte nodulation [35]. Together these results show that Photorhabdus 15 

evades the cellular immune response at least in part by killing hemocytes and by employing 16 

mechanisms that suppress key cellular insect immune functions. They also begin to describe 17 

how such a few bacterial cells can be used to modulate and eventually overcome the 18 

complexity and robustness of the insect immune system.  19 

 20 

Avoiding phagocytosis by the insect hemocytes 21 

There are several lines of evidence that Photorhabdus resists phagocytosis by insect 22 

hemocytes. Originally, a heat-stable anti-phagocytic moiety was documented in the 23 

supernatant of P. luminescens strain W14. This factor is produced during infection and cell-24 

free hemolymph recovered from an infected caterpillar retained the anti-phagocytic activity 25 
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[36]. More recent advances have shown that Photorhabdus is also equipped with a number of 1 

toxins and effectors, each capable of efficiently inhibiting phagocytosis (Figure 3).  2 

Type III secretion systems (TTSSs) are found in numerous bacterial pathogens where they 3 

deliver effector molecules to modulate the behavior of host cells. TTSSs deliver their effector 4 

proteins directly into the cytosol of host cells and can either facilitate the uptake of bacteria or 5 

prevent their phagocytosis. The LopT effector protein, encoded by the P. luminescens TT01 6 

and W14 TTSS is homologous to YopT from Yersinia and inhibits phagocytosis [31,37]. A 7 

LopT-like ope8 

Photorhabdus virulence cassettes (PVCs). The PVCs are phage-like elements homologous to 9 

the anti-feeding prophage from another insect pathogenic bacterium Serratia entomophila 10 

[38]. The PVCs encode a structure similar to the R-type pyocins and might act as a delivery 11 

system carrying various toxic payloads to target cells [39]. P. luminescens TT01 and P. 12 

asymbiotica ATCC43949 contain numerous loci encoding PVCs with very different putative 13 

effector proteins with homology to regions of: toxin A in Clostridium difficile (Mcf), YopT in 14 

Yersinia entercolitica (LopT), the active domain of Cytotoxic Necrotizing Factor 1 or CNF1 15 

from Escherichia coli and others, which have no obvious similarities and possibly represent 16 

novel effectors [40]. Recombinant E. coli expressing PVCs are toxic to the Wax moth 17 

Galleria mellonella when injected, and dramatically rearrange the actin cytoskeleton of 18 

recovered hemocytes. Given the number and variety of the PVCs, they could confer toxicity 19 

to different groups of insects, or in the case of P. asymbiotica, against mammals [39]. 20 

Makes caterpillars floppy 1 (Mcf1) is a toxin that destroys both the insect hemocytes and 21 

the midgut by apoptosis [41]. Recently Mcf1 22 

Drosophila embryonic hemocytes, preventing their motility and ability to phagocytose 23 

bacteria [42]. Several genetic mutants of Drosophila modulate this Mcf1 mediated response 24 

showing that endocytosis of Mcf1 is ne nd cytoskeletal rearrangement. 25 
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Similarly, signaling mutants of the small Rho GTPase, Rac, also modulate Mcf1 mediated 1 

effects on Drosophila hemocytes, indicating a requirement for toxin internalization and early 2 

Mcf1-mediated activity on the cytoskeleton. Studies are underway to determine whether the 3 

anti-phagocytic ability of Mcf is upstream of apoptosis and is the eventual cause of 4 

programmed cell death in hemocytes, or whether inhibition of phagocytosis and apoptosis are 5 

separate phenomena.  6 

Recently, combinations of Toxin complexes (Tc s) encoded by the tcd pathogenicity 7 

island: TcdA1, TcdB2 and TccC3 or TccC5 have also been shown to cause alterations in the 8 

actin cytoskeleton in Wax moth (Galleria) hemocytes inhibiting phagocytosis. It was 9 

revealed that the components responsible for this activity were TccC3 and TccC5; with 10 

