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Abbreviations footnote: PARP-2, poly(ADP-ribose)polymerase-2; PARP-1, poly(ADP-

ribose)polymerase-1; 5-AIQ, 5-aminoisoquinolin-1-one; ADP, adenosine diphosphate ribose; 

NAD+, nicotinamide adenine dinucleotide; PAR, poly(ADP-ribose) PAR; BRCA, breast 

cancer type 1 susceptibility protein; SSB, single-strand break; TRF2, telomeric repeat-binding 

factor 2; MNU, N-methyl-N-nitrosourea. 

Abstract. PARP-2 is a member of the poly(ADP-ribose) polymerase family, with some activ-

ities similar to those of PARP-1 but with other distinct roles. Two series of isoquinolin-1-ones 

were designed, synthesised and evaluated as selective inhibitors of PARP-2, using the struct-

ures of the catalytic sites of the isoforms. A new efficient synthesis of 5-aminoisoquinolin-1-

one was developed and acylation with acyl chlorides gave 5-acylaminoisoquinolin-1-ones. 

Examining isoquinolin-1-ones with carboxylates tethered to the 5-position, Heck coupling of 

5-iodoisoquinolin-1-one furnished the 5-CH=CHCO2H compound for reduction to the 5-prop-

anoic acid. Alkylation of 5-aminoisoquinolin-1-one under mildly basic conditions, followed 

by hydrolysis, gave 5-(carboxymethylamino)isoquinolin-1-one, whereas it was alkylated at 2-

N with methyl propenoate and strong base. Compounds were assayed in vitro for inhibition of 

PARP-1 and PARP-2, using FlashPlate and solution-phase assays, respectively. The 5-benz-

amidoisoquinolin-1-ones were more selective for inhibition of PARP-2, whereas the 5-(ω-

carboxyalkyl)isoquinolin-1-ones were less so. 5-Benzamidoisoquinolin-1-one is the most 

PARP-2-selective compound (IC50 (PARP-1) / IC50 (PARP-2) = 9.3) to date, in a comparative study. 

Keywords: Poly(ADP-ribose)polymerase-2, 5-aminoisoquinolin-1-one, 5-benzamidoisoquin-

olin-1-one, isoform selectivity, X-ray structure. 

Introduction 

Poly(ADP-ribosyl)ation of proteins, first reported in 1963,1 involves the transfer of multiple 

ADP-ribose units from substrate NAD+ onto glutamate residues of the target proteins, resul-
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ting in the formation of polyanionic poly(ADP-ribose) (PAR) polymers. There has been much 

research effort since to characterise the structures and functions of the poly(ADP-ribose)-

polymerases (PARPs), the family of enzymes responsible for catalysis of this reaction.2-5  

PARP-1 is responsible for most of the poly(ADP-ribosyl)ation activity in the cell and has a 

major role in regulating the repair of damaged DNA. It is a 116 KDa protein with three major 

domains: an N-terminal DNA-binding domain carrying three zinc fingers,6 a central automod-

ification domain (containing also a nuclear localisation signal7 and sites for cleavage by 

caspase-38) and a C-terminal NAD+-binding catalytic domain. The catalytic activity of the 

PARP-1 is activated by detection of a damaged site and PAR is built up on histone-1 and on 

PARP-1 itself. Inhibition of PARP-1 therefore inhibits repair of damaged DNA and several 

inhibitors of this enzyme are currently in clinical trial as sensitisers to the effects of cytotoxic 

DNA-damaging drugs in several tumours and as single-agent therapies in BRCA-mutant 

breast cancer.9-14 In addition to its role in regulating repair of damaged DNA, PARP-1 also 

regulates NF-κB and processes and molecules downstream therefrom. Thus inhibitors of the 

catalytic activity of PARP-1 have shown interesting activity in vivo in models of several dis-

ease states, including haemorrhagic shock, myocardial infarction, stroke and other ischaemia-

reperfusion injuries, as well as in inflammatory disorders and reproductive health.15-20 

Recently, inhibitors of PARP-1 have also been shown to inhibit angiogenesis and metastasis 

in cancer.21-23 

PARP-2 is a 62 KDa protein with three functional domains.24 The N-terminal DNA-binding 

domain lacks zinc fingers but is rich in basic amino-acids, which account for the binding to 

DNA. The differences in structure of the DNA-binding domains of PARPs 1 and 2 may also 

reflect the differences in the DNA structures which the two enzymes recognise and the fact 

that PARP-2 binds to single-strand breaks (SSBs) less efficiently than does PARP-1. The 
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automodification domain is also responsible for the protein-protein interactions that PARP-2 

shares with various partners, including PARP-1, XRCC1 and DNA ligase 3.25 The catalytic 

domain of mouse and human PARP-2 are highly conserved and both show high homology 

with the human PARP-1 catalytic domain (69% in the case of human PARP-2).24 

This isoform accounts for approximately 5-10% of the total cellular PARP activity.25 It can 

heterodimerise with PARP-1 and it shares many functions and targets. However, PARP-2 has 

some different protein targets and potential functions. Schreiber et al.25 showed that PARP-2-/- 

mouse embryonic fibroblasts have delayed repair of alkylated bases in DNA following treat-

ment with N-methyl-N-nitrosourea (MNU) and suggest that the PARP-1 / PARP-2 hetero-

dimer is important for efficient base-excision repair. By contrast, Fisher et al.26 found that a 

reduction in PARP-1 significantly reduced the rate of repair of single-strand breaks in DNA 

but reduction in PARP-2 had only a minor effect. PARP-2 interacts with TRF2,27 a telomere-

binding regulatory protein, and affects its ability to bind to DNA both through a non-covalent 

interaction of PAR with the DNA-binding domain of TRF2 and through a covalent modific-

ation at the dimerisation domain. PARP-2 may have a functional role in the maintenance of 

telomeres but further work using selective inhibitors of this isoform are required to gain in-

sights into the precise molecular mechanisms at work. Antisense knockdown of PARP-2 in a 

mouse model of colitis resulted in improvement in inflammation and normalisation of colonic 

function.28 Deletion of PARP-2 but not of PARP-1 leads to a significant diminution in 

CD4+CD8+ double-positive thymocytes,29 suggesting that PARP-2 has a role in survival of T-

cells during thymopoiesis and may regulate the apoptosis of thymocytes. PARP-2 is widely 

expressed in the seminiferous epithelium, in contrast to limitation of PARP-1 to the peripheral 

cell layer,25,30 pointing to distinct roles in spermatogenesis and a more prominent role for 

PARP-2. PARP-2 knockout mice display lipodystrophy,31 probably due to regulation of the 

expression of peroxisome proliferator-activated receptor-γ by PARP-2. The identification of 
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these roles for PARP-2 which are distinct from those of the major isoform PARP-132 point to 

the need for selective inhibitors initially as pharmacological tools to help resolve and distin-

guish the roles of PARP-2 but also, in the longer term, possibly as drugs. 

