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Dipolar Spin Waves of Lateral Magnetic Superlattices 
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We investigate the high frequency dynamics of dysprosium and cobalt gratings fabricated at the 
surface of a GaAs/Al0.33Ga0.67As heterojunction. We detect the collective and localized spin wave 
modes of the grating by measuring the photovoltage and the photoresistance induced in the two-
dimensional electron gas. The magnetic excitations couple to the 2DEG through their stray magnetic 
field. We perform a spectroscopy of dipolar-exchange spin waves as a function of microwave power, 
temperature, the tilt angle of the applied magnetic field, and by varying the structural and material 
parameters to change the strength of dipolar interactions. The data reveal two types of spin waves. 
Dipolar magnetization waves propagate across the grating through the magnetostatic interaction 
between the stripes. We derive an analytical expression of their dispersion curve and obtain a good 
fit of the ferromagnetic resonance broadening from first principles. The second type are dipolar 
edge spin waves which manifest through a series of sharp resonances at lower magnetic field. These 
waves are confined near the pole surfaces and interact very little with neighbouring stripes. We 
calculate the eigenfrequencies of the quantized modes and obtain a qualitative explanation of the 
low field resonances. The fit yields a value of the exchange stiffness constant of dysprosium, A = 
1.5×10−12J.m−1 . Our experiments show that photovoltage measurements in hybrid semiconductor-
ferromagnetic structures provide a sensitive and non-invasive tool for probing the spin waves of small 
magnets (10-500nm). 

I.	 INTRODUCTION spin wave quantum wells which bind dipolar edge spin 
waves (DESW) [12, 13]. The confinement of spin waves 
by magnetic quantum wells [9], magnetic tunnelling bar-

Dipolar magnetic interactions are increasingly relevant riers [14], periodic arrays [15–17] and in Bose-Einstein 
to controlling the magnetization state of ultra-small mag- condensates [18] has been investigated. 
netic elements. Magnetostatic interactions control the 
nucleation field of magnetic vortices [1], the magnetiza- In this paper we demonstrate the formation of dipo

tion state of nanowires [2, 3] and notoriously increase lar magnetization waves (DMW) in one dimensional su

cross-talk between bits as the size of magnetic memo- perlattices. These waves propagate the displacement of 
the magnetization from one stripe to the next through ries is scaled down. Magnetic coupling can be used to 
pure magnetostatic interaction. We obtain the energy a constructive effect in spin torque oscillators. The syn

chronization of spin torque oscillators by spin waves in- dispersion curve of DMWs in a simple form that gen

creases the power of microwave emission [4–6]. The study eralizes the Kittel formula [19] of ferromagnetic reso

of magnetic dipolar interactions has recently been facili- nance. In order to vary the coupling between stripes, 

tated by the use of lithographic techniques to obtain rect- we make Dysprosium and Cobalt gratings whose pitch 

angular prism magnets. Such magnets can be made small we vary between 400nm and 300nm. We irradiate the 

enough to have uniform magnetization and close enough gratings with microwaves and use a high mobility two 
dimensional electron gas (2DEG) as a sensor of the stray to have strong mutual interactions [7]. At microwave fre-
magnetic field emanating from the grating. The high frequencies, the edges of the prism reflect spin waves which 
quency reversal of resonating magnetic dipoles was picked leads to the formation of standing modes. Their absorp-
up in the photoresistance and the photovoltage induced tion spectrum has been studied by Brillouin light scat

tering [8, 9], magnetoimpedance measurements [10] and across the 2DEG. We observe the formation of dipolar 

by microwave transmission through striplines [11]. The magnetization waves through the broadening of the fer-

spectrum of spin waves is also modified by the presence romagnetic resonance. We find that the width of the 

of magnetic poles. The dipolar magnetic field creates	 ferromagnetic resonance (up to 1.5T) is in quantitative 
agreement with the width of the DMW dispersion curve 
calculated using nominal structural and material param
eters. We also report a series of small resonant dips at 
lower magnetic field. These present several of the char∗E-mail:A.R.Nogaret@bath.ac.uk 

†Also at:Institut Universitaire de France and Institut National des acteristics expected from quantized DESWs. The num-
Sciences Appliquées, 31077 Toulouse, France ber of DESW modes confined in each stripe yields the 
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spin exchange stiffness constant. The value that we find 
is consistent with the one derived from the dispersion 
curve of magnons in bulk dysprosium [20]. We calcu
late the magnetic field dependence of the DESW eigen
frequencies and obtain a qualitative agreement with the 
experiment. We find that resonances are shifted to lower 
magnetic field by the magnetocrystalline anisotropy of 
ferromagnetic dysprosium. The height of the photovolt
age peaks gives the stray magnetic field emanating from 
each type of spin wave. This magnetic field couples mag
netic elements, hence from the height of the peak we 
are able to verify the localized or extended nature of the 
modes. Hybrid semiconductor-ferromagnetic structures 
are particularly well suited for probing ultra-small mag
nets (10-500nm). These are magnets which are smaller 
than the diffraction limit of Brillouin light scattering [16] 
and smaller than the minimum sample volume required 
for detecting ferromagnetic resonance [21]. Through this 
technique the high frequency dynamics of individual bits 
stored on magnetic dots tens of nanometers in size be
comes accessible to the experiment. High frequency pho
tovoltage measurements are also extremely sensitive to 
changes in the magnetic moment which they are capa
ble of resolving to an accuracy of the order of the Bohr 
magneton. This can easily be verified using Lenz law and 
is three orders of magnitude better than the sensitivity 
achieved in the static regime [22]. 

