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Abstract. In recent years, numerous papers have shown the power and
flexibility of answer set programming (ASP) in the modeling of intelligent
agents. This is not surprising since ASP was developed specifically for
non-monotonic reasoning - including common-sense reasoning required
in agent modeling. When dealing with multiple agents exchanging infor-
mation, a common problem is dealing with conflicting information. As
with humans, our intelligent agents may trust information from some
agents more and than from others. In this paper, we present ASTREA,
a methodology and framework for modeling multi-agent systems with
trust. Starting from agents written in standard AnsProlog , we model
the agent’s knowledge, beliefs, reasoning capabilities and trust in other
agents together with a conflict resolution strategy in CR-Prolog. The
system is then able to advise the agent what information to take into
account and what to discard.

1 Introduction

The world is full of situations where entities interact with each other and ex-
change information. Whether the interactions are between humans, machines,
or some combination thereof, interaction is often necessary in order for each to
achieve their goals. To model such situations it is therefore important to be able
to represent and reason about the various agents and their interaction. One of
the difficulties in modeling such agents is dealing with conflicting information.
Conflicts may arise for a number of reasons. In extreme cases one agent may be
intentionally lying to another agent, but it is more often the case that the agent
is simply mistaken in its beliefs. An agent, modeling the behavior of a human,
should reason based on assumptions just as a human does. Such assumptions
may be wrong and, when passed to another agent, may disagree with informa-
tion held by that agent or received from other agents. Conflicts may even arise



when modeling electrical or mechanical systems. Such systems often rely on sen-
sors to observe the world. If a sensor malfunctions, it may lead to a false belief
about the true state of the world.

It is often difficult, if not impossible, to resolve conflicting information in a
way that guarantees that the agent’s beliefs are correct with respect to what is
true in the world. This is a normal state of affairs when considering common-
sense reasoning where the primary concern is that the agent’s reasoning is ra-
tional, even if it turns out later that the agent was wrong. As an example,
suppose a person asks two other people to answer a mathematics’ problem. One
of the persons asked is a first year math student and the other is a professor of
mathematics. If the answers are different and the person has no other reason to
disbelieve the professor, they should trust the professor over the student. This
does not imply the professor was correct, but it is the rational choice under those
circumstances.

There are three major topics one must consider when modeling agents: 1) the
choice of language, 2) the methodology used for modeling, and 3) the framework
under which the agents operate. In this paper we discuss our approach to agent
modeling, ASTREA, which stands for “Answer Sets for a Trusted Reasoning
Environment for Agents”. As stated in the name, for the language we use Answer
Set Programming (ASP). For conflict resolution, due to information arriving
from different sources, we propose the use of CR-Prolog. Consistency restoring
rules are used to indicate whether information supplied by a particular agent
should be disbelieved in case of a conflict. Different conflict resolution strategies,
based on the trust agents have in each other, can be encoded in CR-Prolog to
provide that the most appropriate consistency restoring rules be used.

The rest of the paper is organized as follow. In Section 2 we provide a short
introduction to multi-agent systems, answer set programming, and CR-Prolog. In
Section 3, we introduce our ASTREA model. After highlighting the motivation
behind our methodology, we propose the formal model of an ASTREA agent
in Section 3.2. The mapping to CR-Prolog of the agent’s knowledge base is
detailed in Section 3.2. The different trust-based conflict resolution strategies
are discussed in Section 3.3. and comments on future work.

2 Preliminaries

2.1 Multi-Agent Systems

The key contributors to a Multi-Agent System (MAS) are, naturally, agents.
Despite the vast number of research papers published in this area, no general
consensus exists about a definition of an agent. In this paper we take the defini-
tion from [33] which is an adaption of the one given in [34]:

An agent is a computer system that is situated in some environment
and that is capable of autonomous action in this environment in order
to meet its design objectives.



A MAS contains a number of agents, each with their own objectives and
goals, that affect the environment and collaborate to achieve their individual
goals. A detailed discussion on MAS and its history can be found in [33]

Conceptually agents operate in an observe-deliberate-act loop[10, 7]. In gen-
eral the loop has the form:

1. observe and integrate observations, gather information (also referred to as
beliefs)

2. consider the options available (also referred desires)
3. select goal (also referred to as intentions)
4. plan
5. execute

When implementing these agents one often finds that each phase is implemented
by different components which share common knowledge[1, 26].

This paper is concerned with the first step of the loop where the agent makes
the observations and reflects upon the beliefs it holds about the state of the
world. Among these observations are the things that the agent has been told
by other agents. The agent must then decide what can consistently be believed
from among those things it was told. This is, of course, not the easiest of tasks.
Not only does one have to worry about the agent being told directly conflicting
information, but information may also conflict indirectly.

Take, for example, an agent reasoning about cars and getting additional
information from two other agents. Suppose the agent asks for information about
a particular car and is told by one of his sources that the car has 4 doors and
told by the other that the car is a Mazda Miata. While this information is not
directly contradictory, if the agent knows that a Maita is a 2-door sports car
then it knows that one of the two must be mistaken.

2.2 Answer Set Programming

To model the knowledge and beliefs of the individual agents we have opted for a
form of logic programming, called Answer Set Programming (ASP)[23] developed
by Michael Gelfond and his colleague Vladimir Lifschitz. Here we only present
a short flavor of the language AnsProlog, and the interested reader is referred
to [8] for in-depth coverage. AnsProlog and its extensions have demonstrated[7,
9, 13, 18, 24, 12, 16] that they are a good and useful tool in the domain of multi-
agent systems.