Most attempts to identify PARP-2-selective inhibitors have relied on screening libraries of in-

hibitors of PARP-1 against both isoforms. Interestingly, most of the clinical candidate PARP-

1 inhibitors and of the widely used pharmacological tool inhibitors display little or no select-

ivity and thus any pharmacological effect thereof must be regarded as the effect of pan-PARP 

inhibition or, at minimum, of PARP-1 and PARP-2 together. As shown in this paper, our lead 

PARP-1 inhibitor 5-aminoisoquinolin-1-one 1 (5-AIQ, Figure 1), which is potently active in 

vivo,15,17-20,23 is devoid of isoform-selectivity in vitro. Similarly, two other standard PARP-1 

Figure 1. Structures of reported potent non-isoform-selective inhibitors 1-7, PARP-1-selective inhibitor 8 and 
PARP-2-selective inhibitors 9-11. 
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inhibitors, DPQ 2 and PJ34 3 are reported to have little isoform-selectivity between PARP-1 

and PARP-2.33 The latest clinical candidates veliparib 434 and olaparib 5,36 the biochemical 

tools BYK49187 6a,35 BYK236864 6b35 and the thiopyranopyrimidinone 737 also inhibit the 

two isoforms potently but approximately equally. However, in 2006, Ishida et al. reported the 

identification of a series of quinazolin-4-ones as selective inhibitors of PARP-1, of which 8 

was the most selective, with IC50 (PARP-1) = 13 nM and IC50 (PARP-2) = 500 nM (selectivity ratio 

= 39); minor modifications to the substitution on the fluorophenyl ring were tolerated in the 

structure-activity relationship (SAR) but the long pendant 3-(4-aryl-1,2,5,6-tetrahydropyridin-

1-yl)propyl group at the 3-position of the quinazolinone was shown to be essential in this 

series, as 5-chloro-2-methylquinazolin-4-one was non-isoform-selective and was 92-fold less 

active against PARP-1 than was 8.38 The same paper also reports that 9a was some twelve-

fold more potent as an inhibitor of PARP-2 than it was of PARP-1; other varied substituents 

in the 4-position of the phenyl were tolerated with little loss of selectivity.38 The observed sel-

ectivities were rationalised by examining X-ray structures of co-crystals of PARP-1 with in-

hibitors and of homology models of PARP-2. Separately, this group also reported that a 2-

aryl-quinoxaline-5-carboxamide 9b had 5-fold selectivity for inhibition of PARP-2.39 By far 

the most selective inhibitors of PARP-2 claimed to date are a series of 5-benzoyloxy and 5-

phenacyloxy- isoquinolin-1-ones and 3,4-dihydroisoquinolin-1-ones, of which 10 and 11 

appear to show 60-fold and 16-fold selectivity, respectively.33 These compounds, which pick 

up the usual PARP-binding contacts of the classical (3,4-dihydro)isoquinolin-1-one pharma-

cophore, achieve their selectivity by relatively weak micromolar binding to PARP-1, rather 

than great potency against PARP-2. This poor binding to PARP-1 is probably due to the 5-

benzoyloxy and 5-phenacyloxy substituents being too large to be accommodated in the 

slightly smaller hydrophobic binding pocket of PARP-1, as compared to that of PARP-2 (see 

below). 
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In the present work, we report on two different approaches to the discovery of PARP-2-select-

ive inhibitors, both based on the isoquinolin-1-one core which gives good binding to both iso-

forms through the hydrogen-bonding network to the lactam oxygen and N—H and through π-

stacking of the aromatic ring to the adjacent Tyr residues (Tyr907 / Tyr449). 

Chemical synthesis 

Noting the remarkable selectivity for inhibition of PARP-2 by 10 claimed by Pellicciari et 

al.,33 we sought to use this core to develop further selective inhibitors of this isoform. Inhibit-

ors 10 and 11 both contain O-aryl esters, which are likely to be labile to hydrolysis in physio-

logical media. To obviate this potential problem, the ester was replaced by an amide in target 

compound 15a (Scheme 1); this amide should be isosteric but may restrict rotation in this part 

of the molecule. 

Synthesis of 15a and its analogues 15b-n required quantities of 1. This compound is commer-

cially available but is prohibitively expensive for applications in synthesis. There are three 

previous published syntheses of 1 (where the critical steps are: a Polonowski rearrangement 5-

nitroisoquinoline-N-oxide,40 reductive cyclisation of methyl 2-cyanomethyl-3-nitrobenzoate41 

and by condensation of methyl-2-methyl-3-nitrobenzoate with dimethylformamide dimethyl-

acetal15) but all have severe limitations. Thus, for large-scale preparation of 1, a new synthesis 

was needed, with requirements for high yield and avoidance of scale-limiting steps such as 

column chromatography. Scheme 1 shows our development of this important new route. In 

this route, the 5-nitrogen substituent is introduced by nitration. However, the most nucleo-

philic position of isoquinolin-1-ones is 4-C,42 so direct nitration of isoquinolin-1-one was not 

feasible. The activating enamide function of isoquinolin-1-one was masked as the imino-

chloride in 12. Commercially available 1-chloroisoquinoline 12 was nitrated selectively in the 

5-position in 92% yield; to achieve this regioselectivity, it was necessary to pre-dissolve 12 in 
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conc. sulfuric acid to ensure that the heterocyclic ring was fully protonated and deactivated 

before addition of the nitrating reagents. The imino-chloride in 13 was hydrolysed by heating 

in acetic acid to provide 14 in high yield and catalytic hydrogenation of the nitro group, under 

conditions previously reported,42 then furnished 1. This new sequence is reliable, high-

yielding (54% overall), highly reproducible and involves only two intermediate recrystallisat-

ions and no chromatography for purification, giving the potential for it to be used on larger 

scales. 

5-Benzamidoisoquinolin-1-one 15a was synthesised in good yield by acylation of 1 with 

benzoyl chloride in hot pyridine (Scheme 1); the relatively forcing conditions were required to 

overcome the poor nucleophilicity of the exocyclic amine in 1 and to ensure good solubility. 

