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Abstract 

Effective piezoelectric coefficients *

33e , *

33d , *

33g , and *

33h , squared figures of merit *

33d *

33g  and *

hd *

hg , 

and other related parameters of novel 0–3 and 0–3–0 composites based on single crystals of 

relaxor-ferroelectric solid solutions of (1 – x)Pb(Mg1/3Nb2/3)O3 – xPbTiO3 are studied using the 

effective field method, effective medium method and finite element method. The volume-fraction 

dependences of a number of parameters and figures of merit are determined using the above 

methods and compared for composites with aligned prolate spheroidal inclusions. Four parameter 

ratios that determine interconnections between the effective electromechanical constants of the  

0–3-type composites are first introduced. These parameter ratios are used to interpret the 

longitudinal dielectric and piezoelectric response of composite structures with prolate inclusions 

that exhibit high piezoelectric activity. The role of piezoelectric anisotropy and activity of the 

composite components in forming the longitudinal piezoelectric effect is analysed. Specific novel 

composite architectures with high piezoelectric sensitivity (longitudinal and hydrostatic) are 

identified and discussed. 
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1. Introduction 

 

Piezo-active composites often show a remarkable ability to convert mechanical energy into 

electric energy and vice versa. In the last decades these materials have been studied and developed 

[1, 2] in an attempt to improve their performance for sensor, hydrophone and other applications. 

The application of single crystals (SCs) of perovskite-type relaxor-ferroelectric (1 – 

x)Pb(Mg1/3Nb2/3)O3 – xPbTiO3 (PMN–xPT) and (1 – y)Pb(Zn1/3Nb2/3)O3 – yPbTiO3 (PZN–yPT) 

solid solutions as highly effective components of novel piezo-active composites has been 

discussed in recent papers  (see, for instance, Refs. 2–6). The use of SCs with „engineered domain 

structures‟ [7] and compositions near the morphotropic phase boundary [7–9] are of significant 

interest due to their excellent electromechanical properties compared to those of conventional 

piezoelectric ceramics [2, 10]. Results on the relaxor-ferroelectric SC / polymer composites with 

2–2 [11–14], 1–3 [3–6, 15, 16] and 0–3 [17] connectivity patterns (in terminology of Newnham et 

al. [18]) show that the domain-engineered PMN–xPT and PZN–yPT SCs promote high 

piezoelectric sensitivity, activity and significant hydrostatic piezoelectric response within specific 

ranges of volume fractions of components. The role of the relaxor-ferroelectric SC as a component 

in 1–3-type composites has also been analysed [4] to demonstrate the volume fraction ranges in 

which the effective composite parameters are most sensitive to material properties and composite 

architecture. Related 0–3 SC / polymer composites and maxima of their effective parameters were 

considered in paper [17]. At present it is not yet fully understood how the SC component 

influences the piezoelectric response of 0–3 composites with isolated ferroelectric inclusions that 

are surrounded by a matrix with piezoelectric properties (e.g., ferroelectric ceramic or polymer). 

This work is concerned with a prediction of the effective piezoelectric properties of the 0–3-type 

composites based on PMN–xPT SCs.  

 In the present paper we discuss features of the performance of the 0–3-type SC-based 

composites for piezoelectric sensor and related applications. To compare the performance and 
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identify potential novel architectures, we consider composites that contain SC inclusions 

embedded in one of the following matrices: polymer, porous ceramic or monolithic ceramic. For 

comparison, the effective electromechanical properties of the piezo-active composites are 

predicted using different methods, and an emphasis is placed on the piezoelectric coefficients that 

characterise the longitudinal response of the studied composites on the poling direction.  