The paper is organized as follows. Section I introduces 
the background. Section II reports on the ferromagnetic 
resonance of individual stripes (Co, Dy). These data 
provide a benchmark for the demonstration of the effects 
of dipolar coupling in gratings. Section III investigates 
the high frequency dynamics of ferromagnetic gratings. 
Section IV develops the theory used to fit the DMW and 
DESW resonances. Section V discusses the findings, the 
approximations used and the eventual shortcomings of 
the theory. 

II. INDIVIDUAL FERROMAGNETIC STRIPES 

Hybrid ferromagnetic-semiconductor devices were fab
ricated from a GaAs/Al0.33Ga0.67As single heterojunc
tion. The mobility and density of the 2DEG were 
determined from quantum transport measurements as 
µ = 1.5 × 106cm2V−1s−1 and ns = 1.6 × 1011cm−2 . We 
prepared Hall bars 8µm wide and 32µm long by optical 
lithography. Voltage probes was separated by distances 
ranging between 2µm and 16µm. Ferromagnetic gratings 
and individual stripes were then fabricated at the centre 
of Hall bars to modulate the 2DEG located 80nm below 
the surface - see Fig.1. Magnetic modulations obtained in 
this way have an amplitude ∼ 0.1T. The perpendicular 
component of the stray magnetic field deflects ballistic 
trajectories in the 2DEG, managing in this way to cou
ple the electric properties of the 2DEG to the magnetic 
properties of the grating [7]. We studied the four types 
of devices listed in Table I. 

Sample A B C D 
Magnet Dy,Co Dy Dy Co 

stripe grating grating grating 
a - 400 300 400 
d 200 200 210 200 
h 150 160 80 150 
z0 80 80 80 80 

TABLE I: Device parameters. Dimensions are in nm. 

FIG. 1: (a) Lateral superlattice consisting of an array of fer
romagnetic stripes (Dy or Co) at the surface of a 2DEG. The 
grating is irradiated by microwaves at frequency ω while be
ing magnetized in the plane by magnetic field Ba. At res
onance, oscillations of the stray magnetic field induce a mi
crowave current, I(f2), in the 2DEG. The photovoltage, V (f2) 
is measured at the frequency used to modulate the microwave 
power, f2 = 870Hz. The photoresistance is measured at fre
quency f1 = 30Hz. (b) Sample B : Dy grating, a = 400nm, 
d = 200nm, h = 160nm, z0 = 80nm. (c) Sample A: Dy stripe, 
d = 200nm, h = 150nm, z0 = 80nm. 

Samples of type A had a single dysprosium (or cobalt) 
stripe shown in Fig.1(c). Samples B-D were 1D arrays 
such as the one shown in Fig.1(b). The use of grat
ings of different pitch allows varying dipolar coupling 
and studying its effect on the high frequency dynamics. 
Dysprosium was used because it has the highest mag
netic moment per atom which maximizes the coupling 
between stripes. The tabulated values of the saturation 
magnetization at 4 Kelvin are µ0Ms = 3.67T (Dy) and 
µ0Ms = 1.84T (Co). In all devices, the stripes exceeded 
the length of the Hall bar by 10µm at each end, and ef
fectively behaved as stripes of infinite length. Similarly, 
the gratings overlapped the active area of the Hall bar 
plus 10µm on each side. The lack of edge effects allowed 
us to consider the grating as being infinite. 

Microwaves were generated by a range of backward 
wave oscillators covering the 35GHz-110GHz band. An 
overmoded circular waveguide carried unpolarized [23] 
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microwaves down to the sample space at the centre of 
a 15T superconducting magnet. The grating was irra
diated at normal incidence while being magnetized by 
the external magnetic field, Ba - see Fig.1(a). By tilting 
Ba in the plane of the 2DEG we were able to magne
tize the stripes �y or �x to switch the dipolar magnetic 
field ON or OFF. When Ba�y, magnetic poles form on 
the facets ⊥ y and generate a spatially varying magnetic 
field. This magnetic field has two components Hd,y and 
Hd,z . The Hd,z component transmits high frequency os
cillations of the magnetization to the 2DEG by inducing 
eddy currents I(f2). The photovoltage and the photore
sistance are measured using a double frequency modu
lation technique - see Fig.1(a). One lock-in amplifier 
picks up the photovoltage V (f2) at frequency f2 = 870Hz 
which is used to modulate the microwave power. A 
second lock-in amplifier detects the longitudinal voltage 
V (f1) induced by a current drive I(f1) alternating at fre
quency f1 = 30Hz. The photoresistance was calculated 
as Rxx = V (f1)/I(f1). We emphasize that Ba has no 
direct effect on electron ballistics in the 2DEG because 
it lies in the plane. In practice, a small misalignment is 
unavoidable. Using Hall voltage measurements, we esti
mate the residual perpendicular component to be 40mT 
when the total external field is 3T. This is smaller than 
the modulation field. 