To explore the structure-activity relationships around this the phenyl ring, a series of 5-(subst-

ituted-benzamido)isoquinolin-1-ones 15b-j were prepared similarly from 1 and substituted 

benzoyl chlorides. Following a classical medicinal chemical replacement of the benzene 

aromatic ring with thiophene led to design of 5-(thiophen-2-ylcarboxamido)isoquinolin-1-one 

15k, which was prepared from 1 with thiophene-2-carbonyl chloride. The need for aromatic-

Scheme 1. New efficient synthesis of 1 and synthesis of 5-(acylamino)isoquinolin-1-ones 15a-n. Reagents and 
conditions: i, HNO3, H2SO4, 0°C, 92%; ii, AcOH, 100°C, 82%; iii, H2, Pd/C, EtOH, aq. HCl, 66%; iv, RCOCl, 
pyridine, 90oC, 86% (15a), 82% (15b), 71% (15c), 72% (15d), 68% (15e), 77% (15f), 81% (15g), 76% (15h), 
63% (15i), 61% (15j), 51% (15k), 68% (15l), 68% (15m), 59% (15n). 
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ity was tested by replacement with cyclohexyl in 15l and by 3-D bulky aliphatic groups in the 

pivalamido analogue 15m and the adamantylcarboxamido compound 15n. 

Compound 22 (Scheme 2) extends the structure of 15a by introducing a methyl group at the 

3-position of the isoquinolin-1-one ring system. The synthesis of this target was analogous to 

that of 15a, thus requiring 3-methylisoquinolin-1-one 21 as a starting material. As for 1, this 

educt is commercially available but prohibitively expensive (> £5000 g-1). None of the synth-

etic sequences to 1 could be adapted to the 3-methyl analogue 21; reaction of methyl 2-

methyl-3-nitrobenzoate with dimethylacetamide dimethylacetal gives 3-dimethylamino-1-

methoxy-5-nitronaphthalene, rather than 19,43 and 1-chloro-3-methyl-5-nitroisoquinoline is 

only available by a low-yielding Polonowski rearrangement of 3-methyl-5-nitroisoquinoline-

N-oxide.44 A new route was required, starting from a suitable 1,2,3-trisubstituted benzene. 

The Hurtley reaction involves Cu-catalysed displacement of the bromine of ortho-bromobenz-

oic acids by the enolates of β-diketones.45,46 However, we have previously shown that the 

reaction fails with 3-bromo-2-nitrothiophene-4-carboxylic acid.47 Despite this adverse omen, 

2-bromo-3-nitrobenzoic acid 16 did react with the potassium enolate of pentane-2,4-dione in 

the presence of Cu powder. Under the reaction conditions (boiling t-butanol), the immediate 

Hurtley coupling product 17 was not observed; rather it was deacetylated to the monoketone 

18, which cyclised to give the isocoumarin 19, achieving several synthetic steps in one pot. 

The isocoumarin 19 was converted to the isoquinolin-1-one 20 and reduction of the nitro 

group with tin(II) chloride furnished the required intermediate 21 for acylation to provide the 

target amide 22. 

In 2004, the crystal structure of the catalytic fragment of murine PARP-2 was solved48 at 2.8 

Å resolution, seven years after the data for the chicken PARP-1 catalytic fragment were made 

available.49 The high degree of homology of the PARP catalytic domain between different 
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species means that PARP inhibitors are unlikely to show a wide species-difference in their 

binding of inhibitors between chicken, mouse and human PARPs, for a specific isoform. The 

binding of inhibitors to PARP-1 was deduced by Ruf et al.50 to be due to hydrogen bonding 

from the carbonyl of lactams / amides in the inhibitors to Gly863-NH and Ser904-OH and from 

the lactam / amide N⎯H to Gly863-O and hydrophobic or π-stacking interactions with Tyr907. 

PARP-2 is a much smaller protein than is PARP-1 but the hydrogen-bonding and π-stacking 

motifs are retained in the nicotinamide-binding site, with Gly405 (PARP-2) corresponding to 

Gly863 (PARP-1), Ser446 (PARP-2) corresponding to Ser904 (PARP-1) and Tyr449 (PARP-2) 

corresponding to Tyr907 (PARP-1). Our inspection of the binding sites of the isoforms noted 

that Gln763 (neutral, polar) in PARP-1 is replaced by Lys308 (basic, polar); these residues are 

located slightly above the plane of the nicotinamide mimic and at the edge of the hydrophobic 

pocket; i.e. “south” of the 5-position of potentially bound isoquinoline-1-ones. Using mol-

ecular modelling to design further potentially selective inhibitors, the crystal structures of 

chicken PARP-1 with 8-hydroxy-2-methylquinazolin-4-one bound50 and murine PARP-248 

were used as starting structures, from which the binding pockets were established and com-

Scheme 2. Synthesis of 5-benzamido-3-methylisoquinolin-1-one 22. Reagents and conditions: i, pentane-2,4-
dione, KOBut, Cu, ButOH, reflux, 23%; ii, NH3, MeO(CH2)2OH, reflux, 68%; iii, SnCl2, EtOH, 70°C, 59%; 
iv, PhCOCl, pyridine, 90oC, 72%. 
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pared. The binding pocket of PARP-1 

was measured and mapped, together 

with key interactions between the bound 

inhibitor and the pocket. Comparisons 

were also made to PARP-1 without in-

hibitor to confirm that the receptor bind-

ing pocket is relatively rigid and does 

not change conformation upon binding 

the substrate or an inhibitor ligand. The 

distances observed in PARP-1 were 

then used to dock a minimised and charged (Gastieger / Hückel) structure of 1 into the bind-

ing pocket of PARP-2. Once docked, restraints were added (as observed in the PARP-1 

model) and the ligand was subjected to molecular dynamics (300 K for 5 ps) and then re-min-

imised. The ligand and binding pocket (5.0 Å from ligand) were then subjected to molecular 

dynamics (300 K for 5 ps) and the complete complex (enzyme and 1) was minimised to give 

the final model. In this model, the basic Lys308 sat close (3.1 Å) to the 5-amine of 1. Two 

short series of compounds were designed to exploit this opportunity for isoform-selectivity by 

linking an anionic carboxylate to the 5-position of the isoquinolin-1-one. 