AnsProlog is a knowledge representation language that allows the program-
mer to describe a problem and the requirements on the solutions in an intuitive
way, rather than the algorithm to find the solutions to the problem. The basic
components of the language are atoms; elements that can be assigned a truth
value. An atom, a, can be negated using classical negation so creating the literal
¬a. An inconsistency occurs when both a and ¬a are true. A literal l can be
negated using negation as failure so creating the extended literal, not l. We say
that not l is true if we cannot find evidence supporting the truth of l. If l is true



then not l is false and vice versa. Atoms, literals, and extended literals are used
to create rules of the general form: l :– B,not C., where l is an literal and B and
C are sets of literals. Intuitively, this means if all elements of B are known/true
and no element of C is known/true, then l must be known/true. We refer to l
as the head and B ∪ not C as the body of the rule. Rules with empty body are
called facts. A program in AnsProlog is a finite set of rules.

The semantics of AnsProlog is defined in terms of answer sets, i.e. consistent
assignments of true and false to all atoms in the program that satisfy the rules
in a minimal and consistent fashion. A program has zero or more answer sets,
each corresponding to a solution.

When used as a knowledge representation and programming language, Ans-
Prolog is enhanced to contain constraints (e.g. :– b,not c.), cardinality con-
straints[28] (e.g. n[a1, . . . , ak,not b1, . . .not bl]m) and weight constraints L ≤
{a1 = wa1 , . . . , ak = wak

,¬b1 = wb1 , . . . , bl = wbl} ≤ U . The first type are
rules with an empty head, stating that an answer set cannot meet the condi-
tions given in the body. Cardinality constraints are a short hand notation a
non-deterministic choice; for the constraint to hold a number between n and m
of literals in the construct need to be contained in an answer set. Weight con-
straints are similar to cardinality constraints except that each literal is now given
a weight. It is the addition of the weight of all the literals that are true which
is taking into account. These additions are syntactic sugar and can be removed
with linear, modular transformations (see [8]). Variables and predicated rules are
also used and are handled, at the theoretical level and in most implementations,
by instantiation (referred to as grounding).

Most ASP systems are composed of two processes: removing the variables
from the program by instantiation with a grounder; and computing answer sets
of the propositional program with an answer set solver. Common grounders are
lparse [27] and Gringo [22] while smodels[27], clasp[21] and dlv[20] are
frequently used solvers.

2.3 CR-Prolog

Programs do not always return answer sets. While this is exactly the behavior one
would expect for certain problems (e.g. if the problem has no solution); in other
situations having an answer is essential (e.g. a decision is required). A program
fails to produce an answer set when the program is inherently contradictory.
Removing or adding selected rules could resolve this contradiction; resulting in
the program returning answer sets. While a learning system could learn the rules
to add in certain system, it is more than often the designer’s responsibility to
specify these rules.

CR-Prolog[5, 4] is a knowledge representation language which extends tra-
ditional answer set programming with consistency-restoring rules (cr-rules for
short). These rules can be added to the program to automatically resolve the con-
tradictions. The use of cr-rules allows for modeling situations that are unlikely,
unusual, or avoided when possible. CR-Prolog has been successfully applied in
areas like planning and diagnostic reasoning[6].



A CR-Prolog program3 consists, apart from the normal AnsProlog rules,
of consistency restoring rules of the form: r : l +– B,not C where r is a label
for the rule, l is a literal, and both B and C are sets of literals. These rules
have a similar meaning as normal AnsProlog rules except that they are only
added when inconsistencies occur in the standard program. Given the nature of
cr-rules, we of course want to add as few4 of them as possible.

When there are different sets of cr-rules which could be added to resolve an
inconsistency – i.e. various answer sets can be obtained – it is possible to add a
preference to indicate which rules should be used. This can be done using atoms
of the form prefer(r1, r2) where r1 and r2 are the labels of cr-rules. When this
atom is true, it indicates that no solutions using r2 should be considered unless
no solution with r1 can be found. Adding this preference to the program also
rules out solutions in which both r1 and r2 are used.

crmodels is the associated answer set solver for CR-Prolog programs. It is
constructed on top of lparse and smodels[27]. The solver starts with checking
if the normal part of the cr-program is consistent by calling smodels. If inconsis-
tencies occur, crmodels iterative adds CR-rules on the basis of the preference
relations until answer sets are found.

We will be using CR-Prolog to resolve inconsistencies that occur when beliefs
from various agents are merged. Based on the trust an agent has in the other
agents, it will be more likely to believe information from one agent than an other.