We now focus on the high frequency dynamics of 
sample A. Under microwave irradiation, the magnetore
sistance exhibits a single sharp resonance that moves 
to higher magnetic field with increasing microwave fre
quency - see Fig.2(a). The position of the resonant 
dip depends linearly on the microwave frequency - see 
Fig.2(b). The frequency dependence of ferromagnetic 
resonance generally follows the Kittel [19] formula: 

FIG. 2: (a) Ferromagnetic resonance of sample A detected 
through a change in the resistance of the 2DEG (Ba�y). 
Curves are vertically offset for clarity. (b) Frequency depen
dence of the resonant field (symbols) fitted with Eq.1 (full 
line). Inset: microwave power dependence. 

{[H∗ 
a + (Nx − Ny)Ms] (1)ω = γµ0 

1 

[H∗ 
a 

2+ (Nz − Ny)Ms]} , 85K, this explains the photoresistance resonance in this 
temperature range. Above 85K, the magnetic moments where γ is the gyromagnetic ratio. Nx = 0, Ny = 0.45, 

Nz = 0.55 are the demagnetization factors of the stripe 
derived from Rhodes and Rowlands [24, 25] in Appendix 
A. We find that Eq.1 must include the crystal field 
anisotropy of Dy to fit the data which appear shifted 

adopt a spiral structure which produces zero net magne
tization. Ferromagnetic resonance then becomes impossi
ble which is why the resonant structure vanishes from the 
100K photoresistance curve. We have therefore demon
strated that the 2DEG is sensitive to the dynamics of to lower field. Magnetocrystalline anisotropy behaves as 
small magnetic elements at its surface. In the case of an internal magnetic field H̄ 

h that adds to Ha [19]. We 
individual stripes, the FMR occurs at a single frequency. therefore define the effective applied magnetic field as 

+H̄ 
h. The best fit is obtained for µ0H̄ 

h = 0.6T∗H = Haa 
- see Fig.2(b) (full line). One obtains the Landé g-factors 
g = 1.81 (Co) and g = 1.95 (Dy). Broad peaks are known 
to characterize the ferromagnetic resonance of dyspro
sium crystals [26, 27]. 

To demonstrate that the resonance is microwave in
duced, we study its power dependence in the inset to 
Fig.2(b). We demonstrate that the resonance occurs in 
the ferromagnet - rather than in the 2DEG - by study
ing its temperature dependence in Fig.3. The peak am
plitude decreases from 20K to 75K and completely van
ishes at 100K. Since dysprosium is ferromagnetic up to 

III. 1D FERROMAGNETIC GRATINGS 

Magnetic gratings exhibit more complex magnetic ex
citations than single stripes. This can be seen in Fig.4 
which studies the photovoltage of sample B at microwave 
frequencies varying between 35GHz and 110GHz. A 
series of complex resonances loosely delimited by the 
dashed lines replaces the single resonance of individual 
stripes. To allow for a more precise comparison with 
theory, we plot the onset and the end of the FMR range 
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FIG. 3: Temperature dependence of the photoresistance of 
sample A. The FMR vanishes above the Curie temperature 
of dysprosium (85K). The magnetic hysteresis of dysprosium 
is visible in the curves measured without microwaves. Other 
curves are measured by sweeping the magnetic field up. 

as the red and black circles in Fig.5(a). The onset and 
the end of the magnetic field range are taken at the half 
height of the FMR range - see in Fig.5(b). The FMR 
bandwidth increases with microwave frequency. It starts 
from 0.4T at 35GHz and increases to 1.8T at 110GHz. 
Below 60GHz, the onset oscillates from the trend line 
to a higher magnetic field value before eventually set
tling for the higher magnetic field boundary at 42GHz. 
In comparison, the oscillations of the cut-off are weaker 
and remain centered on the trend line. It is believed 
that below 60GHz, the magnetic field at the onset minus 
the demagnetizing field becomes smaller than the field 
needed to saturate the magnetization ∼ 1T. This is why 
below 42GHz, the FMR only survives at the higher end 
of the resonance range where the magnetization is more 
likely to be saturated. 

Microwaves also induce a series of discrete resonances 
at lower magnetic field. These are indicated by the ar
rows in Fig.4 and by the open circles in Fig.5. The reso
nances shift linearly with frequency but at a weaker rate 
than the FMR. The narrowness of the dips and their oc
currence below the FMR is suggestive of localized spin 
waves. There are two localized modes in sample B. 