In the first three compounds, the carboxylic acid was attached to the 5-position of the isoquin-

olin-1-one through all-carbon links (Scheme 3). Compound 24 was prepared by hydrolysis of 

5-cyanoisoquinolin-1-one 23.51,52 The targets 26 and 27 have a C2 chain between the carbox-

ylic acid and the isoquinoline, the former with a rigid link and the latter with a flexible link. 

These were approached by a Heck coupling of 5-iodoisoquinolin-1-one 25 to give 26.52 Selec-

tive hydrogenation of the exocyclic double bond under acidic conditions led to 27. 

Scheme 3. Synthesis of C-linked 1-oxoisoquinoline-5-
carboxylic acids 24, 26 and 27. Reagents and conditions: i, 
KOH, EtOH, reflux, then aq. HCl, 83%; ii, HO2CCH=CH2, 
Pd(OAc)2, Et3N, EtCN, reflux, 97%; iii, H2, Pd/C, EtOH, 
66%. 
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Exploiting the now ready availability of 1 as a 

starting material, it was planned to attach carb-

oxylic acids through linkers to the exocyclic 

amine to provide target compounds such as 29 

(Scheme 4). Heating 1 with ethyl bromoacetate 

in DMF in the presence of tertiary amine base 

alkylated the weakly nucleophilic amine, 

giving the ester 28 in modest yield. Hydrolysis 

then furnished the carboxylic acid 29. Attempt-

ing to access the homologous ester 30, 1 was 

treated with sodium hydride and methyl acryl-

ate. Surprisingly, the sole isolable product was 

31, where the CH2CH2CO2Me unit is attached to the lactam 2-N, rather than the exocyclic 

amine. The location of this unit was confirmed by the 1H NMR chemical shift of the NCH2 

protons (δ 4.09, more typical of CH2 attached to the lactam rather than CH2 attached to an 

aniline nitrogen) and by HMBC correlations between these CH2 protons and the lactam carb-

onyl-13C at δ 161.2 and between these CH2 protons and 3-C at δ 130.6; these correlations are 

incompatible with the alternatives 30 or 1-(MeO2CH2CH2CO)-5-NH2-isoquinoline (from 

alkylation at oxygen). Sodium hydride is a much stronger base than the diisopropylethylamine 

used in the synthesis of 28 and is capable of removing the lactam N⎯H proton. In the anion 

so generated, the N- of the lactam is more nucleophilic than the neutral exocyclic -NH2 and 

reacts with the electrophile. Anions derived from other 5-substituted isoquinolin-1-ones 

usually react through the 2-N with alkylating electrophiles,42,53,54 although there are some 

examples of reaction at the exocyclic oxygen at the 1-position under Mitsunobu conditions.52 

Hydrolysis of the ester of 31 with aqueous acid gave the corresponding carboxylic acid 32. 

Scheme 4. Synthesis of 5-(ω-carboxyalkylamino)-
isoquinolin-1-ones 29 and 32. Reagents & 
conditions: i, EtO2CH2Br, Pri

2NEt, NaI, DMF, 
80°C, 19%; ii, aq. HCl, reflux, 87% (29), 85% 
(32); iii, NaH, THF, MeO2CCH=CH2, 67%. 
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In view of the unexpected regio-

selectivity of the reaction of 1 

with methyl propenoate under 

strongly basic conditions, it was 

necessary to prove the structure 

of 28 or 29 through an X-ray 

crystal structure determination. 

Careful recrystallisation of the 

carboxylic acid 29 from methan-

ol provided diffraction-quality crystals of the corresponding methyl ester 33. The crystal 

structure (Figure 2) confirmed the expected structure, with the CH2CO2Me attached to the 

exocyclic amine. The isoquinolin-1-ones formed hydrogen-bonded pairs in the crystal, with 

the lactam N—H bonded to the carbonyl oxygen of the partner molecule. The 5-

NHCH2CO2Me unit adopted an extended conformation but appears not to be hydrogen-

bonded; the exocyclic nitrogen was planar, as expected, and the methylene was orientated 

away from the peri 4-H. 

Biochemical and cell biological evaluation 

The two series of 5-substituted isoquinolin-1-ones were evaluated in vitro for inhibition of the 

catalytic activities of full-length active human PARP-1 isolated from HeLa cell nuclear 

extract (using a FlashPlate assay previously developed by us55) and full-length mouse PARP-

2 (using a solution-phase assay); the results are presented in Table 1 for 15a-n, 22, 24, 26, 27, 

29 and 32. 1 and the two claimed PARP-2-selective inhibitors 9b38 and 1033 from the 

literature were assayed as controls. 

Figure 2. X-ray crystal structure of methyl ester 33, showing the 
hydrogen-bonded pairs in the crystal. Ellipsoids are represented at 
30% probability and O1’ is related to O1 by the 1 - x, 1- y, 3 - z 
symmetry operation. 
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As expected, 1 showed no selectivity towards either isoform, with IC50 = ca. 1 μM for each. 

The 5-benzamido compound 15a was approximately equipotent with 1 against PARP-2 but 

the increased bulk of the benzoyl group and loss of the basicity of the amine diminished the 

inhibition of PARP-1 dramatically, leading to a 9.3-fold selectivity towards inhibition of 

PARP-2. Exploration of the SAR around the phenyl ring indicated that introducing a para-

substituent reduced the selectivity, mostly through decreasing the potency against PARP-2 

(15b,d-f), rather than by increasing the inhibition of PARP-1; the 4-nitrobenzamido and 4-

iodobenzamido analogues 15c,h were the exception, where the compounds were more potent 

against PARP-1 than was 15a. Moving the methyl group to the ortho-position of the benz-

amide, in 15i, reduced inhibition against both isoforms but the corresponding ortho-iodo com-

pound 15j was non-selective but had fairly good potency against PARP-1 and PARP-2. The 

common medicinal chemical replacement of a benzene ring with a thiophene, in 15k, reduced 

potency against both isoforms and replacement with bulky aliphatic groups, in 15l-n, contin-

ued the trend of diminishing activity without gain of selectivity. Adding a methyl group at the 

3-position, in 22, caused loss of potency against PARP-2 relative to that of 15a but retention 

of activity against PARP-1, leading to a loss of selectivity towards the former enzyme. 

Curiously, the benzoate ester 10, which is claimed to be the most selective for inhibition of 

PARP-2 with a reported ratio of IC50 values ca. 60,33 had activity against PARP-2 very 

similar to that of the close analogue, the benzamide 15a, as expected, but proved to be potent 

in our assay of inhibition of PARP-1 catalytic activity, giving a selectivity ratio of only 2.75. 

