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The Volcano Effect in Bacterial Chemotaxis

Julie E Simonsa,∗, Paul A. Milewskia

aDepartment of Mathematics, University of Wisconsin, Madison, 480 Lincoln Dr.,

Madison, WI 53706

Abstract

A population-level model of bacterial chemotaxis is derived from a simple bacterial-
level model of behavior. This model, to be contrasted with the Keller-Segel
equations, exhibits behavior we refer to as the “volcano effect”: steady-state
bacterial aggregation forming a ring of higher density some distance away from
an optimal environment. The model is derived, as in Erban and Othmer [7], from
a transport equation in a state space including the internal biochemical vari-
ables of the bacteria and then simplified with a truncation at low moments with
respect to these variables. We compare the solutions of the model to stochastic
simulations of many bacteria, as well as the classic Keller-Segel model. This
model captures behavior that the Keller-Segel model is unable to resolve, and
sheds light on two different mechanisms that can cause a volcano effect.

Keywords: chemotaxis, stochastic, bacteria, swarming, Keller-Segel

1. Introduction

Chemotaxis refers to the process of a directed motion of organisms towards
or away from a chemical gradient. This phenomenon has been described since
the late nineteenth century and extensively studied in bacteria for the past
fifty years. In observations of such bacterial behavior, populations spread in a
coordinated manner, biased toward the direction of improving environmental
conditions. In certain species, the individual bacteria in the swarm perform a
biased simple random walk which take the form of what are known as “runs”
and “tumbles”. A bacteria will run or swim in one direction, and then stop
and tumble for a short period of time, allowing it to reorient and then swim
in a new, randomly chosen direction. This motion is accomplished by flagellar
motors, which propel a bacterium forward during a run and are considered
effectively turned off during a tumble. The bias in this process comes from the
chemotactic sensing ability, which, during each swim, decreases the probability
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of the bacteria entering into a tumbling state if the environment is improving
and increases it if its environment is deteriorating.

The chemotactic sensory system is commonly described as an excitation-
adaptation mechanism. That is, the bacteria respond quickly to changes in their
environment and, on a slower time scale, adapt to these changes. Translated
into run and tumble frequencies, improving the environment yields a decrease
in tumble probabilities (signifying longer runs) with an eventual adaptation to
return to a basal tumbling frequency. Such a mechanism implies that at least
two time scales are involved: the rapid time scale of excitation and the slower
time scale of adaptation. We shall see in this paper that the interplay of these
two time scales can have important effects on the behavior of populations of
bacteria near the maxima of the chemoattractant. Other time scales (or length
scales, given that the swim speed of bacteria is roughly constant) also affect
the chemotactic process. Three further scales of importance are the average
periods of a run and of a tumble, and the physical length scale of the problem.
In this work, we assume the sensory mechanism of the bacteria, through the
excitation-adaptation process, affects only the probability of entering a tumble
(the tumbling frequency), but that the time scale of tumbles are fixed. This
assumption, which not entirely true biologically, is supported in realistic exper-
imental settings [2].

When considering a large population of bacteria over long length scales, the
macroscopic process is most often described mathematically using a Keller-Segel
[9] reaction-diffusion model for ρ(x, t), the density of bacteria. In its simplest
form it reads

ρt = D∆ρ −∇ · (χ(S)ρ∇S)

The first term on the right is a Fickian diffusion term arising from the un-
biased random walk, whereas the second term introduces an advection speed
proportional to the gradient of a chemoattractant S(x), thus giving a bias in
the mean displacement of the bacterial population. In this model, χ > 0 is
often reffered to as the chemotactic coefficient, and we have assumed that the
chemoattractant concentration is given. These types of models have been shown
to capture much of the important population-level behavior observed in bacteria
[11]. An interesting class of Keller-Segel models arises when the chemoattractant
itself is produced by the bacteria, which leads to spontaneous cluster formations
[3, 10, 12].

At the organism level, simulations of the entire biochemical network of the
chemotactic system have been undertaken at various levels of detail. In fact,
the chemotactic mechanism of Escherichia coli, from the molecular sensing at
the receptors on the bacterial surface to the flagellar motor drive, is one of the
best understood cell-level biochemical processes. Bray et al. have created a de-
tailed organism-level stochastic model for E. coli incorporating all of the known
biological processes and experimentally-derived rate constants [5]. Simulated
populations of these synthetic bacteria yield behavior that is comparable to real
bacteria even down to predicting the behavior of specific mutant strains. Of
course these fine-grained simulations are far more detailed and costly to com-
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pute than Keller-Segel solutions.
We encountered the first motivation for this research in some of the simula-

tion results of the Bray model [5]. In certain situations they observe a behavior
for a population of bacteria in which the bacteria regularly overshoot the peak in
chemoattractant concentration. This behavior occurs due to the sensing mecha-
nism of the bacteria, which is sometimes unable to immediately respond to sharp
changes in chemoattractant gradients. In populations of bacteria, the resulting
density profiles have a volcano-like shape, with maximal bacterial densities oc-
curring on a ring around the peak in chemoattractant concentration. This is
what we mean by the “volcano effect”.