2. Methods for Modelling of Effective Electromechanical Properties 

 

In this study we consider composites with the spheroidal SC inclusions (Fig. 1) that are uniformly 

aligned in the matrix and form a periodic structure. In each inclusion the main crystallographic 

axes are oriented as follows: X || OX1, Y || OX2 and Z || OX3. It is assumed that centres of symmetry 

of the inclusions occupy sites of a simple lattice with unit-cell vectors parallel to the OXj axes 

shown in Fig. 1. The SC inclusions have a spontaneous polarisation Ps
(1)

 || Z || OX3, and the 

composite sample as a whole is poled along the OX3 axis. The composite is characterised by 0–3 

connectivity in case of the monolithic matrix and by 0–3–0 connectivity in the case of a porous 

matrix (3–0 connectivity) with a system of isolated air inclusions. It is assumed that the spherical 

air inclusions are uniformly distributed in the ceramic matrix and the radius of each air inclusion is 

much less than the length of each semiaxis aj of the spheroidal inclusion.   

To determine the effective electromechanical properties of the 0–3-type composite with the 

above-described microgeometry, it is possible to apply averaging procedures [2, 19–21], that 

allow for an electromechanical interaction between the piezo-active SC inclusions in the 

composite matrix. The first procedure is based on the effective field method (EFM), i.e., the Mori 

– Tanaka method [22] generalised for heterogeneous piezoelectric media [19–21]. In the EFM, an 

individual inclusion within the matrix, which is under an external electroelastic field, is subjected 

to the action of an unknown average (so-called effective) electroelastic field. This average field is 

a result of the external field applied to the matrix (and, therefore, to the composite sample as a 

whole) wherein the interaction between the inclusions plays the key role. The second procedure is 
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based on the effective medium method (EMM). In the EMM, a single inclusion is considered to be 

surrounded by a homogenised (effective) medium, and this medium is regarded as a matrix with 

similar inclusions. The EFM and EMM represent two self-consistent schemes for the calculation 

of the full set of electromechanical constants, and the electromechanical interaction between the 

inclusions in the matrix plays a key role in determining the effective properties. Using the 

equivalent inclusion approach, the coupled electroelastic behaviour of the 0–3 ferroelectric 

ceramic / polymer composite with spheroidal inclusions has been previously modelled [19–23] in 

a wide range of the volume fraction m. 

The effective electromechanical properties of the 0–3-type composite are represented in the 

general form [2, 24] as 
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electromechanical properties of the inclusions (n = 1) and the surrounding medium (n = 2) in the 

0–3 composite, || A || is the mechanical strain – electric field concentration matrix (9  9 matrix),  

|| c
(n),E 

|| is the 6  6 matrix of elastic moduli measured at constant electric field, || e
(n)

 || is the 6  3 

matrix of piezoelectric coefficients, || (n),
 || is the 3  3 matrix of dielectric permittivities 

measured at constant mechanical strain, and superscript t denotes the transposition. The matrix ||A|| 

from Eq. (1) is related to the boundary conditions in the „inclusion – surrounding medium‟ region 

and written [2, 19, 21, 24] as follows:  
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(EMM), where ||
 
I ||

 
is the 9  9 identity matrix, || S

 
|| is the 9  9 matrix containing components of 

the Eshelby electroelastic tensor [19, 21, 24] and || C*
 
||

 
is the 9  9 matrix from Eq. (1). Elements 

of || S
 
|| from Eqs. (2) and (3) depend on electromechanical constants of the matrix of the 0–3 

composite and on the aspect ratio  = a1 / a3 of the SC spheroidal inclusions. In the EMM, 

effective electromechanical constants are calculated as a result of a series of iterations involving 

Eqs. (3) and (1). Electromechanical constants of the porous ceramic matrix with 3–0 connectivity 

are determined from an expression used in the dilute approach [25] 
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where ||
 
C

(FC) 
|| describes the electromechanical properties of monolithic ceramic, mp is the volume 

fraction of the air inclusions (i.e., porosity of the ceramic matrix in the composite sample) and
 
|| S

 
|| 

is calculated by taking into account elements of ||
 
C

(FC) 
|| and the shape of the air inclusions ( = 1). 