The quinoxaline-5-carboxamide 9b was remarkably potent against both isoforms, with IC50 = 

30 nM vs. PARP-1 and IC50 = 90 nM vs. PARP-2. These values give an approximate 3-fold 

selectivity for inhibition of PARP-1, in contrast to the claimed 5-fold selectivity for PARP-

2.39 These marked differences in apparent selectivities for the different isoforms probably 

arise from the different assays used and different sources of the enzymes used. Pellicciari et 
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al.33 compared bovine PARP-1 with murine PARP-2 using the incorporation of radioactivity 

from 3H-NAD+ into trichloroacetic acid-insoluble material as an assay of enzymic activity, 

whereas Iwashita et al.39 compared human PARP-1 with murine PARP-2 using the same 

method.60  We compared human PARP-1 with murine PARP-2 using different assay methods. 

Thus it is highly likely that our comparative assays are a much more stringent test of 

selectivity for inhibition of PARP-2 than the assay pairs previously used or, alternatively, tend 

to bias towards reporting selectivity for inhibition of PARP-1. 

Table 1 also shows the evaluation of the isoquinolin-1-ones bearing a carboxy-terminated 

function at the 5-position; these carboxylates had been designed to interact with the positively 

charged side-chain of Lys308 near the PARP-2 NAD+-binding site. Using the current assays 

for PARP-1 and for PARP-2, isoquinolinone-5-carboxylic acid 24 showed little inhibition of 

either isoform, a surprising result in view of the observation of IC50 < 13 μM in an earlier 

assay using broken cell nuclei as the source of PARP activity.51 The isoquinolin-1-ones 26, 27 

and 29 carrying the carboxy group attached to the 5-position through a more-or-less flexible 

linker were active against both isoforms but with modest selectivity. The isoquinolinone-5-

propenoic acid had previously shown IC50 < 11 μM in the broken nuclei assay against mixed 

PARPs, broadly consistent with the presently observed values in the purified enzyme assays.51 

Curiously, 32, which bears the carboxy group attached through a tether to the 2-N of the ring 

system, was potent against both isoforms, with ca. 3-fold selectivity for inhibition of PARP-1 

over PARP-2. This compound appears to be slightly more potent against PARP-1 than is the 

lead PARP inhibitor 1 but lacks the N–H generally taken3 to be part of the essential pharma-

cophore for binding to the PARPs (through an H-bond to Gly863-O in PARP-1 and to Gly405-O 

in PARP-2) but Eltze et al. have recently reported some inhibitors of PARP lacking this N–H 

(fused 2,3-dihydroquinolin-4-ones 5, thus with CH2 replacing the usual NH).35 The precise 

binding mode of 32 to the PARPs will be the subject of later studies. 
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The most selective inhibitor of PARP-2 identified in our study, 5-benzamidoisoquinolin-1-

one 15a, together with the non-isoform-selective lead inhibitor 1 and examples 15l-n of 5-

(bulky alkyl)amidoisoquinolin-1-ones which are poorly active against both isoforms, were 

evaluated for cytotoxicity towards a panel of three diverse human carcinoma cell lines and 

one human fibroblast cell line in vitro using the MTS colorimetric assay. None of the isoquin-

olin-1-ones were active against HT29 human colon carcinoma cells or the FEK4 normal 

human fibroblasts (Table 2). Two compounds, 1 and the most selective PARP-2 inhibitor 15a 

were very weakly cytotoxic towards the MDA-MB-231 human breast carcinoma cells and 

two, 15a and 15n, were weakly cytotoxic towards the LNCaP human prostate carcinoma 

cells. These results are consistent with our previous observation that 1 caused only 40% inhib-

ition of the proliferation of CT26 murine colon carcinoma cells at the very high concentration 

of 1 mM.57 None of the cell lines used here have mutant BRCA, so the lack of cytotoxicity is 

unsurprising. 

Post facto structural studies 

Post facto molecular modelling studies were undertaken to rationalise the strong selectivity 

for inhibition of PARP-2 observed for the 5-benzamidoisoquinolin-1-one 15a and for the 

smaller but significant selectivity observed for the carboxylic acid 29; these represent the 

most isoform-selective examples from each of the two series originally designed. These post 

facto studies were aided by the disclosure in 2009 (after the current experimental work had 

been completed) of a crystal structure of human PARP-158 and in 2010 of a crystal structure 

of human PARP-2 complexed with ABT888 4.59 Starting structures were taken from publish-

ed X-ray crystallographic structures of human PARP-1 complexed with a quinoxalinone in-

hibitor (A861696)58 and of murine PARP-2 without an inhibitor ligand.48  The latter was com-

pared with the more recent data for human PARP-2 obtained with 3-aminobenzamide 

bound;59 this comparison was used to drive docking and to refine the nicotinamide / inhibitor-
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binding pocket of PARP-2. Non-selective inhibitor 1 and PARP-2-selective inhibitors 15a and 

29 were then docked into the models using the existing bound inhibitor (for PARP-1) and the 

docked inhibitor (for PARP-2) as templates. Once docked, the inhibitors were subjected mol-

ecular mechanics and dynamics calculations to establish optimal docking conformations; 

during these calculations, the receptor was restrained to its original conformation. Lastly, both 

the inhibitors and binding pockets (radius 10Å) were subjected to molecular dynamics and 

finally molecular mechanics calculations to give the final structures (Figure 3). The structures 

of 15a and of 29 made the expected hydrogen-bonding contacts of the lactam with the Ser and 

Gly residues and π-stacks of the isoquinoline-1-one cores with Tyr907 (PARP-1) and Tyr449 

(PARP-2). 

Differences between the binding pockets of PARP-1 and PARP-2 can be observed from the 

models. The binding pocket in PARP-1 is smaller than that of PARP-2. Furthermore, the 

Figure 3. Modelling of the non-isoform-selective inhibitor 1 and the PARP-2 –selective inhibitors 15a and 29 
into the NAD+-binding sites of PARP-1 and PARP-2. A: 1 in human PARP-1; B: 1 in murine PARP-2; C: 15a 
in murine PARP-2; D: 29 in murine PARP-2. 