TccC3 causing ADP-ribosylation of actin and TccC5 causing ADP-ribosylation of the Rho 11 

GTPases RhoA and Rac resulting in their activation [43]. Both TccC3 and TccC5 enter the 12 

cytosol via TcdA1 (observed to be an in vivo pore former) where they act together to disrupt 13 

the actin cytoskeleton. TccC3 and TccC5 are active on both lepidopteran and human cells 14 

suggesting that Photorhabdus may be able to use these effectors against both mammalian and 15 

insect hosts and supporting the hypothesis that the Tc toxins may be virulence factors in 16 

pathogens of man. A novel actin-targeting mono-ADP-ribosyltransferase (mART) toxin, 17 

Photox, has also recently been discovered in P. luminescens, which inhibits the 18 

polymerization of actin filaments [44]. This activity would have profound effects on the 19 

cytoskeleton of the target cell, possibly resulting in the inhibition of phagocytosis as seen 20 

with TccC3 the actin-targeting ADP-ribosylating Tc. The mechanism of entry of Photox into 21 

the host cell and role in insect infection remains to be elucidated. However, the presence of a 22 

neighboring gene encoding VgrG, which is involved in type VI secretion could indicate 23 

delivery of Photox via this route. This section emphasises how Drosophila can be used as a 24 
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model to dissect the insect immune system and how we can use a model pathogen, 1 

Photorhabdus, to probe the system further. 2 

 3 

Photorhabdus interaction with the PO cascade 4 

Phenoloxidase (PO) is an important component of the immune defences of most arthropods 5 

[45]. The enzyme is normally present as an inactive precursor, prophenoxidase (PPO). 6 

Activation is due to a serine protease cascade, which is initiated upon recognition of invading 7 

microorganisms, leading to proteolytic cleavage of PPO that is present in the hemolymph 8 

plasma, thus causing the synthesis of the pigment melanin and the production of melanotic 9 

nodules around microbes, thereby isolating the pathogens [45]. A characteristic of insects 10 

infected by Photorhabdus and other nematode-associated entomopathogenic bacteria is that 11 

their hemolymph does not melanize (blacken) upon bleeding, which implies an interaction 12 

between Photorhabdus and the PO cascade [31,35]. A major secreted product of 13 

Photorhabdus both in vitro and in vivo is a hydroxystilbene compound (ST) that inhibits the 14 

growth of microbial competitors in the dead insect [46]. ST is not only a potent inhibitor of 15 

activated insect PO, but PO inhibition also results in decreased host resistance to 16 

Photorhabdus [47]. Thus, PO inhibition during insect infection appears to be a specific 17 

adaptation of this bacterium to its pathogenic lifestyle. These results also denote a gene-for-18 

gene interaction between ST production in the bacterium and PO synthesis in the insect host.  19 

More recently, in vitro screens of Photorhabdus cosmid libraries led to the identification 20 

of overlapping cosmid clones that suppressed previously activated Manduca PO, reduced 21 

nodule formation, persisted longer within insects and showed increased pathogenicity 22 

towards Manduca larvae [48]. Finally, it has been reported that the metalloprotase PrtS 23 

isolated from Photorhabdus supernatants induces a melanization response upon injection in 24 

Manduca [49], which is in contrast with the suppression of melanization that is observed 25 
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during Photorhabdus infection. It is therefore possible that secretion of a PO inhibitor could 1 

counteract the activation response to PrtS or that PO activation and inhibition are temporally 2 

separated. Another possibility is that the role of PrtS is to attack proteins involved in cell 3 

adhesion and thereby block nodule formation around the proliferating bacteria, rather than 4 

interfering directly with PO activation. 5 

Bacteria from several species of both Photorhabdus and Xenorhabdus have also been 6 

found to suppress melanization and nodule formation through inhibition of the enzyme 7 

phospholipase A2, blocking synthesis of the local eicosanoid signals that co-ordinate nodule 8 

formation and associated local PPO activation [35]. The chemical responsible for this 9 

inhibition has not been identified, however. 10 

 These results indicate a complex pattern of manipulation of phenoloxidase-based host 11 

defenses by the pathogen, implying that such defenses are likely important in protecting the 12 

insect host. 13 

 14 

Photorhabdus destruction of the Manduca gut 15 

Probably the major group of toxins responsible for activity against the insect gut is the Tcs. 16 