3 ASTREA

3.1 Motivation

As discussed in the previous section, an agent’s knowledge and reasoning capa-
bilities are modeled as a logic program under the Answer Set Semantics. The
Answer Set Programming approaches used to model the knowledge of agents
have been quite effective. In such approaches the agent’s knowledge is modeled
as rules in logic programming. The answer sets of the resulting program corre-
spond to the possible sets of beliefs of a rational agent. This works well in a single
agent environment, however, when there are multiple agents passing information
problems can arise. The problem lies in the absence of any differentiation in how
strongly the agent holds each of the beliefs. For illustration, consider the follow-
ing well-known example. The agent is aware of the existence of a bird, Tweety.
The agent also knows that, while there are exceptions, birds can normally fly.
If this is the only information the agent has, the agent would rationally believe
that Tweety could fly. Suppose the agent is then told by another agent that
Tweety cannot fly. This contradicts the agent’s beliefs. The question is how to
resolve the contradiction. As a human reasoner, it is easy to see that either the
agent was missing the knowledge that Tweety was an exception to the rule about

3 In this paper we will restrict ourselves to non-disjunctive programs (i.e. rules only
have one head atom)

4 With respect to set theoretic inclusion, not cardinality.



flying or the second agent was wrong about Tweety not being able to fly. The
contradiction would also be resolved if the agent was wrong about Tweety being
a bird. This third possibility is not one that would be normally considered as it
may be assumed that Tweety being a bird is not in question. The real question is
one of which of the agent’s beliefs is the agent sure of, and which are subject to
doubt. The formalism presented in this paper will address the agent’s confidence
in its facts.

Contradiction between what an agent believes and what is it told by others
is due to the fact that agents almost always have to reason with incomplete,
and sometimes unreliable, information. Reasoning with such information leads to
uncertainty. Uncertainty about an agent’s knowledge can arise in several different
ways. As mentioned before, one possibility is that the agent may be unsure of
some of its own “facts”. For example, in the situation above, if the statement
was “The agent is aware of an animal, named Tweety, which the agent thinks
is a bird” then there would be cause to be less than positive about Tweety
actually being a bird. It is often the case that agents, human or otherwise,
receive their information from sensors which are not infallible. Hence one often
hears statements which begin with phrases such as “I thought I just saw...”. A
second reason for uncertainty is because the agent was using a defeasible rule and
has incomplete information. In the situation above, if the agent has no reason
to believe the bird is an exception to the rule about flying, the agent believes
that Tweety can fly. The agent knows however that it is making an assumption
that may be wrong. If on the other hand the agent knew that Tweety was
not an exception, then it would be more certain. A third reason that can lead to
uncertainty is that the agent may be reasoning using premises that are uncertain.
It the agent above was reasoning about a cage for Tweety, they may reason that
if a bird can fly then its cage needs to have a roof. As the agent is not certain
that the bird can fly, they cannot be certain that the cage needs a roof. Finally,
an agent may have uncertainty about a belief because it is something they were
told by another agent.

3.2 ASTREA Agents

Formalization An ASTREA framework consists of a number of agents A.
Each agent is a 6-tuple of the form a = 〈ida, Πa, Ca, Ia, trusta , ρ〉. Here, the first
element, ida, is a unique name for the agent. We denote the set of all agent names
as Aid . The second element, Πa, is the agents knowledge and beliefs written as
a standard AnsProlog program. The set of literals, Ca, are the facts within
Πa that the agent is certain of. To help establish communication and make
it possible to receive information we specify the agents from which agent a can
receive information. This is denoted as Ia with Ia ∈ 2Aid\ida . With the possibility
of conflicting information, agents also contain a trust relation to specify their
confidence in themselves and the agents they communicate with regarding the
correctness of the beliefs they hold. The trust function is defined as follows:
trusta : Ia ∪ {ida} → N. The higher the number the more trusted the agent is.
In this paper we assume that agents assign single trust values to communicating



agents but this could easily be extended to a function where trust is also assigned
on the basis of topic.

Depending on the type of reasoning that is needed by the agent, the trust
relation can be used in a variety of ways to inform the agent’s reasoning. In this
paper we look at three different trust strategies plus the situation in which the
trust relationship is ignored. In the later case, we obtain all possible ways of
obtaining a consistent set of beliefs. When the trust relationship is taken into
account, we can take the views of the most trusted agent. In case of conflicts at
the highest level, we obtain several possibilities and it will be up to the agent
to decided upon one. Another option is to give each agent a vote and count
the votes for each side of the contradiction and follow the majority. A similar
strategy is to use a weighted voted mechanism on the trust level. More details
will be given in the section where we model each strategy. Each agent within the
ASTREA framework can have its own preference strategy. Its choice is denoted
by ρ with ρ ∈ {none, trusted ,majority ,weighted -majority}. The set of choices
can easily be expanded as more trust relations are formalized.

We assume that the information the agent receives from other agents is in
response to a request, r, that each request from a given agent has a unique id
number, and that such information consists of a set of ground literals. We further
assume that the literals in such a response come from a set of common literals.
Formally, for an agent a, the set of all responses received by a will be denoted by
Ra. Elements of Ra are 3-tuples of the form r = 〈ri, aj , s〉 where ri is the unique
request id that is being responded to, aj is the name of the agent returning the
response, and s is the set of ground literals which make up the response.

In order to resolve inconsistencies, ASTREA agents consider what they have
been told by other agents. In doing so the whole set of literals in a response
will either be believed or rejected as a group. The reasoning behind rejecting all
elements of a response as a group is that, since the set is in response to a request,
one can assume that the literals in the set are likely related and therefore if one is
rejected the rest are also suspect. Identifying conditions under which one might
only partially reject a response are left for future research.