A B

C D

A B

C D
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cavity which accepts groups attached to the 5-position of isoquinolin-1-ones is arranged ess-

entially in plane with the bound 1 in PARP-2 but lies significantly above the plane of the 

bound ligand in PARP-1. This means that any bulky substituent in this position should lead to 

selectivity for binding to PARP-2 and inhibit binding to PARP-1. Compound 1 has a very 

small amino group in this location, which can easily be accommodated in both structures. By 

contrast, the 5-benzamido group in 15a can only be accommodated by the larger and in-plane 

void of the PARP-2 structure and is sterically excluded by PARP-1 (Figure 3). Indeed, it was 

not possible to generate a corresponding model for binding of 15a to PARP-1, owing to steric 

clash of the benzamide unit with the walls of the pocket. Now, the apparent SAR requirement 

for a benzamide in the 5-position, rather than an equivalent aliphatic amide, can be 

rationalised by the establishment of an additional aroma tic π-stacking interaction onto a Tyr 

residue (Tyr438) in the wall of the pocket in PARP-2. The structure of human PARP-2 

contains a captive water molecule near the 3-amino group of the bound inhibitor 3-amino-

benzamide and it has been proposed that this mediates hydrogen bonding to the amine.59 A 

similar water-mediated hydrogen bond to the 5-NH2 could also be responsible, in part, for the 

good binding of 1 to both PARP-1 and PARP-2. The facility for hydrogen bonding (now to 

the secondary amide N-H) is retained in bound 15a. 

Similar docking / modelling of the less selective inhibitor 29 into the active site of murine 

PARP-2 was carried out. The above putative water-mediated hydrogen bond is also available 

in this structure (from the 5-NH). The side-chain is located within the “in plane” pocket of the 

PARP-2 protein, although the π-stacking is, of course, not possible. The terminal carboxylate 

can also access the ammonium side-chain of Lys308. The smaller size and the flexibility of the 

side-chain of 29 permit access to both the larger pocket of PARP-2 and the smaller pocket of 

PARP-1, leading to more modest isoform-selectivity than for 15a. 
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Conclusions 

In this paper, we report the design, synthesis and biochemical evaluation of new 5-substituted 

isoquinolin-1-ones as selective inhibitors of PARP-2. Compounds were designed partly by 

modelling using the reported crystal structures of the catalytic NAD+-binding sites of PARP-1 

and PARP-2.48,49 A new high-yielding synthesis of our lead PARP inhibitor 1 has been 

developed, which has the potential for large-scale preparations of this important compound to 

make it more economically available for biological and chemical studies. A Hurtley coupling 

to 2-methyl-3-nitrobenzoic acid 16 led directly to the isocoumarin 19; conversion of 19 to the 

isoquinolin-1-one 20 and reduction of the nitro group provided a good route to 21. Acylation 

of the exocyclic amines of 1 and 21 gave the corresponding 5-amidoisoquinolin-1-ones 15a-n 

and 22 in good yields. Four isoquinolin-1-ones carrying carboxylates at to 5-position (linked 

directly to the ring or through tethers) were synthesised by hydrolysis of 5-cyanoisoquinolin-

1-one 23, by a Heck coupling to 5-iodoisoquinolin-1-one 25 or by chain-extension from the 

amine of 1. Under strongly basic conditions, 1 was alkylated at the ring 2-N, rather than at the 

exocyclic amine. 

The isoform-selectivities of compounds 24, 26, 27 and 29, carrying carboxylates designed to 

bind electrostatically to basic Lys308 in the PARP-2 structure, which replaces neutral Gln763 in 

PARP-1, were disappointing. Reasonable potency against PARP-2 was observed for 26, 27 

and 29 but inhibition of PARP-1 activity was also strong. The modest selectivity was rational-

ised by post facto modelling studies. 

The 5-amidoisoquinolin-1-ones were investigated as more hydrolytically stable analogues of 

the benzoate ester 10, for which Pellicciari et al. claimed 60-fold selectivity for inhibition of 

PARP-2.33,56 Of this series, the simple benzamide 15a, the closest analogue of 10, proved to 

be the most selective (IC50 (PARP-1) / IC50 (PARP-2)) = 9.3. In our comparative assays, 15a had act-
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ivity equal to that of 10 against PARP-2 but 10 was much more potent than was 15a against 

PARP-1, leading to an observed selectivity of only 2.75-fold for 10. Similarly, the quinoxal-

ine-5-carboxamide 9b showed a 3-fold selectivity for PARP-1 in our comparative assays, 

contrasting with a claimed 5-fold selectivity for PARP-2.39 In the light of these results, it is 

now evident from our direct comparisons that 5-benzamidoisoquinolin-1-one 15a is the most 

isoform-selective inhibitor of PARP-2 reported to date. Post facto modelling studies 

rationalised the structural basis of the observed selectivity. 
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Experimental section 

General 

NMR spectra were recorded on JEOL Delta 270 and Varian Mercury 400 spectrometers. 

Mass spectra were obtained using VG7070E and Bruker microTOF™ spectrometers. IR 

spectra were measured on a Perkin-Elmer RXI FTIR spectrometer. The stationary phase for 

chromatography was silica gel. All reactions were carried out at ambient temperature, unless 

otherwise stated. Solvents were evaporated under reduced pressure. Melting points were 

determined using a Reichert-Jung Thermo Galen instrument and are uncorrected. Target com-

pounds for biochemical evaluation were >95% pure, as shown by CHN combustion micro-

analyses (carried out at the School of Pharmacy, University of London) and TLC for novel 
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compounds and by identity of mp and TLC for known compounds. Compound 12 was 

obtained from the Aldrich Chemical Co. 

5-Aminoisoquinolin-1-one hydrochloride (1). Compound 14 (1.6 g, 8.4 mmol) was stirred 

with Pd/C (10%, 1.0 g) in EtOH (120 mL) and aq. HCl (9 M, 4 mL) under H2 for 2 h. The 

suspension was then filtered through Celite®. The Celite® pad and residue were suspended in 

water (1000 mL) and heated. The hot suspension was filtered through a second Celite® pad. 

Concentration of the filtrate and drying gave 1 (1.2 g, 71%) as white crystals: mp 248–252°C 

(decomp.) (lit.15 250–260°C (decomp.)). 

1-Chloro-5-nitroisoquinoline (13). Aq. HNO3 (70%, 850 mg, 13.4 mmol) in conc. H2SO4 (5 

mL) was added dropwise to 12 (2.00 g, 12.2 mmol) in conc. H2SO4 (10 mL) at 0-5°C. The 

mixture was stirred at 0°C for 2 h, then poured onto ice. The precipitate was collected, 

washed (H2O), dried and recrystallised (EtOAc / hexanes) to give 13 (2.34 g, 92%) as pale 

yellow crystals: mp 181–183°C (lit.61 mp 183–184°C). 