The mature native toxin complex produced by Photorhabdus is a high molecular weight gut 17 

active toxin that is lethal to four orders of insects (Lepidoptera, Coleoptera, Hymenoptera and 18 

Dictyoptera) when injected into the hemolymph or orally ingested [50]. The mature complex 19 

consists of subunit Tcs: Tca, Tcb, Tcc and Tcd [50]. Tca is responsible for most oral activity 20 

against M. sexta, having a median lethal dose of 875 ng/cm
2
 of artificial diet, and causing 21 

significant weight reduction at 40 ng/cm
2
 [51]. Ingestion or injection of purified Tca alone 22 

causes an effect on the gut histopathology similar to that observed following Photorhabdus 23 

infection [52] (Figure 3).   24 
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The oral activity of the Tcs is unexpected given the route of attack via the cuticle and 1 

hemocoel of the host larvae by the entomopathogenic nematodes vectoring Photorhabdus and 2 

Tcs are now thought to be derived from ancestral tc genes acquired by Photorhabdus and are 3 

normally employed as active toxins on the hemocoel side of the gut [53]. Oral toxicity to 4 

insects has been achieved by cloning toxin complex component A (tcdA) from P. luminescens 5 

strain W14 into Arabidopsis creating a transgenic plant capable of killing first instar M. sexta 6 

[54]. Expression tcdA in recombinant E. coli produces oral toxicity at high expression levels, 7 

but to reconstitute full oral toxicity components B and C (encoded by tcdB and tccC) are 8 

needed [53]. 9 

Structural and biophysical studies have been carried out on Xenorhabdus nematophila 10 

PMF1296 toxin complex component XptA1, equivalent to P. luminescens TcdA1 [55]. This 11 

work has suggested a mechanism of action for XptA1 where it binds to the cell membrane 12 

forming a structure with a central cavity and complexes with partner components XptB1 and 13 

XptC1 producing the mature insecticidal toxin [55]. The structure of XptA1 was shown to be 14 

a 1.15 MDa tetramer with a cage-like structure. Importantly, the same structure is found in 15 

both alkaline and neutral pH environments, indicating that the  structure can survive in 16 

the highly alkaline midgut of the Lepidoptera host. 17 

Other toxins with gut activity are the Mcf1 and Mcf2 toxins (Figure 3). Originally Mcf1 18 

was discovered due to its ability to destroy the insect midgut rapidly via apoptosis, resulting 19 

in a loss of body turgor at 12 h and insect death 24 h following injection with E. coli 20 

expressing the toxin [41]. The Mcf1 homolog, Mcf2, is also known to induce insect death in a 21 

similar manner, is still unknown. Differences in homology in 22 

the putative active N-terminal regions of Mcf1 and 2 suggest the possibility of multiple 23 

modes of action. This section emphasises the level of functional redundancy that has already 24 

been found in Photorhabdus virulence factors. A growing list of virulence factor encoding 25 
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genes found in sequenced Photorhabdus genomes suggests that still further toxic actions 1 

contributing to the suppression or evasion of host cellular immunity await discovery.  2 

 3 

 Immune responses in the gut 4 

Following direct injection of Photorhabdus into the body cavity and successful suppression 5 

of insect immune defenses, the pathogen grows excessively in the hemolymph and midgut, 6 

and then subsequently colonizes the fat body and the remaining tissues of the cadaver. This is 7 

considered a strategy that the bacteria employ in order to stop insect feeding and to avoid 8 

attacks by hemocytes patrolling the hemocoel [1]. Midgut colonization in Manduca has been 9 

found to be associated with occupation of a specific niche next to the basal lamina of the 10 

extracellular matrix that surrounds the midgut epithelium itself [36]. It is unknown whether 11 