Before discussing the implementation of ASTREA agents, we will first give
an example of a possible program, Π, that an agent may have and a response the
agent may receive concerning the domain in question. The example is a precisely
stated and expanded version of the Tweety bird problem mentioned earlier in
the paper. This example will be used throughout the remainder of the paper to
illustrate the use of ASTREA.

Example 1 (A traditional method of modeling an agents knowledge in ASP).
The agent knows that birds can normally fly, but that there are exceptions. One
such exception is penguins. The agent knows that penguins cannot fly. Another
exception is wounded birds. Depending on the nature of the injury, a wounded
bird may be able to fly or it may not. However, knowing a bird is wounded is
enough reason for the agent to withhold judgment whether it can fly or not. The
agent has knowledge of two birds, Tweety and Sally. The agent also believes that
Sally is wounded. There is a third bird, Sam, that the agent is currently unaware



of. There are other agents who know about Sam, some of whom believe Sam is
a penguin.

Using the traditional methods, this agent’s knowledge can be represented by
the following program Π:

fly(X) :– bird(X),not ab(X).

bird(X) :– penguin(X).

ab(X) :– penguin(X).

¬fly(X) :– penguin(X).

ab(X) :– wounded(X).

bird(tweety).

bird(sally).

wounded(sally).

Note that another standard method of representing the first rule above is:

fly(X) :– bird(X),not ab(X),not ¬fly(X).

In this case the third rule, which states that penguins are abnormal, is not
needed. Writing the first rule in this way is useful in the single agent case. If
the agent knows a bird cannot fly, but does not have any knowledge about the
bird being abnormal, the resulting program would be still be consistent with the
alternate rule, but not with the one originally given. In a multi-agent situation
however, the encoding we gave is preferable. With the information given in the
story above, the agent would believe Tweety can fly. If told by another agent
that Tweety could not fly, the addition would be consistent with the alternate
rule. This is not the behavior we want - the agent should not automatically
believe such an assertion without the other agent giving a reason to believe the
bird was abnormal.

Given the story, a possible request the agent may make is to ask other agents
for the information they have about birds. An example of a possibly response is

〈ri, aj , {¬fly(tweety),¬fly(sam), bird(sam), penguin(sam)}〉

with ri the request id and aj the name of the agent that responded. In this
case, the information about Sam is new. It does not contradict anything the
agent currently believes so the agent has no reason to disbelieve it. However, the
information about Tweety contradicts the agent’s belief that Tweety can fly. It
is contradictions such as this that ASTREA is meant to resolve.

Modeling Agent’s Beliefs In the example above the domain was modeled in
a standard way, as is usual in a single agent environment. In this work, however,
we need to be able to resolve conflicts between multiple agents. There are several
ways we could approach this problem. We could create either: a new semantics; a
new methodology for modeling the domain; or a translation from models created



using the traditional approach into new models which meets our needs. In this
paper we opt for the third solution and present a translation. This will allow users
to program in a formalism they are familiar with and to use existing off-the-shelf
tools.

Before we present the translation we will start by highlighting the assump-
tions we make. First, for this paper we assume a single time instant and only
the rules of the agent which concern the agents knowledge. That is, we do not
consider rules regarding the actions of the agent. This assumption is not criti-
cal, however it does simplify the discussion in the paper. We also assume that
the predicate disbelieved of arity 2 does not to exist in Π. If such a predicate
did exist we could simply use a different, unused predicate in the translation.
Again, this assumption just simplifies the discussion. Furthermore, we assume
the agents themselves are consistent. In other words, the program representing
the agent’s knowledge using traditional methods has at least one answer set. This
assumption is quite natural since we assume rational agents and it is irrational
for an agent to have inconsistent beliefs.

With respect to the translation, we assume that, for the sake of grounding,
the set of all constants used by the agents are known to each agent. This will
simplify our discussion of the translation. In actual use one would need to modify
the translated program if new constants were discovered in communications with
other agents. Due to space consideration, rules which are not changed by the
translation will be left ungrounded.

Definition 1 (Translation ΠT
a ).

Let a = 〈ida, Πa, Ca, Ia, trusta , ρ〉 be an agent. Using Πa (grounded) and Ca we
create the translated program ΠT

a as follows:

For each rule with an empty body (fact) in Π

l.

we add one the following to ΠT
a :

if l ∈ Ca then add

l. (1)

otherwise, two rules are added

l :– not disbelieved(x, ida). (2)

r(x, ida) : disbelieved(x, ida) +– . (3)

where x is a unique identification number for each new rule.

For each rule in Π with a non-empty body

l0 :– l1, . . . , lm,not lm+1, . . . ,not ln.



(including rules with empty heads) add the rule to ΠT
a and for each m+1 ≤ i ≤ n,

add the following two rules to ΠT
a :

li :– disbelieved(x, ida). (4)

r(x, ida) : disbelieved(x, ida) +– . (5)

where, as before, x is a unique identification number for each new rule.

In addition to translating the agents own knowledge, the responses received
from other agents must also be translated. The translation of responses, RT

a , is
formed as follows:

Definition 2 (Translation RT
a ).