5-Nitroisoquinolin-1-one (14). Compound 13 (5.00 g, 24.0 mmol) was stirred at 100°C in 

AcOH (100 mL) for 40 h. The cooled suspension was then poured onto ice. The solid was 

collected, washed (H2O) and recrystallised (EtOH) to give 14 (3.74 g, 82%) as pale yellow 

crystals: mp 247–249°C (decomp.) (lit.15 mp 247–249°C). 

5-Benzamidoisoquinolin-1-one (15a). Compound 1 (50 mg, 0.25 mmol) was stirred with 

PhCOCl (39 mg, 0.28 mmol) in pyridine (2.0 mL) at 90oC for 16 h. Evaporation and recryst-

allisation (EtOAc) gave 15a (57 mg, 86%) as an off-white solid: mp >310oC (decomp.). 

3-Methyl-5-nitroisocoumarin (19). 2-Bromo-3-nitrobenzoic acid 1662 (2.5 g, 10 mmol) and 

Cu powder (67 mg, 1.1 mmol) were added to pentane-2,4-dione (5.3 g, 53 mmol) and KOBut 

(2.3 g, 20 mmol) in ButOH (50 mL). The mixture was boiled under reflux for 16 h, then 
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poured into H2O (350 mL) and acidified with aq. HCl (2 M). Extraction (Et2O), evaporation 

and chromatography (hexane / EtOAc 3:2) gave 19 (470 mg, 23%) as yellow crystals: mp 

199–200°C. 

3-Methyl-5-nitroisoquinolin-1(2H)-one (20). A solution of 19 (470 mg, 2.3 mmol) in 

MeO(CH2)2OH (100 mL) was saturated with NH3, boiled under reflux for 4 h, then evapor-

ated until 10 mL remained. The concentrate was stored at 4°C for 16 h. The solid was collec-

ted, washed (H2O, EtOH) and recrystallised (MeOH) to give 20 (320 mg, 68%) as bright 

yellow crystals: mp 231–232°C (decomp.). 
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5-Amino-3-methylisoquinolin-1(2H)-one (21). Compound 20 (320 mg, 1.6 mmol) was 

heated with SnCl2 (900 mg, 4.7 mmol) in EtOH (20 mL) at 70°C for 4 h, then carefully 

poured into ice-H2O (200 mL). The suspension was made alkaline with aq. NaOH and the 

precipitate was filtered. Extraction of the filtrate (EtOAc), evaporation and recrystallisation 

(hexane, EtOAc) gave 21 (160 mg, 59%) as yellow crystals: mp 183–184°C. 

3-(1-Oxoisoquinolin-5-yl)propanoic acid (27). Compound 26 (160 mg, 8.4 mmol) in EtOH 

(25 mL) and aq. HCl (34%, 4 mL) was stirred vigorously with Pd/C (10%, 100 mg) under H2 

for 2 h. Filtration (Celite®) and evaporation of the solvent from the filtrate 27 (1.1 g, 66%) as 

white crystals: mp 260–263°C.  

Ethyl 2-(1-oxoisoquinolin-5-ylamino)acetate (28). Compound 1 (1.0 g, 4.4 mmol), Pri
2NEt 

(1.4 g, 11 mmol), ethyl bromoacetate (885 mg, 5.3 mmol) and NaI (100 mg, 0.7 mmol) were 

stirred at 80°C in DMF (60 mL) for 16 h. Evaporation and recrystallisation (MeOH) gave 28 

(121 mg, 19%) as pale buff crystals: mp 199–201°C. 

5-(Carboxymethylamino)isoquinolin-1-one hydrochloride (29). Ester 28 (94.0 mg, 0.39 

mmol) was boiled under reflux in aq. HCl (6.0 M, 4.0 mL) for 3 h. Evaporation gave 29 (86 

mg, 87%) as a pale amber solid: mp 275–280°C (decomp.). 

Crystal data for 33. All data were collected at 150 K on a Nonius kappaCCD diffractometer. 

The structure was solved using SHELXS-9763 and refined using full-matrix least squares in 

SHELXL-97. C12H12N2O3, M = 232.24, λ = 0.71073 Å, triclinic, space group = P-1 (No. 2) a 

= 7.7290(3), b = 7.7930(3), c = 9.2330(4)Å, α = 103.760(2), β = 93.294(2), γ = 94.054(2)o, U 

=  537.23(4) Å3,  Z = 2, Dc = 1.436 g cm-3, μ = 0.105 mm-1,  F(000) = 244. Crystal size = 0.25 

× 0.25 × 0.10 mm, unique reflections = 2405 [Rint = 0.0494], observed (I > 2σ > (I)�) = 1503, 

data / restraints / parameters = 2405 / 1 / 160. Final R indices [I > 2σ > (I)], R1 = 0.0547, wR2 
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= 0.1355; R indices (all data) = R1 = 0.1010, wR2 = 0.1589. Max. peak / hole, 0.718 and -

0.309 eÅ-3. Crystallographic data for 33 have been deposited at the Cambridge Crystallo-

graphic Data Centre: CCDC 781071. Requests for data should be addressed to CCDC, 12 

Union Road, Cambridge CB2 1EZ, U.K. 

PARP-1 inhibition assay. Compounds were assayed for inhibition of the catalytic activity of 

PARP-1 using the FlashPlate scintillation proximity assay previously developed at KuDOS.55 

Compounds were evaluated at eight different concentrations (0.75 nM – 1.5 μM + further 

concentrations to 10 μM if necessary) in triplicate, using full-length human PARP-1 (ca. 50 

ng) isolated from HeLa cell nuclear extract. Compounds were dissolved in DMSO prior to 

addition, to give a final concentration of 2% in the assay mixture, a concentration which had 

been shown to have no effect on the activity of the enzyme. Oligonucleotides 5’-

ACTTGATTAGTTACGTAACGTTATGATTGA-3’ / 5’-TCAATCATAACGTTACGT-

AACTAATCAAGT-3’ were used as the DNA ligand. The concentration of NAD+ was 5.0 

μM. The reaction buffer was HEPES (1.0 M, 12.5 mL), MgCl2 (1.0 M, 6.25 mL), KCl (3.0 M, 

8.3 mL), dithiothreitol (77 mg), glycerol (propane-1,2,3-triol, 50 mL), NP-40 (50 μL) made 

up to 500 mL with milliQ water, then adjusted to pH 7.6 with aq. KOH (3.0 M). Compounds 

were incubated with the enzyme for 10 min, then the other components were added and the 

reaction allowed to proceed for 45 min. Data were fitted using a logarithmic concentration 

scale to a dose-response curve using SigmaPlot 11; IC50 values were measured usually in two 

or three independent experiments and the mean values are reported. 