Turning now to sample C, the photovoltage curves of 
Fig.6 show a broadening of the FMR band, as in sample 
B. The FMR band hosts a complex series of subsidiary 
resonances. We plot the frequency dependence of the 

FIG. 4: Photovoltage spectroscopy of magnetic excitations in 
sample B (Ba�y). The dotted lines are a guide to the eye for 
the magnetic field dependence of the onset and the cutoff of 
the FMR range. At lower magnetic field, the arrows indicate 
a series of smaller dips induced by microwaves. Curves are 
vertically offset for clarity. Parameters: a = 400nm, d = 
200nm, h = 160nm, T = 1.3K. 

onset and the end of the FMR in Fig.7(a). The width 
of the FMR increases from 0.9T at 35GHz to 1.4T at 
80GHz thus qualitatively reproducing the trend of sam
ple B. Unlike sample B however, the width of the FMR 
is more stable, less dependent on microwave frequency, 
below 60GHz. This is one indication that dipolar interac
tions are more effective in stabilizing the magnetization 
in the direction perpendicular to the stripes. This al
lows FMR to be observed at lower microwave frequencies 
than in sample B. The stronger coupling between stripes 
in sample C is also implied by the broader FMR, when 
compared to sample B. At 80GHz, the FMR band is 1.4T 
wide in sample C and 1.0T in sample B. 

Sample C exhibits a series of microwave induced dips 
below the FMR. The dips are indicated by the arrows in 
Fig.6 and by the open circles in Fig.7(a). Their frequency 
dependence is similar to that of the low field resonances 
in sample B. However, there are 3 resonances in C com
pared to 2 in B. The first resonance occurs earlier, at 
Ba = 0.23T (C ) compared to Ba = 0.39T (B) at 35GHz. 
These data show that spin waves are more tightly con
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FIG. 5: (a) Frequency dependence of the microwave reso
nances in the photovoltage of sample B. The fan diagram 
shows the FMR onset (red dots), the FMR cutoff (black dots) 
and the dependence of the small photovoltage dips at low field 
(blue circles). (b) Details of the fine resonant structure at 
35GHz and 45GHz. The diameter of the blue circles is pro
portional to the amplitude of the dips. The onset (red dot) 
and the end (black dot) of the FMR range are defined at the 
mid-height of the main resonance. 

fined in sample B than in C. Lateral confinement by the 
physical edges can be ruled out as an explanation, firstly 
because h is twice larger in sample B. The quantization of 
wavevector qz = pπ/h gives the largest gaps in sample C 
- the opposite of what is observed. Secondly, the nearly 
identical values of d in B and C also rules out the quanti
zation of qy. The resonant dips must therefore arise from 
(magnetic) confinement in the y direction. The tighter 
spin wave confinement in C is consistent with our earlier 
reports of a stronger dipolar magnetic field in C. 

Fig.8(a) maps the FMR signal detected in the resis
tance of sample D. The FMR band is 0.75T wide at 
80GHz - see Fig.8(b). This is smaller than in samples 
C (1.0T) or B(1.4T) at the same frequency. In Appendix 
B, we calculate the dipolar magnetic field in the grating 
and show that it is proportional to the magnetization. 
Since the magnetization of Co is half that of Dy, the 
data demonstrate that the width of the FMR increases 

FIG. 6: Photovoltage spectroscopy of magnetic excitations 
in sample C (Ba�y). The broad FMR peak corresponds to 
the excitation of DMWs across the grating. The series of dips 
highlighted by the arrows indicates resonances with quantized 
DESW modes in individual stripes. Curves are vertically off
set for clarity. Inset: dysprosium grating of sample C (detail). 

with the strength of the dipolar magnetic field. 
We find that the photoresistance is highly anisotropic 

when the magnetic field is rotated in the plane - see Fig.9. 
When the stripes are magnetized along their long axis, 
the 2DEG effectively decouples from the grating. The 
magnetoresistance remains featureless even at the high
est microwave power and almost no change is observed 
when microwaves are switched off. An examination of 
the more sensitive photovoltage curves reveals a residual 
FMR signal and no resonant dips at lower field. Magne
tizing the stripes along x eliminates the magnetic poles. 
This has three consequences: the stripes decouple from 
each other, the grating decouples from the 2DEG and the 
confinement of surface spin waves vanishes. The latter 
explains the absence of resonant dips in the photovoltage 
curves. Under resonant conditions with Ba�x, the oscil
lations of magnetization components My and Mz induce 
stray magnetic fields at the site of the 2DEG. The small 
amplitude of the photovoltage peaks and the absence of 
any effect in the photoresistance suggests that the ferro
magnetic resonance cone is very narrow, My,Mz � Ms. 

We now develop a theory that incorporates the above 
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FIG. 7: (a) Frequency dependence of the microwave reso
nances in the photovoltage of sample C. The fan diagram 
shows the FMR onset (red dots), the FMR cutoff (black dots) 
and the frequency dependence of the small photovoltage dips 
at low field (blue circles). (b) Detail of the 35GHz curves 
showing the resonances with DESW modes and their depen
dence of microwave power. 

ideas and use it to fit the experiments. 