Let a be an agent and Ra be the set of responses received by that agent from its
requests. For each r = 〈ri, aj , s〉 ∈ Ra with s = {l1, . . . , ln} the rule

r(ri, aj) : disbelieved(ri, aj) +– . (6)

is added to RT
a and for each

1 ≤ k ≤ n the following rule is also added:

lk :– not disbelieved(ri, aj). (7)

As in the case of the non-translated program, answer sets of the translated
program correspond to possible sets of beliefs of the agent. It is possible that
information from other agents in response to requests leads to conflicts. In this
case CR-Prolog will automatically try to restore consistency by firing cr-rules.

Each cr-rule fired will add a disbelieved predicate to the answer set. If a
disbelieved predicate added is one from a rule of type 2 then it indicates the
agent chose to disbelieve an uncertain fact in the agent’s original information. If
it is from a rule of type 4, it indicates the agent chose to believe a literal occurring
under default negation may be true, hence blocking that default rule. Finally, if
the predicate is of the form disbelieved(r, a), where r is a request number and a is
the name of another agent, then the agent chose to disbelieve the entire response
from agent a to request r. By firing some subsets of the cr-rules, consistency will
be restored. Notice that, since we assume the agent itself is consistent, in the
worst case disbelieving all responses from other agents will necessarily result in
consistency. There will often be more than one minimal subset of cr-rules by
which consistency can be restored. The resulting answer sets are the possible
beliefs of the agent. This will be illustrated by the following example.

Example 2 (Translation and restoring consistency). Recall the Tweety bird story
from Example 1. The agent’s knowledge was represented by the following pro-
gram, Π:

fly(X) :– bird(X),not ab(X).

bird(X) :– penguin(X).



ab(X) :– penguin(X).

¬fly(X) :– penguin(X).

ab(X) :– wounded(X).

bird(tweety).

bird(sally).

wounded(sally).

For this example, assume that the current agent is named agent0 and the
unique ids used in the rules start from 1. Furthermore, assume that
C0 = {bird(tweety), bird(sally),wounded(sally)}. Using our translation, the re-
sulting translated program, ΠT

0 is:

fly(X) :– bird(X),not ab(X).

ab(tweety) :– disbelieved(1, agent0).

r(1, agent0) : disbelieved(1, agent0).

ab(sally) :– disbelieved(2, agent0).

r(2, agent0) : disbelieved(2, agent0).

ab(sam) :– disbelieved(3, agent0).

r(3, agent0) : disbelieved(3, agent0).

bird(X) :– penguin(X).

ab(X) :– penguin(X).

¬fly(X) :– penguin(X).

ab(X) :– wounded(X).

bird(tweety).

bird(sally).

wounded(sally).

As mentioned, for space rules were kept unground when possible.
If then, in response to a request with id 4, the agent receives information

from another agent, agent1, stating that they believe that Tweety cannot fly
but Sally can (i.e. R0 = {〈4, agent1, {¬fly(tweety),fly(sally)}〉}), then RT

0 is:

¬fly(tweety) :– not disbelieved(4, agent1).

fly(sally) :– not disbelieved(4, agent1).

r(4, agent1) : disbelieved(4, agent1) +– .

If not for the cr-rules, the resulting program, ΠT
0 ∪ RT

0 would entail both
fly(tweety) and ¬fly(tweety) and hence it would be inconsistent. However, using
CR-Prolog, one of the two cr-rules will fire, adding either disbelieved(1, agent0)
or disbelieved(4, agent1). Firing the first cr-rule and adding disbelieved(1, agent0)
corresponds to the agent deciding that they may be wrong about Tweety not
being abnormal with respect to flying. It is then safe for the agent to believe



what they were told by the other agent; that Tweety could not fly and Sally
could. If the second cr-rule was fired instead, it would correspond to the case
when the agent chooses to disbelieve what they had been told by the other agent.
As a result, the agent would go on believing that Tweety could fly and would
hold no belief one way or the other as to Sally’s ability to fly. Even though the
information about Sally does not conflict with the beliefs of the agent, the whole
response is rejected. Notice that if a response from a different agent had stated
that Sam was a penguin and could not fly, then the agent would believe the
response in either case as it would not cause any contradictions.

Without adding any additional code, the answer sets returned will correspond
to all possible minimal ways of resolving the contradiction. There is no preference
given between them. This is the behavior the agent will have if the agent’s choice
of preference strategy, ρ, equals none.

In general, if ρ = none the agent computes its possible sets of beliefs by using
CR-Prolog to find the answer sets of ΠT

a ∪RT
a . Each answer set is a possible set

of beliefs of the agent. In the subsections that follow the other trust relations
will be shown.

3.3 Building on Trust

Recall from Section 3.2 that each agent has its own trust function. Two of the
four trust relations given below require that the values of this trust function
be encoded. If a = 〈ida, Πa, Ca, Ia, trusta , ρ〉 is an agent where ida = agent0
and Ia = {agent1, . . . , agentn} then we define Ta as the program consisting of
all facts of the form trust(agent i, t). where 0 ≤ i ≤ n and trusta(agent i) = t.
Recall that the agent will quantify the trust it has in its own ability.

Distrust Lowest Trust Levels First The first preference relation presented
here is one in which the agent prefers to disbelieve information from agents it
trusts less when they are in conflict with information from agents it trusts more.
This corresponds to the agent having trust strategy ρ = trusted . This strategy
is encoded using the following program, denoted by Tr :

prefer(r(N1, A1), r(N2, A2)) :– trust(A1, T1), trust(A2, T2), T1 < T2,

disbelieved(N1, A1),not disbelieved(N2, A2).

prefer(r(N1, A1), r(N2, A2)) :– trust(A1, T1), trust(A2, T2), T1 < T2,

not disbelieved(N1, A1), disbelieved(N2, A2).