In the case of the 0–3–0 composite matrix, || C
(2)

 || from Eq. (4) is then substituted into Eq. (1) and 

taken into account when determining || A || and || S || from Eqs. (2) and (3).     

In the present study the COMSOL package [26] is applied to obtain the volume-fraction 

dependence of the effective electromechanical properties of the 0–3 composite based on a SC with 

high piezoelectric activity. In particular, a unit cell, containing the spheroidal inclusion (Fig. 1) 

with radius adjusted to yield the appropriate volume fraction m, is discretised using tetrahedral 

elements. Their number, depending on the aspect ratio  of the spheroidal inclusion, varies from 

320,000 to 760,000. The unknown displacement and electric-potential fields are interpolated using 

linear Lagrangian shape functions. The corresponding number of degrees of freedom varies from 
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200,000 to 500,000. Periodic boundary conditions are enforced on the boundary of the unit cell, 

and the matrix of effective constants of the composite is computed column-wise, performing 

calculations for diverse average strain and electric fields imposed to the structure. The Geometric 

Multigrid [27] iterative solver (V-cycle, successive over-relaxation pre- and post-smoother, direct 

coarse solver) is employed. After solving the electro-elastic equilibrium problem, the effective 

electromechanical constants of the 0–3-type composite are computed, by averaging the resulting 

local stress and electric-displacement fields over the unit cell. 

In the three aforementioned methods, the effective properties of the composite are 

determined in a long-wave approximation [2], i.e., in a case when the wavelength of an external 

acoustic field is much longer than the semi-axes a1 and a3 of the separate inclusion (Fig. 1). The 

matrix of the effective electromechanical properties || C*
 
|| = 
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as a function of m and  (0–3 composite), or m,  and mp (0–3–0 composite). The 

interrelationships of the effective piezoelectric coefficients 
*

fqe  (stress coefficients), 
*

fqd  (charge 

coefficients), 
*

fqg  (voltage coefficients), and 
*

fqh  (strain coefficients) are expressed by a set of 

equalities [28] as follows: 

 

*

fpd  =  *

fk

*
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*

fqe E

qps* ,                                                                                                (5) 

*
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fqd E
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*
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and 

*
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*
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*

fqg D
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In Eqs. (5) – (8)  *

fk
 is dielectric permittivity measured at constant mechanical stress, E

qps*  and D

qps*  

are elastic compliances measured at constant electric field and electric displacement, respectively, 

D

qpc*  is elastic modulus measured at constant electric displacement, and  *

fk  and  *

fk  characterise 

dielectric impermeability at constant stress and strain, respectively. Electromechanical constants 

from Eqs. (5) – (8) are also linked [28] by the following equalities: 

 

 *

kr –
 *

kr  = 
*

kfd *

rfe ,                                                                                                 (9) 

D

pqc* – E

pqc*  = 
*

fpe *

fqh ,                                                   (10) 

D

pqs* – E

pqs*  = 
*

fpd *

fqg ,                                                      (11) 

and 

 
 *

kr – 
 *

kr = 
*

kfg *

rfh .                                            (12) 

  

Taking into account electromechanical constants from Eqs. (5) – (8), one can consider 

dependences of a series of effective parameters on volume fractions of components and on the 

aspect ratios of the inclusions and porosity of the ceramic. The important composite parameters 

and figures of merit to be studied include the electromechanical coupling factors 
*

33k =
*

33d / 

( Es*

33

 *

33 )
1/2

 (longitudinal factor) and 
*

tk =
*

33e / ( Dc*

33

 *

33 )
1/2

 (thickness factor) and squared figures of 

merit 
2*

33)(Q =
*

33d *

33g  (at the longitudinal piezoelectric response) and 
2*)( hQ  = *

hd *

hg  (at the 

hydrostatic piezoelectric response), where 
*

hd  = 
*

33d  + 2
*

31d  and 
*

hg  = 
*

33g  + 2
*

31g  are hydrostatic 

piezoelectric coefficients of the composite. Electromechanical coupling factors characterise ability 

of any piezoelectric material to convert electric energy into mechanical energy and vice versa at 

different oscillation modes [10, 28]. Figures of merit are often used [1, 2, 11, 12, 15, 16] to 
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describe the sensor signal-to-noise ratio of the piezoelectric element and to characterise its 

piezoelectric sensitivity.   