Photorhabdus elicits a local immune response at the site of infection by provoking the 12 

synthesis of AMPs in the midgut epithelium, as is the case with other pathogens [21], and if 13 

so whether the bacteria can fight this immune reaction by protecting themselves from the 14 

harmful effects of antibacterial peptides, or by degrading these effectors.  15 

Finally, in relation to oral ingestion of Photorhabdus (a route not normally found in nature 16 

as the bacteria are vectored directly into the insect hemocoel) it was recently shown that the 17 

bacteria stimulate the expression of nitric oxide synthesis (NOS), an important component of 18 

the insect immune system [56], exclusively in the gut of Manduca and that the induced NOS 19 

expression plays an important, yet ultimately unsuccessful role in defending the insects 20 

against the pathogen through the production of NO [57]. Preventing NOS induction in orally 21 

infected insects by systemic RNAi or pharmacological manipulation reduces NO levels in the 22 

gut and promotes crossing of the bacteria into the hemolymph through the gut wall, thereby 23 

decreasing the survival of NOS deprived caterpillars. These results highlight two important 24 

points. First, NOS is a major signaling component of the insect innate immune system by 25 
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contributing to pathogen resistance and, second, according to the location of the experimental 1 

infection, different organs play distinct roles in the response to Photorhabdus.  2 

 3 

Making the leap to humans 4 

Photorhabdus asymbiotica has been isolated from clinical infections in humans and is an 5 

emerging human pathogen [58]. The majority of clinical isolates recovered are currently from 6 

Australia and America. Invertebrates have previously been realized as a potential source of 7 

emerging human pathogens. In the case of P. asymbiotica it is hypothesized that following 8 

acquisition of key plasmids by insect pathogenic Photorhabdus, P. asymbiotica emerged 9 

equipped to cause human infection [59]. The genome sequence of P. asymbiotica strain 10 

ATCC43949, originally isolated from a human infection in North America, has recently been 11 

completed. Comparative genomics of this emerging human pathogen with the insect 12 

pathogenic P. luminescens strain TT01 reveals that P. asymbiotica ATCC43949 has a smaller 13 

genome than TT01 and has acquired a plasmid related to pMT1 from Yersinia pestis, the 14 

causative agent of the bubonic plague [5]. The P. asymbiotica ATCC43949 genome has a 15 

reduced diversity of insecticidal toxin encoding genes including those of the Tcs, Mcf and the 16 

PVCs. Despite all the toxin gene absences, P. asymbiotica ATCC43949 is in fact more lethal 17 

to insect hosts than P. luminescens TT01 or P. temperata K122 [29]. Many of the anti-insect 18 

virulence factors do indeed remain in the genome of P. asymbiotica ATCC43949 suggesting 19 

either that they are also active on mammalian immune systems or that P. asymbiotica cycles 20 

through insects and only infects man on an irregular or accidental basis. 21 

P. asymbiotica is able to survive within and induce apoptosis in mammalian macrophages 22 

[60]. The acquired plasmid, pAU1, and additional virulence factors, including homologues of 23 

known effectors which facilitate intracellular persistence (e.g. SopB), are thought to hold the 24 

key to equipping P. asymbiotica ATCC43949 for activity against man. Draft sequencing of 25 
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the highly virulent Australian P. asymbiotica Kingscliff isolate has revealed some interesting 1 

differences from the American sequenced strain. A key finding is the presence of an 2 

additional plasmid, pPAA3. This plasmid bears similarity to pCRY from Yersinia pestis. It is 3 

hypothesized that the presence of pPAA3 could account for the increased virulence of 4 