In order to compute beliefs of an agent using this strategy, CR-Prolog is used
on the program ΠT

a ∪RT
a ∪ Ta ∪ Tr .

Example 3 (Trust Strategy “Trusted”). Consider an agent, agent0, ΠT
0 as in

example 2, and T0 as follows:

trust(agent0, 2).

trust(agent1, 3).

trust(agent2, 1).



Notice this means that the agent trusts agent1 more then they trust themselves,
but agent2 least of all. Suppose, in response to a request, the agent had RT

0 =

¬fly(tweety) :– not disbelieved(4, agent1).

r(4, agent1) : disbelieved(4, agent1) +– .

fly(tweety) :– not disbelieved(4, agent2).

r(4, agent2) : disbelieved(4, agent2) +– .

In other words, in their responses agent1 said Tweety cannot fly but agent2 says
Tweety can.

When the resulting program, ΠT
0 ∪ RT

0 ∪ T0 ∪ Tr , is run using CR-Prolog
there is only one answer set. The answer set contains ¬fly(tweety) and both
disbelieved(1, agent0) and disbelieved(4, agent2). This is the desired result as
agent1 said Tweety could not fly and agent1 is the most trusted agent.

If there is a conflict between two equally trusted agents and there is no agent
with a higher trust level that resolves the same conflict then there will be multiple
answer sets. Note that, if there are multiple requests, an agent may be believed
on some of its responses and disbelieved on others.

Trust the Majority Another trust relation an agent might use is to choose to
trust the majority (ρ = majority). In this case there is no need to specify specific
trust levels. In case of a conflict the agent minimizes the number of responses
it needs to disbelieve, hence believing the majority. As it is very difficult to
tell which disbelieved statements within ΠT

a correspond to a given response, if
anything is disbelieved within ΠT

a then the agent counts itself as one response
disbelieved. In order to implement this relation, the following program, Mv is
used:

agentvote :– disbelieved(N, ida).

count(C + V ) :– C{disbelieved(J,K) : request(J) : agent(K)}C,
V {agentvote}V.

ac(C) : countallowed(C) +– .

prefer(ac(C1), ac(C2)) :– C1 < C2.

¬count(C) :– not countallowed(C).

Notice that here we also need predicates request(J) and agent(K) for each
request id, J , and agent name, K, other than ida. The program works by forcing
an inconsistency unless the number of responses disbelieved (plus one if the agent
has to disbelieve anything in its own knowledge and beliefs) is not equal to the
allowed count. The allowed count is controlled by a cr-rule with a preference
for answer sets with lower counts. As a result the agent gets the answer set(s)
with the minimum count. As the trust function is not used here, the beliefs are
computed by passing ΠT

0 ∪RT
0 ∪Mv to CR-Prolog.



Example 4 (Trust Strategy “Majority”). Consider an agent, agent0, with ΠT
0 as

in Example 2, and RT
0 as in example 3. In this case, since both the agent itself

and agent2 believe the Tweety can fly and only agent1 believes that Tweety
cannot, there is only one answer set. In that answer set Tweety can fly, as that
was the majority.

It is interesting to note, however, that if agent1’s response had been that
Tweety cannot fly and furthermore Tweety is a penguin, then there would have
been two answer sets. One, as before, in which Tweety can fly, and one in which
Tweety is a penguin and hence cannot fly. This is due to the fact that agent1’s
beliefs were only in conflict with the agents beliefs in the first case because agent1
said that Tweety could not fly but did not give any reason for agent0 to believe
Tweety was abnormal. By adding that Tweety was a penguin, agent1’s response
is no longer in conflict with the beliefs of agent0. This is because, if agent0
accepts what agent1 replied, it assumes it was simply missing the information
that Tweety was a penguin and therefore an exception to the rule about flying.

A Weighted Majority Wins The third trust relation is also based on a
majority, however this time, agents with higher trust levels carry more weight
than those with lower trust levels when deciding the majority. It can be viewed
as a voting system where some agents may get more votes than others. This is
the strategy used when ρ = weighted -majority . For this, the program, Wm is:

vote(R,A, V ) :– disbelieved(R,A), trust(A, V ).

#weight vote(J,K,L) = L.

agentvote :– disbelieved(N, ida).

#weight trust(ida, T ) = T.

#weight agentvote = trust(ida, T ).

count(C + V ) :– C{vote(J,K,L) : request(J) :

agent(K) : numvotes(L)}C,
V {agentvote}V.

ac(C) : countallowed(C) +– .

prefer(ac(C1), ac(C2)) :– C1 < C2.

¬count(C) :– not countallowed(C).

The code is similar to the code for the previous relation with a few changes.
First, and most importantly, the trust level returned by the agent’s trust func-
tion for each agent is the number of votes that agent receives. Next, the predicate
numvotes(L) must exist for each value L in the range of the agent’s trust func-
tion. Finally, weight rules from smodels are used to assign weights to each vote.
The program works similarly to that in the previous example except here total
number of votes is minimized rather than simply the number of responses dis-
believed. As we use the trust function in this relation, the CR-Prolog program
used is ΠT

0 ∪RT
0 ∪ Ta ∪Wm.