3. Results and Discussion 

3.1. Effective Piezoelectric Coefficients and Their Anisotropy 

To predict the performance of the studied 0–3-type composites, we use complete sets of 

experimental electromechanical constants [9, 29, 30] involved in || C
(n) 

|| from Eqs. (1) – (4). 

Room-temperature constants of components of the 0–3 SC-based composites considered in this 

paper are collected in Table 1. Compositions of PMN–xPT were chosen near the morphotropic 

phase boundary due to high piezoelectric activity (d3j  10
3
 pC / N). At room temperature PMN–

0.33PT is SC with a rhombohedral distortion of the perovskite unit cell (3m symmetry). However, 

the domain-engineered PMN–0.33PT SC poled along the perovskite unit-cell direction [001] is 

characterised by macroscopic 4mm symmetry. In this polydomain state, there are four domain 

types that provide the effective spontaneous polarisation Ps
(1)

 || OX3 of the SC sample as a whole. 

Electromechanical constants of porous ceramic of PMN–0.35PT were calculated using data on 

poled monolithic ceramic (see Table 1) and Eq. (4). Both the monolithic and porous ceramics in 

the poled state are characterised by mm symmetry. Contrary to the SC and ceramic components, 

araldite is the isotropic piezo-passive polymer material. The electromechanical constants listed in 

Table 1 indicate that the anisotropy of the piezoelectric coefficients jе3  is considerable: for 

example, 33е  / | 31е | = 5.2 for PMN–0.33PT SC, 33е  / | 31е | = 5.6 for monolithic ceramic of PMN–

0.35PT and 33е  / | 31е | = 10.4 for porous ceramic of PMN– 0.35PT. 

Below we analyse piezoelectric features of the following 0–3-type SC-based composites: 

PMN–0.33PT SC / araldite (composite 1 in our notations), PMN–0.33PT SC / PMN–0.35PT 

ceramic (composite 2 in our notations) and PMN–0.33PT SC / PMN–0.35PT porous ceramic at mp 

= 0.3 (composite 3 in our notations). In an attempt to attain large absolute values of the 
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longitudinal piezoelectric coefficients *

33X  (X = e, d, g, and h) in these anisotropic structures and 

to weaken the depolarising electric field in the presence of SC inclusions, we consider composites 

with the prolate inclusions (0 <  < 1). The results, shown in Figs.  2 – 4, suggest that the prolate 

shape of the SC inclusion with the lower  value promotes a higher composite piezoelectric 

activity at m = const. This prolate geometry is also favourable in attaining high piezoelectric 

sensitivity ( *

33g  = *

33d  /  *
33

) in composite 1 due to the large piezoelectric coefficient *

33d  combined 

with a relatively low dielectric permittivity  *
33

 in the volume-fraction range 0 < m < 0.1. 

The reason for the difference between the values of the piezoelectric coefficients *

33X  

calculated for composite 1 by means of different methods (Fig. 2 (a) – (d)) is possibly  due to a 

relatively small ratio of the elastic constants of the SC and polymer and the large ratio of their 

dielectric constants. This may also explain the difference between values of dielectric permittivity 

 *

33
 (Fig. 2 (e)). The matrix of effective constants || C* || contains the piezoelectric coefficients *

ije , 

elastic moduli E

abc*  and dielectric permittivities  *

pp
, and these constants are obtained directly from 

averaging (see Eqs. (1) – (4)). According to our evaluations involving constants of PMN–0.33PT 