IV. THEORY 

We start by calculating the magnetic field emanat
ing from an infinite array of rectangular stripes whose 
stripes are assumed to be uniformly magnetized along y. 
Maxwell’s equations are then solved using Fourier anal
ysis in appendix A. We obtain the Hd,y and Hd,z vector 
components in the analytical form of Eqs.15 and 16. We 
compute their spatial variation in the case of superlattice 
C and plot it in Fig.10. Between −d/2 and +d/2, Hd,y 

is the demagnetizing magnetic field of the stripe. This 
field is strongly inhomogeneous decreasing from −0.4T 
at the centre to −1.4T near the poles. By contrast, 
Hd,y varies smoothly in the z direction away from the 
z = 0 plane. Note that the magnetic well at ±d/2 ex-

FIG. 8: (a) Photoresistance of sample D mapped as a func
tion of microwave frequency and magnetic field (Ba�y). The 
bandwidth of the resonance with DMWs is delimited by the 
dash-dotted lines. (b) Microwave power dependence. 

tends vertically right up to the physical edge of the stripe 
at z = h/2, making magnetic confinement undistinguish
able from physical confinement in this direction. In panel 
(b), Hd,z diverges at the corners of the stripe. This is 
where the magnetic flux flips by 180 degrees. Hd,z de
cays decays exponentially away from the stripes, giving 
a sinusoidal modulation of amplitude 0.24T as it passes 
through the plane of the 2DEG. 

Prior to modelling dipolar spin waves in confined ge
ometries, it is necessary to recall the properties of bulk 
spin waves in ferromagnetic dysprosium. When Ha is 
along the magnetic easy axis - a-axis - the energy disper
sion curve is given by [28]: 

�ω(q) = 
�
[2S[J(0) − J(q)] + 3K2S

−1 + �γµ0Ha] (2) 

2[2S[J(0) − J(q)] + 36K6
6S−1 + �γµ0Ha]

� 1 

, 

where S=15/2 is the angular momentum on each Dy ion, 
J(q) is the Fourier transform of the exchange interac
tion. The exchange energy of dysprosium is ΔEexch =∼
7meV [20]. K2 = 87 × 106J.m−3 and K6

6 = −1.1 ×
106J.m−1 are the axial and hexagonal energies of mag
netocrystalline anisotropy [29] which measure the en
ergy cost of aligning the magnetization along the c−
and b− hard magnetic axes. The anisotropy terms in 
Eq.2 behave as two effective magnetic fields: µ0Hc = 
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FIG. 9: Comparison of the photoresistance obtained in a 
transverse magnetic field (Ba�y) and a longitudinal magnetic 
field (Ba�x) for sample B. When Ba�x, the dipolar magnetic 
field is zero. Resonant absorption is recovered by aligning 
Ba||y. 

3K2/(SMs) (12T) and µ0Hh = 36K6
6/(SMs) (1.8T) 

which add to Ha [19]. Given the large value of the 
Hc field, magnetocrystalline anisotropy reduces to the 
effects of Hh: the FMR lines are shifted to lower mag
netic field by −Hh and there is a finite resonance fre
quency at zero magnetic field. Since our Dy stripes are 
polycrystalline [30], the magnetic field assumes random 
orientations with respect to the a-axis. We estimate the 
effective anisotropy of the polycrystal by averaging the 
sin2 θ dependence of the magnetocrystalline energy over 
the solid angle of 4π radian. We obtain H̄ 

h = Hh/3 
(0.6T) which is the offset magnetic field observed in our 
dysprosium devices. 

A. Dipolar edge spin waves 

We now calculate the frequencies of spin waves quan
tized by magnetic wells at ±d/2 in Fig.10(a). The cal
culation follows the method of Bayer et al. [8]. The fre
quency dispersion of dipolar-exchange spin waves in a 
thin film [31] is: 

FIG. 10: Spatial variation of the (a) in-plane and (b) perpen
dicular dipolar magnetic field in one stripe of superlattice C. 
The superlattice is assumed to be magnetized to saturation 
along y. The edges of the stripe are indicated by the full lines 
in the (y,z) plane. The magnetic field that couples the grating 
to the 2DEG is the sine wave at the fore of panel(b). 

� 
ω 

� 

= 

�� 
ωH + αq2

� 

ωM ωM 

2
� 

ωH 1 − exp(−qh) 
�� 1 

where ωM γµ0M , ωH (y) γµ0(Ha + Hh + Hd,y (y)), 

ωM 
+ αq2 + 

qh 
, (3) 

¯ = = 
α = 2πA/µ0Ms 

2 is the exchange constant expressed as 
a function of A, the exchange stiffness constant. The 
wavevector q = qxex + qy ey + qzez has two quan
tized components qy and qz and one free component qx. 
Wavevector qz = pπ/h, p=1,2,3... is quantized by the 
finite thickness of the film. Wavevector qy is confined by 
the spatial variation of the internal magnetic field. When 
the Larmor frequency of the internal magnetic field is 
smaller than the microwave frequency, ωH < ω, Eq.3 
admits real solutions in q which correspond to propa
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gating waves. If the solutions are imaginary, spin waves 
are evanescent. Dipolar surface spin waves thus prop
agate near the poles where the internal magnetic field 
is the lowest. With the magnetic field profile behav
ing as a quantum well, the momentum qy takes discrete 
values given by the Wentzel-Kramers-Brillouin quantiza
tion [12]: 

� yr 

qy[Hd(y), ω]dy = mπ. (4) 
yl 

yl and yr are the left and right turning points shown in 
Fig.11. For the magnetic well centered at +d/2, yl is the 
point where spin waves become evanescent. yr is where 
ωH (yr) = 0. 