Example 5 (Trust Strategy “Weighted-Majority”). Consider an agent, agent0,
with ΠT

0 as in example 2, and both RT
a and Ta as in example 3. The agent

and agent2 both agree that Tweety can fly. In order to accept this belief, agent1
would have to be disbelieved. Since agent1 has 3 votes, that is 3 votes against this
answer. agent1 says Tweety cannot fly. Accepting that response would require
that both the agent itself and agent2 be disbelieved. Together they also have 3
votes. There is a tie so there are two answer sets, one in which the agent believes
Tweety can fly, one in which the agent believes Tweety cannot.

If, as in the previous example, agent1 had added that Tweety was a penguin
then in the case where Tweety cannot fly, the agent is not in conflict so there is
only one vote against. Therefore there is only one answer set, the one in which
Tweety cannot fly.

4 Related Work

The ASP community has a vast body of research in the area of representing either
preferences, order, priority, or trust in answer set programs. Some researchers
allow preferences expressed on the level of atoms, within the program [11], or
on the Herbrand base [29], while others define them through rules [14, 17]. In
some systems the preferences are used to select the most appropriate solution
after the models are computed [31], while others use them for computing their
solutions [19]. It is beyond the scope of this paper to give a detailed overview
of all those systems. In CR-Prolog, preference is based on rules. Because of
our transformation of the initial AnsProlog program, the rules on which the
preferences are defined are facts. So one could argue that due to construction we
have obtained an ordering on atoms. Each of these atoms is a disbelieved atom
indicating that all information received from a certain agent about a certain
request is ignored. The preferences used in CR-Prolog are tightly linked with its
consistency restoring mechanism. While we would have been able to encode the
preference in other formalisms using different transformations, we believe that
the CR-Prolog’s philosophy, believe everything unless you have no other option,
fitted in the most natural way.

One of the ways of dealing with contradiction between information supplied
from agents that we presented used a voting mechanism. To our knowledge, [25]
is the only other paper to describe voting mechanisms in answer set program-
ming. In that paper voters provide a partial preference relation over the set
of candidates and three voting mechanism are provided: Borda, plurality, Con-
dorcet. In our paper, voting only takes place when a contradiction takes place
and votes are distributed on either side of the contradiction. It is either a straight
majority vote or the preference relation is used to assign weighted votes.

Multi-agent systems is a very active research domain, but most of research
focuses on agents’ actions. While there is research on modeling agents’ beliefs
[32], very little research has been taken place so far in updating the beliefs of
the agents.



[15] proposes an agent architecture based on intelligent logic agents. Ab-
duction is used to model agent reasoning. The underlying language is LAILA,
a logic-based language which allows one to express intra-agent reasoning and
inter-agent coordination coordinating logic based agents. No preferences between
sources can be expressed. Using CR-Prolog together with our disbelieved atoms
mimics up to a certain point abductive behavior, as we try to deduce who is or
could be responsible for the contradiction in the belief set.

In [30], the authors use program composition to model agent cooperation
and information sharing. We believe that is not a viable way in large multi-
agent systems due to the size of the program. Furthermore, one could imagine
agents being reluctant to share all the information (including possible private
information) with others.

In the Minerva architecture [26], the authors build their agents out of sub-
agents that work on a common knowledge base written as a MDLP (Multi-
Dimensional Logic Programs) which is an extension of Dynamic Logic Program-
ming. Our agents do not work with a common knowledge base; each agent decides
what she wants to keep private or make available. Minerva does not restrict it-
self to modeling the beliefs of agents, but allows for full BDI-agents that can
plan towards a certain goal. It would be interesting to see if this can also be
incorporated in our system.

5 Conclusions and Future Work

In this paper we proposed a new methodology for modeling and reasoning about
multi-agents system in which the agents exchange information that is possibly
contradictory. The information processing part of the agents uses answer set
programming to describe the current knowledge, beliefs and capabilities. When
new data is added as a result of a series of requests, the program is translated
into CR-Prolog program that resolves possible inconsistencies. Our framework
currently offers four different strategies to select the most appropriate conflict
resolution recommendations. Two of these are based on the trust agent’s place
in themselves and communicating agents when it comes to supplying correct
information.

One area for future work concerns knowledge versus belief. With new and pos-
sibly contradicting information coming from other agents and an ever-changing
environment, it is important that agents make a distinction between knowledge,
pieces of information that cannot be refuted, and beliefs, information that can
be changed over time. This was dealt with to some extent in the formalism pre-
sented in that the agent can differentiate between facts it is certain of and those
it is not. But what about information passed in a response? A responding agent
could separate their response into two parts; the part it knows to be true and the
part that it only believes. If we assume that if an agent says it “knows” a literal
then the literal must be true in the real world, then the receiving agent could
always accept the known part of the response even if it rejected the believed
part. The next question that arises is “how does an agent tell the difference



between what it knows and what it believes?” Answering these questions and
incorporating the answers into ASTREA could result in a more robust system.
We have some preliminary work on these questions. Our current approach in-
volves a larger, more complex translation of the agent’s knowledge. It is not
presented here due to space constraints.