PARP-2 inhibition assay. Compounds were assayed for inhibition of the catalytic activity of 

PARP-2 using a method in which recombinant full-length murine PARP-2 protein (Alexis) 

(ca. 50 ng) was bound down by a PARP-2-specific antibody in a 96-well white-walled plate. 

PARP-2 activity was measured following addition of 3H-NAD+ and DNA.36 After washing, 
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scintillant was added to measure the 3H-incorporated. Compounds were evaluated at eight 

different concentrations (0.75 nM – 1.5 μM + further concentrations to 10 μM if necessary) in 

triplicate. Compounds were dissolved in DMSO prior to addition, to give a final concentration 

of 2% in the assay mixture, a concentration which had been shown to have no effect on the 

activity of the enzyme. Oligonucleotides 5’-ACTTGATTAGTTACGTAACGTTATGAT-

TGA-3’ / 5’-TCAATCATAACGTTACGTAACTAATCAAGT-3’ were used as the DNA 

ligand. The concentration of NAD+ was 2.5 μM. The reaction buffer was HEPES (1.0 M, 12.5 

mL), MgCl2 (1.0 M, 6.25 mL), KCl (3.0 M, 8.3 mL), dithiothreitol (77 mg), glycerol 

(propane-1,2,3-triol, 50 mL), NP-40 (50 μL) made up to 500 mL with milliQ water, then 

adjusted to pH 7.6 with aq. KOH (3.0 M). Compounds were incubated with the enzyme for 10 

min, then the other components were added and the reaction allowed to proceed for 45 min. 

Data were fitted using a logarithmic concentration scale to a dose-response curve using 

SigmaPlot 11; IC50 values were measured usually in two or three independent experiments 

and the mean values are reported. 

Supporting Information Available: Synthetic procedures and spectroscopic data for 15b-n, 

22, 24, 26, 31 and 32, spectroscopic data for 1, 13, 14, 15a, 19, 20, 21 and 27-29, biochemical 

and cell biological evaluation procedures and dose-response curves, elemental combustion 

analytical data. This material is available free of charge via the Internet at http://pubs.acs.org.  
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Table 1. Inhibition of the activities of PARP-1 and PARP-2 by 5-amidoisoquinolin-1-ones 
15a-n and 22, by 5-(ω-carboxyalkyl)- and 5-(ω-carboxyalkylamino)-isoquinolin-1-ones 24, 26 
and 29 and by 2-(2-carboxyethyl)isoquinolin-1-one 32. Data for 1, 5-benzoyloxyisoquinolin-1-
one 10 and 2-(4-chlorophenyl)quinoxaline-5-carboxamide 9 are shown for comparison. 

Cpd. 
No. 

Isoquinol-
inone 3-

substituent 

Isoquinolinone 
5-substituent  

PARP-1 
IC50 (μM) 

PARP-2 
IC50 (μM) 

Observed 
selectivity 

(IC50 (PARP-1) / 
(IC50 (PARP-2)) 

1 H H2N- 0.94 ± 0.10 1.05 ± 0.11 0.9 

15a H PhCONH- 13.9 ± 1.2 1.5 ± 0.2 9.3 

15b H 4-MePhCONH- 13.4 ± 1.2 6.5 ± 0.8 2.1 

15c H 4-O2NPhCONH- 3.0 ± 0.4 1.6 ± 0.2 1.9 

15d H 4-F3CPhCONH- 10.7 ± 1.5 3.3 ± 1.0 3.2 

15e H 4-FPhCONH- 18.0 ± 1.2 3.6 ± 0.4 5.0 

15f H 4-ClPhCONH- 11.2 ± 1.3 3.9 ± 0.3 2.9 

15g H 4-BrPhCONH- NDa NDa - 

15h H 4-IPhCONH- 7.6b 1.3b 5.8 

15i H 2-MePhCONH- 31.6 ± 3.4 5.6 ± 0.4 5.6 

15j H 2-IPhCONH- 4.5 ± 1.2 3.2 ± 1.0 1.4 

15k H (thiophen-2-yl)-
CONH- 

22.4 ± 3.4 7.0 ± 1.2 3.2 

15l H cHexCONH- >80 27.9 ± 4.5 >2.9 

15m H ButCONH- >100 29 ± 3.4 >3.4 

15n H (adamantan-1-
yl)CONH- 

>50 19.9 ± 3.0 >2.5 

22 Me PhCONH- 16.6 ± 1.2 6.3 ± 0.3 2.6 

24 H HO2C- >25 >25 - 

26 H HO2CHC=HC- 6.6 ± 1.0 4.7 ± 0.4 1.4 

27 H HO2CCH2CH2- 8.6 ± 1.1 3.0 ± 0.2 2.9 

29 H HO2CCH2NH- 1.6 ± 0.1 0.55 ± 0.1 2.9 

32c H H2N- 0.55 ± 0.1 1.6 ± 0.3 0.4 

10 H PhCO2- 4.1 ± 0.5 1.5 ± 0.4 2.75 

9b [2-(4-ClPh)quinoxaline-5-
CONH2] 

0.03 ± 0.006 0.09 ± 0.02 0.33 

a Not determined owing to limited solubility. 
b Measured once only. 
c Also carries –CH2CH2CO2H at 2-position. 
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Table 2. Inhibition of growth of HT29 human colon carcinoma cells, MDA-MB-231 human 
breast carcinoma cells, LNCaP human prostate carcinoma cells and FEK4 human dermal 
fibroblast cells by 1 and selected 5-amidoisoquinolin-1-ones 15a,l-n. Data are from single 
experiments using duplicates for each data point. 

Cpd
No. 

HT29 
IC50 (μM) 

MDA-MB-231 
IC50 (μM) 

LNCaP 
IC50 (μM) 

FEK4 IC50 (μM) 

1 >200 170 >200 >200 

15a >200 139 98 >200 

15l >200 >200 >200 >200 

15m >200 >200 >200 >200 

15n >200 >200 42 >200 
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15a: R = Ph, IC50 (PARP-1) / IC50 (PARP-2) = 9.315a: R = Ph, IC50 (PARP-1) / IC50 (PARP-2) = 9.3