We proceed with the calculation by finding the 
wavevector qm where the dispersion curve, Eq.3, goes 
through its minimum. qm depends only on the microwave 
frequency. By inserting qm into Eq.3 we find the the in
ternal magnetic field at the left turning point. The spa
tial variation of the dipolar magnetic field being known, 
we obtain yl by solving Eq.15 numerically. The right 
turning point is obtained in a similar way by solving 
ωH (yr) = 0. Once yl and yr are known, the frequen
cies of the quantized DESWs m=1,2,3... are calculated 
using Eq.4. These modes are shown in Fig.11. Their 
magnetic field dependence is plotted in Fig.12. 

We now comment on the theoretical magnetic field de
pendence of the DESW frequencies in Fig.12. The the
ory agrees with the experiment on the following points. 
Firstly, the DESW fan structure starts from a higher 
magnetic field in sample B than in sample C. This is be
cause the demagnetizing field is stronger inside stripe B 
see Fig.11. As a result, the magnetic field ΔB needed to 
create a spin wave well is larger in B than in C. Secondly, 
the theory obtains the correct number of trapped modes 
using A = 1.5×10−12J.m−1 as the spin exchange stiffness 
constant of dysprosium [20]. The exchange constant cal
culated from α = 2πA/µ0Ms 

2 gave α = 0.5nm2 . Thirdly, 
the theory predicts on more branch in the theoretical fan 
of C than in the fan of B. This is consistent with the 
observation of an additional branch in the experimen
tal fan of sample C. This difference is explained by the 
deeper spin wave well of sample C - see Fig.11. Fourth, 
the theory correctly locates the DESW resonances below 
the FMR. Fifth, the frequency splitting of the p = 1 and 
p = 2 subbands induced by the vertical confinement is 
negligible compared to magnetic confinement along y. 

The nonlinearity of the theoretical branches however 
prevents making a quantitative fit. The bend in the m=1 
curve of panel (b) occurs when the right turning point of 
the first DESW mode collides with the pole surface. At 
this point, the tighter confinement results in an upward 
shift of the m=1 mode. The drift of DESW modes to
wards the pole surface is shown in the inset to Fig.11. 
Possible ameliorations to this picture are discussed in 
section V. 

FIG. 11: Internal magnetic field across one stripe at height 
¯z=0. The magnetic bias is Ba + Bh = 1T. ΔB is the bias 

threshold where the internal magnetic field becomes positive 
at the centre of the stripes and starts squeezing spin waves 
against the edges. The quantized DESW modes m=1,2 and 
3 (p=1) are shown together with their frequencies. yl and yr 

are the left and right turning points of the m=3 DESW mode. 

B. Dipolar magnetization waves 

We now consider an infinite array of rectangular mag
netic stripes and calculate the frequency dispersion curve 
of the DMWs, ω(qy). The dephasing of the magnetiza
tion from one stripe to the next makes the coupling be
tween stripes dependent on wavevector qy. As a result, 
the grating becomes a dispersive medium for the mag
netization waves that propagate through it. The DMW 
modes enter resonance over a finite range of frequencies 
which explains the FMR bandwidth. Since the FMR 
occurs in magnetic fields over 1T, we consider the mag
netization of Dy stripes to be saturated. 

Consider one stripe labelled n = 0. Its magnetiza
tion M(0) experiences a torque from Ba as well as from 
the spatially varying magnetic field emanating from all 
stripes. With our assumption of a homogeneous mag
netization, the overall torque applied to stripe n = 0 is 
the torque exerted by the stray magnetic field averaged 
over the stripe ( B̄). Under constant microwave irradia
tion, the magnetization obeys a gyroscopic equation of 
the form: 

dM(0) 

dt 
= γM(0) ∧ B̄(t), (5) 
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FIG. 12: 

the magnetic field increases. 

Theoretical frequency dependence of the DESW 
modes (m=1,2,3... p=1,2) in samples (a) C and (b) B. The 
theoretical frequency dependence of the onset and cutoff mag-
netic fields of the DMW band is plotted as the red and black 
curves. Inset: left and right turning points of the m=1 DESW 
mode. The spin wave drifts towards the edge of the stripe as 

where ζ±

0: 

If n = 

rule ¯ N

¯ (n) 
y 

FIG. 13: Frequency dispersion curve of dipolar magnetization 
waves in superlattice C at Ba = 5T . The volume spin wave 
modes of a 80nm thick dysprosium film are also shown for the 
two directions of propagation, parallel (q�y) and perpendicu
lar (q�x) to the magnetization. 

where 

⎧
0 

B(y, t) = µ0 

⎨ 
Hd,y(y, t) + Ha

∗ , (6)⎩ Hd,z(y, t) 

Hd is obtained from elementary magnetostatics [25, 32] 
as the sum of the dipolar field from each stripe. The 
magnetization of stripe n, M(n)(t) generates a dipo