A somewhat related topic is the question of when can an agent accept part
of a response while rejecting the rest. When the parts in question are beliefs
this is a much more difficult question. In our examples in this paper, we were
concerned with birds and their ability to fly. As a human reasoner we can see
that a response which contained information about two different birds could be
split. The question is how to incorporate that reasoning ability in the agents.
One approach may be to limit requests to try to prevent the responses from
containing information that was not closely related. That approach, however,
seems to be overly restrictive. For us partial acceptance is an open question.

Another open question concerns incorporating knowledge from responses into
the agent’s facts. At present new information gained from other agents as a result
of a request for information is not added to the agent’s knowledge base for future
use. Neither is the program updated when the agent finds out that some of its
beliefs are false. CR-Prolog guarantees that if disbelieved information is removed,
a consistent program remains. However, difficulties arise when CR-Prolog returns
with several equally preferred ways of restoring consistency. In the future, we
plan to look at different update strategies. It is, of course, theoretically possible
to continue to store responses and reason with them as a separate component.
In human reasoning however, there comes a time in which the agent moves
beliefs from “things they were told” into “things they believe” and no longer
try to remember where they heard them. Deciding when and how to do this
in ASTREA agents is an interesting question for future consideration. In [2],
the authors present dynamic logic programs to capture a knowledge base that
changes of over time. EvoLP [3] is an extension of this language designed for
multi-agent system. While both deal with inconsistencies, neither consider trust
to determine the update. It will be interesting to see if both we can combine
updates with trust.

At present agents only communicate facts. One could envisage situations in
which agents want to communicate rules as well. Using CR-Prolog, it should
be easy to incorporate this. As mentioned earlier, preference relations could be
expanded to specify preferences not only on the basis of the agent but also on
the topic.

In this paper CR-Prolog was only used as a tool. The research did, however,
inspire several ideas about potential modifications to CR-Prolog. While the cur-
rent version of CR-Prolog can use clasp as its solver, CR-Prolog itself is tightly
coupled to lparse. As a result, some new constructs available in clasp, such as
aggregates, cannot be used. Such aggregates would have been useful in encoding
some of the trust relations presented in this paper. A new version of CR-Prolog,
which was either based on gringo or which allowed the easy addition of new
language feature, is a possible area for future research.



Another direction for further research on CR-Prolog concerns preferences.
One of the trust relations presented in this paper was one in which, in case of
conflict, you prefer to disbelieve agents with lower trust levels over those with
higher trust levels. An obvious way to model this would be to have the rule

prefer(r(N1, A1), r(N2, A2)) :– trust(A1, T1), trust(A2, T2), T1 < T2.

where A1 and A2 are agents identifiers, N1 and N2 are either unique agent
rule identifiers or unique request identifiers, and T1 and T2 are trust levels.
Unfortunately, this would not give the desired results. In the current version
of CR-Prolog, given two cr-rules, r1 and r2, if rule r1 is preferred to rule r2
then if there is a model which uses r1 but not r2 it is preferred to a model
which uses r2 but not r1. However, it also disallows models which use both r1
and r2. Suppose there are three agents, a1, a2, and a3 with a1 being the least
trusted and a3 being most trusted. For the desired trust relation, disbelieving
a1 is preferred to disbelieving a2, but it may be necessary to disbelieve both if
they are both in conflict with a3. The ability to use different preference relations
within CR-Prolog would enhance its abilities and would allow for more elegant
problem solutions in some cases.

References

1. Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,
and Paolo Torroni. The socs computational logic approach to the specification
and verification of agent societies. In Corrado Priami and Paola Quaglia, editors,
Global Computing, volume 3267 of Lecture Notes in Computer Science, pages 314–
339. Springer Berlin / Heidelberg, 2005.

2. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. Semantics for dynamic logic
programming: A principle-based approach. In Vladimir Lifschitz and Ilkka Niemel,
editors, LPNMR’03, volume 2923 of Lecture Notes in Computer Science, pages 8–
20. Springer Berlin / Heidelberg, 2003.

3. Jose Alferes, Antonio Brogi, Joao Leite, and Luis Pereira. Logic programming for
evolving agents. In Cooperative Information Agents VII, volume 2782 of Lecture
Notes in Computer Science, pages 281–297. Springer Berlin / Heidelberg, 2003.

4. Marcello Balduccini. Answer set based design of highly autonomous, rational
agents. Phd thesis, Texas Tech University, December 2005.

5. Marcello Balduccini and Michael Gelfond. Logic programs with consistency-
restoring rules. In AAAI Spring 2003 Symposium, pages 9–18, 2003.

6. Marcello Balduccini and Michael Gelfond. The aaa architecture: An overview.
In AAAI 2008 Spring Symposium on Architectures for Intelligent Theory-Based
Agents, 2008.

7. Chita Baral and Michael Gelfond. Reasoning agents in dynamic domains. In Jack
Minker, editor, Logic Based Artificial Intelligence, pages 257–279. Kluwer Acedemic
Publishers, 2000.

8. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solv-
ing. Cambridge Press, 2003.

9. Chitta Baral and Michael Gelfond. Reasoning agents in dynamic domains. In Logic-
based artificial intelligence, pages 257–279. Kluwer Academic Publishers, 2000.



10. Michael. E. Bratman. What is intention? In Philip R. Cohen, Jerry L. Morgan,
and Martha E. Pollack, editors, Intentions in Communication, pages 15–32. MIT
Press, 1990.
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