SC and araldite (see Table 1), the ratios Ec ),1(

11 / )2(

11c = 14.7 and Ec ),1(

33 / )2(

11c = 13.2 are order-of-

magnitude less than  ),1(

33 / )2(

33  = 170. This condition leads to a significant re-distribution of internal 

electric and mechanical fields in the 0–3 PMN–0.33PT SC / araldite composite and leads us to 

believe that EFM could be applied with some restrictions for 0–3 connectivity. We note for 

comparison that the similar mutual arrangement of curves *

33e (m) and *

33d (m) from the EFM, FEM 

and EMM data [21] takes place in case of the 0–3 ferroelectric ceramic / polymer composite. For 

its components ratios Ec ),1(

11 / )2(

11c  19, Ec ),1(

33 / )2(

11c  16 and  ),1(

33
/ )2(

33   110 hold and the order-of-

magnitude distinction between dielectric constants is again attained. However, it should be noted, 

that in recent paper [31] on the 1–3 PbTiO3-type ceramic / polymer composite with circular 
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cylindrical inclusions (i.e., in case of  = 0), good agreement between the parameters calculated 

using the EFM and FEM is attained in a wide volume-fraction range. The 1–3 composite consists 

of components, for which ratios Ec ),1(

11 / )2(

11c  24, Ec ),1(

33 / )2(

11c  23 and  ),1(

33
/ )2(

33   31 … 37 [31] are 

true and no aforementioned order-of-magnitude distinction is observed. The striking difference 

between values of 
 *

33  at m > 0.2 (see, e.g., curves 1, 3 and 5 in Fig. 2 (f)) is related to the 

difference between values of 
 *

33  (Fig. 2 (e)) and the considerable piezoelectric effect as a result of 

the SC inclusions. On increasing the volume fraction of SC m, absolute values of the piezoelectric 

coefficients |
*

3 je | and |
*

3 jd | increase monotonically (see, e.g., Fig. 2 (a) and (b)) and, therefore, the 

difference 
 *

33  – 
 *

33  in accordance with Eq. (9) increases. The difference between values of *

33k  

(Fig. 2 (g)) is primarily due to the difference between 
 *

33  (Fig. 2 (f)) and 
*

33d  (Fig. 2 (b)). Of 

specific interest are curves of *

33g (m) shown in Fig. 2 (c). The volume-fraction dependence of the 

piezoelectric coefficient *

33g (m) = 
*

33d (m) / 
 *

33 (m) is non-monotonic and is due to the combination 

of the piezoelectric 
*

33d (m) and dielectric (
 *

33 (m)) properties (see Fig. 2 (b) and (f)). The location 

of max *

33g (m) strongly depends on the aspect ratio  of the inclusions: at  = 0.1, when the highly 

prolate SC inclusions in the polymer matrix give rise to a slight depolarising effect, max *

33g (m) is 

found in the range 0 < m < 0.05, and on increasing , when the depolarising effect becomes 

stronger and dielectric permittivity 
 *

33 (m) increases slower, max *

33g (m) shifts towards the larger 

values of m. Considerable piezoelectric sensitivity of composite 1 ( *

33g  > 200 mV
.
m / N, i.e., about 

6 times more than )1(

33g  of PMN–0.33PT SC [9]) is attained in the presence of inclusions with  = 

0.1 at volume fractions m  0.1 (Fig. 2 (c)).  

Results on the effective electromechanical properties of composites 2 and 3 (Figs. 3 and 4) 

suggest that the piezoelectric coefficients *

33X  and electromechanical coupling factor *

33k  show 
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small differences when comparing the data obtained using the EMM, FEM and EFM. For 

example, a difference between the aforementioned parameters calculated using different methods 

at 0 < m < 0.5 and 0.1    0.5 remains under 3 % for composite 2. In composite 3, a difference 

between the EFM and FEM data is less than 1 % in the same m and  ranges. This good agreement 

is attained when a moderate re-distribution of internal electric and mechanical fields in composites 

2 and 3 takes place and electromechanical constants of their components are of similar order-of-

magnitude. It is seen that the presence of a porous ceramic matrix with the anisotropy of the 

piezoelectric coefficients )2(

33е  / | )2(

31е | > 10 does not lead to considerable differences between the 

values of *

33X  obtained using the EMM and FEM (Fig. 4). 