(n) (n) (n)lar magnetic field Hd,y (y, t) = −Ny (y)My (t) and 

H
(n)(y, t) = (n)(y)M (n)(t) at the locus of stripe 0. d,z −Nz z 

The coefficients N (n) are calculated at z = 0 by neglect
ing the variation of the internal magnetic field in the 
z-direction. This approximation is suggested by an ex
amination of Fig.10(a) and will be verified below. One 
obtains: 

N (n)(y) = 
1 

�
arctan 

1 − arctan 
1 

� 

, (7)y π ζn 
+ ζn

−

N (n)(y) = 
1 �

arctan ζ+ − arctan ζ−
� 

, (8)z n nπ 

= (2y −2na±d)/h. Nx 
(n)(y) = 0. The coupling n 

coefficients must be averaged to give the torque on stripe 

1 +d/2 

N̄ (n) = 
d 

� 

−d/2 
dy N (n)(y) α ≡ (y, z), (9)α α 

0, Eq.9 gives the demagnetization coefficients of 
the semi-infinite prism. These satisfy the well-known sum 

x 
(0) + N̄ 

y 
(0) + N̄ 

z 
(0) = 1. If n > 0, the N̄ 

α 
(n) may 

be loosely viewed as generalized demagnetization coeffi
cients arising from the coupling to other stripes. However 
N is negative whereas N̄ 

z 
(n) is positive. These coeffi

cients obey a new sum rule: N̄ 
x 
(n) + N̄ 

y 
(n) + N̄ 

z 
(n) = 0 

(n > 0). One calculates Hd by summing the contribu
tion from all stripes. The result is inserted into Eqs.6 
and 5. We solve Eq.5 by seeking solutions of the form 
M(n)(t) = M(0)ei(qy na−ωt). Using the symmetry prop
erty N̄ 

α 
(n) = N̄ 

α 
(−n) , one finds the dispersion curve of 

DMWs: 

∞
N (n) N̄ (n)ω2 = (γµ0)2 {Ha

∗ + 
�

cn[ ¯ 
z − y ] cos(qy na)Ms}

n=0 
∞�

cnN̄ (n) cos(qyna)Ms}, (10)a y×{H∗ − 
n=0 

where c0 = 1 and cn = 2 for n = 0. Eq.10 generalizes 
the Kittel formula of Eq.1 [19]. It makes clear that dis
persive terms arise from the demagnetization coefficients 
of higher order n > 0. The effects of long range dipolar 
coupling are particularly noticeable at long wavelengths 
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where the frequency depends linearly on the wavevector 
- see Fig.13. The group velocity of DMWs is negative be
cause the Ny 

(n) are negative. At long wavelengths, the in-
plane dipolar field reinforces the applied magnetic field. 
As a result the Larmor frequency is maximum at qy = 0. 
For comparison, we have also calculated the volume spin 
wave modes [31] in the un-patterned Dy film which the 
same thickness as sample C - see Fig.13. The frequency 
offset at q = 0 is due to the presence of the demagnetizing 
field in the grating. 

Returning to the experimental data, the DMWs of 
wavevector qy = 0 are the first to enter resonance since 
they require the lowest magnetic field to oscillate at fre
quency ω. The DMW modes at qy = 0 (qy = π/a) are 
excited at the onset (cut-off) of the FMR range. The 
theoretical dependence of the FMR onset (red line) and 
the FMR cutoff (black line) is plotted in Fig.12. The use 
of the nominal parameters of samples B and C gives a 
FMR linewidth and position in very good agreement with 
the experiment (dots). This demonstrates the formation 
of DMWs in superlattices. 

V. DISCUSSION 

Our results demonstrate the coexistence of two types 
of spin waves in magnetic superlattices. Dipolar mag
netization waves are plane waves that travel across the 
superlattice. Dipolar edge spin waves, by contrast, are 
two dimensional waves quantized by spin wave quantum 
wells near pole surfaces. There is no experimental evi
dence suggesting the hybridization of DESWs across the 
superlattice. Judging the strength of the dipolar inter
action by the height of the resonances, the coupling be
tween DESWs in different stripes must be at least 10 
times smaller than the magnetostatic coupling between 
stripes. The experiment does not permit to ascertain 
whether DESWs trapped at opposite edges of the same 
stripe hybridize or not. Intra-stripe coupling is predicted 
to be negligible at the high magnetic fields that we use [8]. 
This seems to be confirmed by the absence of splitting of 
the dips at higher m-values. The magnetic field depen
dence of these dips is more fan-like than the theory pre
dicts [33]. This discrepancy comes from the assumption 
of a uniform magnetization which we made to calculate 
Hd. This assumption has the effect of giving a strong de
magnetization field between yr and +d/2 which tends to 
create a magnetic domain. As a result, the magnetization 
and dipolar field must be computed self-consistently with 
the result that both the magnetization and the dipolar 
field decay smoothly to zero at +d/2. This correction to 
the model would make yr ≈ d/2 and eliminate the bend 
in the m=1 branch of Fig.12(b). 