Australian isolates [61]. This illustrates the remarkable ability of bacteria to acquire the 5 

nce factor encoding 6 

genes that can be swapped between different bacterial species. This means that bacteria that 7 

have learnt to overcome the insect immune system may acquire additional virulence factors 8 

that allow them to extend their range to humans. The identification of the genes facilitating 9 

this host switch is therefore a key area of current research. 10 

 11 

Concluding remarks and future perspectives 12 

We have reviewed recent advances in the study of the insect pathogen Photorhabdus and its 13 

interaction with the immune system. The most striking conclusion is that originally 14 

Photorhabdus was assumed to only interact with the immune system of its insect host but 15 

now with stunning new details on the complex association with its partner nematode, it is 16 

apparent that subtle interactions with the immune system of the nematode are also likely to 17 

play a critical role in the Photorhabdus life cycle (Box 3). In the case of P. asymbiotica this 18 

interaction is now further extended to three hosts: the vector nematode, the host insect and 19 

man. An Australian isolate of P. asymbiotica [61] was recently sample sequenced in order to 20 

understand why isolates from Australia appear more pathogenic to man than those from the 21 

USA. We therefore believe that detailed comparative genomics between different 22 

Photorhabdus strains with different life cycles, informed by functional analysis with Rapid 23 

Virulence Annotation [62], will allow us to begin to understand how this insect pathogen has 24 

made the leap to humans. 25 
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Figure legends 1 

Figure 1. The life cycle of the Photorhabdus-Heterorhabditis complex. The Heterorhabditis 2 

IJ is the only free-living stage of the nematode and all stages of nematode reproduction and 3 

development (including the larval molts L1, L2, L3 and L4) take place within the insect 4 

cadaver in the presence of high titers of Photorhabdus bacteria (see text for details). 5 

Figure 2. Photorhabdus in the rectal gland cells of an adult hermaphrodite Heterorhabditis 6 

nematode. The adult nematode was incubated with green fluorescent protein (GFP)-labeled 7 

P. luminescens TT01 for 5 days before being transferred to non-GFP-labeled P. luminescens 8 

TT01 cells for a further 1-2 days. The nematodes were then mounted on agar pads (with 9 

levamisole added as an anesthetic) and analyzed using a Zeiss LSM 5 Exciter microscope. 10 

GFP-labeled bacteria can be clearly seen colonizing the rectal gland cells found near the anus 11 

( a ) of the adult hermaphrodite nematode. Images courtesy of Catherine 12 

Easom and David Clarke, University College Cork, Ireland. 13 

Figure 3. Interactions of Photorhabdus toxins with the insect immune system. This diagram 14 

of an insect larva shows the known immune system targets of Photorhabdus toxins. Toxin 15 

complex components TccC3 and TccC5 from the Tcd pathogenicity island act to ADP-16 

ribosylate either actin or Rho GTPases respectively, blocking the ability of hemocytes to 17 

phagocytose. The PVCs destroy insect hemocytes, but the mechanism is currently unknown. 18 

Toxin complex Tca causes midgut destruction, interestingly the Tca pathogenicity island does 19 

not contain a TccC homolog. One of the toxins, Mcf1, has a three-fold activity on the insect 20 

immune system acting to block phagocytosis (mechanism unknown at present), and destroy 21 

hemocytes and the midgut epithelium via apoptosis. A newly discovered Photorhabdus toxin 22 

Photox is known to ADP-ribosylate actin and might putatively be capable of interfering with 23 
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phagocytosis, although the properties of this toxin in insect infection have yet to be 1 

confirmed.  2 
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Box 1. Advantages of using Photorhabdus and insect models for studying host immune 

responses 

 Unlike many animals associated with bacterial symbionts, Heterorhabditis nematodes are 

viable in the absence of Photorhabdus. Thus, each partner of the symbiotic/pathogenic 

relationship can be separated and studied in isolation or in combination, thus enabling 

pathogenesis and symbiosis to be studied individually or together. 