Composites 1 – 3 studied in this work are also of interest due to the leading role of the 

longitudinal piezoelectric effect in forming the interconnections between the elastic, piezoelectric 

and dielectric properties. The presence of the highly piezo-active prolate SC inclusions, 

irrespective of the piezoelectric properties of the matrix surrounding them, enables one to simplify 

links between the piezoelectric coefficients from Eqs. (5)–(8) and interconnections between 

effective constants in Eqs. (9)–(12). To show the role of the longitudinal piezoelectric coefficients 

*

33X , we introduce ratios R1 = 
*

33d *

33e  / (
 *

33 – 
 *

33 ), R2 = 
*

33e Es*

33 / 
*

33d , R3 = 
*

33h Ds*

33 / 
*

33g , and R4 = 

*

tk  / 
*

33k  and an anisotropy factor e = *

33е  / *

31е . Volume-fraction dependences of Ri and e are 

shown in Fig. 5.  

We see, that due to R1 > 0.9 in different cases (see curves 1, 2, 5, and 6 in Fig. 5 (a)), the 

piezoelectric contribution from the longitudinal piezoelectric effect (i.e., the term 
*

33d *

33e ) into the 

difference between dielectric constants 
 *

33 – 
 *

33  = 
*

33d *

33e  + 2
*

31d *

31e  can exceed 90 %. For 

composite 1 at  = 0.1 and composite 3, the equality R1 = R2 holds with an accuracy to 1 % (cf. 

Figs. 5 (a) and 5 (b)). For composites 1 – 3, the inequality R3 > R1 is valid in a wide volume-

fraction range (cf. Figs. 5 (a) and 5 (c)). As a result, the piezoelectric coefficient 
*

33g  that describes 
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longitudinal sensitivity of the composite has a negligible contribution from the transverse 

electromechanical interaction between the SC inclusion and its surrounding matrix. It should be 

noted that a similar tendency is observed in composites with different matrices – from piezo-

passive polymer to highly piezo-active ceramic, and irrespective of piezoelectric sensitivity of the 

matrices.  

To understand the volume-fraction behaviour of R4(m) (Fig. 5 (d)), we note that (
*

tk  / 
*

33k )
2
 = 

[(
*

33e )
2
/ ( Dc*

33

 *

33 )] / [(
*

33d )
2
/ ( Es*

33

 *

33 )], and this expression can be simplified due to equalities Dc*

33
=  

Ec*

33
/ [1 – (

*

tk )
2
], 

 *

33  = 
 *

33 [1 – (
*

tk )
2
] [10, 28] and 

*

33d  
*

33e Es*

33
 (at R2  1, see, for instance, Fig. 5 

(b)). Thus, we state that R4  ( Ec*

33

Es*

33
)
-1/2

. The presence of the composite matrices with various 

elastic properties (see Table 1) has a significant influence on the balance of elastic moduli of the 

composite. As a consequence, R4 varies in a wide range and can be non-monotonic (Fig. 5 (d)) in 

the case of a large difference between elastic moduli of components. It is seen that the largest 

values of R4  0.9 and condition  

*

tk   
*

33k                                                                                                    (13)  

are attained in composite 1 at  = 0.1. It should be noted for comparison that Eq. (13) holds in 1–3 

ferroelectric ceramic / polymer composites [32]. As follows from Fig. 5 (e), the dependence of 

|e(m)|, that describes the piezoelectric anisotropy, decreases monotonically for composites 1 – 3, 

and the monotonic decrease is also observed for the ratios R1(m) and R2(m) (see Fig. 5 (a) and (b)). 