Microwaves excite spin waves of finite momentum 
through two-magnon scattering. A priori, this process 
might excite that either volume spin waves propagating 
in the direction of the magnetization (q�y) or DMWs. 
Both modes have similar dispersion curves with nega

tive group velocity. The wavevector of backward vol
ume modes with be quantized by the edge of the stripes. 
The smallest allowed momentum qy = π/d is outside the 
Brillouin zone of the superlattice. We believe that the 
superlattice couples microwaves to DMW modes more 
efficiently than to volume modes because magnons at 
the lowest frequencies in the DMW spectrum can be ex
cited with a much smaller momentum. The grating would 
behave as a two-dimensional coupler of magnons to mi
crowaves [23, 34]. In addition, Fig.13 shows that the 
dispersion curve of volume modes that propagate per
pendicular to the magnetization is 5GHz which is signifi
cantly narrower than the DMW dispersion curve 20GHz. 
It seems unlikely that these modes are excited together 
with DMW modes as in this case a gap would appear 
in the FMR spectrum. This is not observed, therefore it 
may be argued that microwaves couple predominantly to 
DMW modes. From a pure experimental point of view, 
we believe that the FMR broadening is mainly due to 
dipolar coupling for the following reasons. Firstly, sam
ples B (Dy) and D (Co) have the same dimensions, yet 
the FMR of B is 1.4 times broader than that of D. Sec
ondly, if one compares the resonance of individual Dy 
stripes (A) with those of a grating made of the very 
same stripes (B), one notices that A has a single res
onant peak whereas B shows a ”square” band incorpo
rating a weaker sub-structure. If scattering by volume 
modes occurred in the grating, a resonant band would 
also be seen in the single stripes. Although the shape 
of resonances varies from sample to sample, the differ
ences in resonance width is a constant feature that dis
tinguishes the stripes from the arrays. We can therefore 
say with confidence that the broadening of the resonance 
in superlattices arises from interactions between stripes. 
Thirdly, the absorption spectra do not depend much on 
microwave power when the microwave power increases 
from the detection threshold -40dB to -3dB. The weak 
microwave power dependence of the peak structure - see 
for instance Fig.7(b) - suggests that the frequency range 
is bounded. To be complete, we verify the assumption 
of the constancy of the internal field along z which we 
made when calculating the demagnetization coefficients 
N̄ 

α 
(n) . Considering one stripe of sample B, the demag

netization factors calculated from Eq.9 are N̄ 
y 
(0) = 0.49 

and N̄ 
z 
(0) = 0.51. The exact demagnetization factors cal

culated from Eqs.11 and 12 are Ny=0.45 and Nz =0.55. 
The small differences in these numbers shows that Eq.10 
remains a good approximation of the dispersion curve 
even for relatively thick stripes. 

In conclusion we have shown that hybrid structures 
provide a highly sensitive and non-invasive probe of the 
magnetization dynamics. Our technique complements 
established techniques by providing access to extremely 
small magnets using micron size Hall junctions. 
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VI. APPENDIX A: DEMAGNETIZATION where qn = 2πn/a. We first obtain the Fourier coeffi-
FACTORS OF INFINITE STRIPES cients H(qn, z) then compute the stray magnetic field in 

real space using Eq.13. The in-plane vector component 
Given a rectangular stripe of cross-sectional aspect ra- is: 

tio k = h/d, the demagnetization factors [24] are: 

Hy(y, z) = −My 
hd 
a 

+∞� 

=1n

�√
1 + k2 qnFy (qn, z) cos(qny), (15)1 1 k

ln ln+Ny = √
1 + k2πk π k 

2 1	 where the form factor is: +1 − 

k 

(11)arctan ,
π k 

1 
ln 

��
1 + k2

�k ⎧
⎪

⎩
⎨
⎪

ln +Nz = √
1 + k2 sin( qn

2 
d ) sinh( qn

2 
h ) 

qnd qnh 
2 2 

π πk h 
2e−qn |z| z >| |

2	 Fy(qn, z) = . 
sin( qnd ) 1−e−qnh/2 

2 
qnd qnh 

+1 − arctan k.	 (12) cosh(qnz) h|z| <π 2 
2 2 

The perpendicular vector component is: VII.	 APPENDIX B: DIPOLAR MAGNETIC 
FIELD OF A 1D SUPERLATTICE 

+∞

a 
n=1 

We obtain the magnetic field H emanating from the Hz (y, z) = +My 
hd 

qnFz(qn, z) sin(qny), (16)
grating by solving the Maxwell’s equations of magneto-
statics �.H = −�.M and � ∧ H = 0. Consider one

stripe centered on the origin whose magnetization My is with form factor:

homogeneous. The magnetization function defined across

one period of the grating is:


0	 Fz (qn, z) = 
My

0 
[θ(z − h	 d) − θ(z + h )][θ(y − ) − θ(y + d 

2 2 2 2 )], 

⎧
⎪

⎩
⎨
⎪

sin( 
2 

qn
2 

d ) sinh( 
2 

qn
2 

h ) sgn(z)e−qn |z| |z| > h 
qnd qnh	 2 

M = 

⎧
⎨	

⎩ 

,
sin( qn

2 
d ) sinh(qnz) |z| < h 

2e−qnh/2 
qnd qnh 
2 2 

where, 

� 
+1	 z > 0sgn(z) = −1 z < 0 . 
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+∞
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