 All three players of the interaction (Drosophila or Manduca  Heterorhabditis  

Photorhabdus) can be genetically manipulated. RNAi in the insect and nematode 

combined with bacterial genetics can be readily applied to investigate the molecular basis 

of symbiosis and parasitism and interaction with immune mechanisms. 

 The genomes of Photorhabdus luninescens (strain TT01), Photorhabdus asymbiotica 

(strain ATCC43949) and twelve Drosophila species have been sequenced
15,16

, and the 

genome of Heterorhabditis bacteriophora is currently being sequenced. 

 Drosophila and Manduca are cheap and have a short life cycle, they are easy to handle 

and rear in the laboratory, and their size facilitates artificial infections and extraction of 

hemolymph or hemocytes. 

 Photorhabdus vector, Heterorhabditis nematodes, are of growing interest as potential 

models for human parasitic nematodes and as biocontrol agents for insect pests and 

disease vectors. They also offer useful features as model organisms, including small size, 

short generation time, hermaphroditism, and in vitro culturing, and they are closely 

related to Caenorhabditis elegans and some mammalian parasitic nematodes. 
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Box 2. What can we learn from Photorhabdus-insect host interactions? 

Research on Photorhabdus interactions with insect host immune responses will undoubtedly 

enlighten our understanding of the molecular processes that distinguish beneficial and 

harmful interactions. In particular: 

1. It will shed light on the mechanisms used to fight bacterial infections in other 

holometabolous insects that have dramatic repercussions on human life as agricultural 

pests or as vectors of diseases.  

2. Characterization of the pristine host defense against Photorhabdus infection in insect 

models may reveal novel evolutionary conserved immune pathways in mammals.  

3. Original immune responses to Photorhabdus found in host insect models may guide the 

development of new antibacterial therapeutics.  

4. Given that Photorhabdus is a member of the Enterobacteriaceae, it is likely that this 

research will also contribute to similar studies with important mammalian pathogens such 

as E. coli and Salmonella spp.  

5. It could have considerable potential in biological control and agriculture. Since 

entomopathogenic bacteria represent an alternative to chemicals for insect pest control, it 

is fundamental to understand the basis of the infectivity of nematode-bacteria complexes 

and the interaction with the insect immune system.  

6. It is well established that vertebrates possess many beneficial associations with bacteria, 

which have been shown to provide both nutritional and defensive advantages. Research 

that uses invertebrate models can be used to elucidate the role of such bacteria in human 

and animal health. 

7. Photorhabdus maintains a species-specific interaction with its cognate nematode host, yet 

can kill an extensive range of insect species, making it an attractive model for 

understanding the molecular basis of host range and the role of host immune function. 

Box 2
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8. Photorhabdus is a vectored pathogen and so it can provide insights into the transition 

from one host environment to another and how host immune mechanisms regulate the 

transmission.  

9. Finally, this research will potentially uncover mechanisms that ensure persistence and 

transmission of bacteria and might lead to the development of strategies for blocking the 

dissemination of pathogens and thus preventing infectious diseases.  
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Box 3. Questions for future research 

 How exactly Photorhabdus interacts with either the nematode or the insect host? 

 Which Photorhabdus genes are important for the transition between nematodes and 

insects and how the bacteria sense the host-to-vector transition? 

 What is the genetic overlap between Photorhabdus pathogenicity and symbiosis? 

 What is the mechanism of Photorhabdus detection by the insect immune response? 

 How insects combat Photorhabdus and Heterorhabditis infections and which are the 

similarities/differences between these immune responses? 

 Are these immune mechanisms common between different insect hosts? 

 How the bacteria cope with the Heterorhabditis immune system?   

 What is the minimum number of Photorhabdus cells that allows nematodes to grow and 

infect insects efficiently?  

 How Photorhabdus contributes to Heterorhabditis development and reproduction? 

 What is the range of secondary metabolites the bacteria produce to protect their host from 

competitor microbes? 
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