The reason for this correlation is the transverse piezoelectric response of the composites studied: 

on increasing the volume fraction m the electromechanical interaction between the SC inclusions 

becomes less sensitive so that the role of the piezoelectric coefficient 
*

31e (m) increases. 

The mutual arrangement of the curves for composites at  = 0.1 and  = 0.3 (Fig. 5) suggests 

that the ratios Rj and anisotropy factor e undergo considerable changes for composite 1 only. This 



 

13 

 

can be accounted for by the large difference between electromechanical constants of the highly 

piezo-active SC and piezo-passive polymer components of composite 1. However in composites 2 

and 3 (ceramic matrix), the difference between electromechanical constants remains relatively 

small, so that small changes in curves of Rj(m) and e(m) are observed (see curves 3 and 4 or 5 and 

6 in each graph of Fig. 5) on changing the aspect ratio  of the prolate SC inclusion.         

 

3.2. Squared Figures of Merit 

It is worth noting that squared figures of merit concerned with the longitudinal (
2*

33)(Q ) and 

hydrostatic (
2*)( hQ ) piezoelectric effects both exhibit similar volume-fraction behaviour. This can 

be observed from the mutual arrangement of curves 1, 3, 5 and 2, 4, 6, respectively, in Fig. 6. In 

composite 1 the larger values of 
2*

33)(Q  and  
2*)( hQ  (see curves 1 and 2 in Fig. 6) are attained at 

relatively low volume fractions of SC (m < 0.3). This is related to the important role of the 

piezoelectric coefficients 
*

3 jg  in forming both 
2*

33)(Q  and 
2*)( hQ . In contrast to composite 1, the 

larger values of 
2*

33)(Q  and 
2*)( hQ  in composite 3 (see curves 5 and 6 in Fig. 6) are attained at 

relatively high volume fractions of SC, when the piezoelectric coefficients 
*

3 jd  become 

comparable to those of the SC. It should be added that the values of 
2*

33)(Q  and 
2*)( hQ  shown for 

composites 1 and 3 (Fig. 6) are comparable to those evaluated [2, 33] for the 0–3 modified PbTiO3 

ceramic / elastomer composite. The values of 
2*)( hQ  predicted for composites 1 and 3 are larger 

than those for a 0–3 PbTiO3-based composite [1], and this new result can be of value for 

hydrophone applications of the novel PMN–0.33PT-based composites.   

 

4. Conclusions  

In the present paper modelling and property predictions have been carried out within the 
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framework of the model of the 0–3 piezo-active composite with spheroidal SC inclusions in a 

large matrix (Fig. 1). The model concepts and methods for averaging the electromechanical 

properties (EMM, EFM and FEM) have been applied to the 0–3 and 0–3–0 composites based on 

relaxor-ferroelectric PMN–0.33PT SC with high piezoelectric activity (
)1(

3 jd  ~ 10
3
 pC / N). The 

following three combinations of components have been analysed: piezo-active SC / piezo-passive 

polymer, piezo-active SC / piezo-active monolithic ceramic and piezo-active SC / piezo-active 

porous ceramic. For composites based on PMN–0.33PT SC the longitudinal piezoelectric 

coefficients 
*

33X  (X = e, d, g, and h) and electromechanical coupling factor *

33k  have been 

calculated using the EMM, EFM and FEM.  

Large values of the piezoelectric coefficients 
*

33d  and 
*

33g  and squared figures of merit 

2*

33)(Q and 
2*)( hQ  are attainable in the studied composites due to the presence of the aligned 

prolate SC inclusions with the piezoelectric coefficients 
)1(

3 jd  ~ 10
3 

pC / N. Comparison of the 

piezoelectric coefficients and other parameters calculated by the EMM, EFM and FEM has been 

carried out for the studied composites, and reasons for differences between the calculated 

constants have been discussed. The role of the piezoelectric anisotropy of the 0–3-type composite 

in forming its electromechanical properties and piezoelectric sensitivity has been analysed in 

terms of ratios Ri introduced in this paper.  
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To the paper “Analysis of the Piezoelectric Performance of Modern 0–3-Type Composites 

Based on Relaxor-Ferroelectric Single Crystals” by V. Yu. Topolov, 

P. Bisegna, and C. R. Bowen 

 

Table 1. Room-temperature elastic moduli E

abс  (in 10
10

 Pa), piezoelectric coefficients ijе  (in  

C / m
2
) and relative dielectric permittivities 

 pp  / 0 of components 

Components 
Eс11

 Eс12
 Eс13

 Eс33
 Eс44

 Eс66
 e31 e33 e15 

0

11



 

 
0

33



 

 

Polydomain 

PMN–0.33PT 

SC [9] 

11.5 10.3 10.2 10.3 6.9 6.6 –3.9 20.3 10.1 1434 680 

Poled  

PMN–0.35PT 

ceramic [29] 

 

Poled  

PMN–0.35PT  

porous ceramic 

at mp= 0.3 

(calc.)  

 

14.67 

 

 

8.43 

 

8.84 

 

 

5.22 

 

9.68 

 

 

5.17 

 

14.78 

 

 

7.78 

 

2.99 

 

 

1.96 

 

2.92 

 

 

1.61 

 

–5.0 

 

 

–1.54 

 

28.0 

 

 

16.0 

 

14.3 

 

 

8.71 

 

1650 

 

 

1050 

 

2650 

 

 

1540 

Araldite [30] 0.78 0.44 0.44 0.78 0.17 0.17 0 0 0 4.0 4.0 
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To the paper “Analysis of the Piezoelectric Performance of Modern 0–3-Type Composites Based on Relaxor-

Ferroelectric Single Crystals” by V. Yu. Topolov, P. Bisegna, and C. R. Bowen 

 

Figure 1. Schematic of the 0–3 composite. The spontaneous polarisation vector Ps
(1)

 of the 

inclusion is denoted by an arrow. a1 and a3 are semiaxes of the spheroidal inclusion, m and 1 – m 

are volume fractions of components. 

 

Figure 2. Effective parameters calculated for composite 1 by means of the EMM, FEM and EFM: 

piezoelectric coefficients 
*

33e  ((a) in C / m
2
), 

*

33d  ((b) in pC / N), 
*

33g  ((c) in mV
.
m / N), and 

*

33h  

((d) in GV / m), relative dielectric permittivities 
 *

33  / 0 (e) and 
 *

33  / 0 (f), and electromechanical 

coupling factor 
*

33k  (g). 

      

Figure 3. Effective parameters calculated for composite 2 by means of the FEM at  = 0.1 (a) and 

 = 0.3 (b). Piezoelectric coefficients 
*

33e  in C/m
2
, 

*

33d  in pC/N, 
*

33g  in mV
.
m/N, and 

*

33h  in GV/m. 

 

Figure 4. Effective parameters calculated for composite 3 by means of the EMM and FEM: 

piezoelectric coefficients 
*

33e  ((a) in C / m
2
), 

*

33d  ((b) in pC / N), 
*

33g  ((c) in mV
.
m / N), and 

*

33h  

((d) in GV / m) and electromechanical coupling factor 
*

33k  (c). In graph (c) the FEM data are 

shown only because of small differences (less than 1 %) between the effective parameters 

calculated by means of the EMM and FEM in the wide volume-fraction range. 

 

Figure 5. Ratios Ri and anisotropy factor e which have been calculated for composites 1, 2, and 3 

by means of the FEM. 

 

Figure 6. Squared figures of merit 
2*

33)(Q and 
2*)( hQ  (in 10

-15
 Pa

-1
) which have been calculated 

using the FEM data on piezoelectric coefficients *

3 jd  and *

3 jg  of composites 1, 2, and 3. 
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