There is also some biological evidence supporting these stochastic results.
As far back as 1973, Adler noted that bacteria would congregate some distance
away from a nutrient source in capillary assays [1] . More recently, Mittal et al.
have both experimental and modeling evidence of a maximal density being away
from the highest concentration of chemoattractant in the case where bacteria
are secreting their own chemoattractant in order to form clusters [10] .

A common question arising in these types of phenomena is how to coarse-
grain from an organism-level model to a population-level model. Some methods
follow a “gas-dynamics” approach and involve writing a Boltzmann equation
for the bacterial density with a collision kernel accounting for the tumbling and
reorientation [6]. Another approach considers including a simplified internal
biochemical model explicitly as part of the state space. Recently, Erban and
Othmer used such an approach and were able to derive a Keller-Segel equa-
tion modeling the behavior of the population. Their method involved writing
a transport equation in state space and taking moments with respect to the
bacteria’s internal dynamical variables. Under certain assumptions about the
scaling of time and space, the mean bacterial population was shown to obey
Keller-Segel [7].

The Keller-Segel model does not have volcano-like behavior, and its steady
solutions

ρ ∼ exp

[

1

D

∫ S

χ dS

]

have maxima in bacterial concentration that coincide with the maxima of the
chemical concentration. The aim of this work is to derive a continuum-level
model, from a simple organism-level model, which can exhibit the “volcano
effect” in the presence of rapid changes in the gradient of chemoattractant.
Here, we propose two models which are able to capture this phenomenon, each
derived from basic bacterial behavior and relying on two different aspects of the
chemotaxis mechanism and response.

2. Formulation

In order to derive continuum-level equations from an organism-level model,
we will follow a similar approach to Erban and Othmer [7]. This approach
involves writing transport equations in the full state space (physical space,

3



velocity, and internal biochemical variables) and then taking moments over
the internal variables. We shall use a simple 2-variable model describing the
excitation-adaptation state of individual bacteria. The result are equations for
the density and flux of the bacterial population and for the departures from
the equilibrium values of the internal variables. These equations have to be
supplemented by closures which express higher moments as a function of known
quantities.

2.1. Transport equations

Letting the bacterial density be p(x, v, z, t), a function of the spatial position
x ∈ R

N , velocity v ∈ R
N , internal state variables z ∈ R

M (representing the
concentrations of chemicals involved in the the chemotactic pathway), and time
t, one assumes that the behavior of the internal state variables may be modeled
by a system of ordinary differential equations

dz

dt
= f(z, S).

At the most complex level, f(z, S) is given by the full mass-action kinetics of the
chemotactic pathway and may include thousands of variables as in [5]. S(x) is
the given external chemoattractant concentration. One then writes a transport
equation for the evolution of the density p

∂p

∂t
+ ∇x · vp + ∇z · fp = Q(p, z)

where Q is a “collision kernel”, or the term that incorporates changes in the
velocity of the bacteria due to tumbling.

In order to simplify the problem and isolate different effects, in this paper
we focus on the one-dimensional physical problem (bacteria on a line) and the
simplest excitation-adaptation system with z ∈ R

2. This is the case considered
in [7], and then generalized to higher spatial dimensions in [8]. Assuming dis-
crete velocities of ±s or 0 (for right-moving, left-moving or tumbling bacteria,
respectively), one may consider three subpopulations of bacteria:

pσ(x, z, t) = p(x, σs, z, t), σ = +,−, 0.

This results in three transport equations:

∂p+

∂t
+ s

∂p+

∂x
+ ∇z · fp+ = Q+(p+, p−, p0, z)

∂p0

∂t
+ ∇z · fp0 = Q0(p+, p−, p0, z)

∂p−

∂t
− s

∂p−

∂x
+ ∇z · fp− = Q−(p+, p−, p0, z)

(1)

The terms Qσ should now be seen as transition probabilities between states. In
order to examine the behavior of the observable population of bacteria (internal
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variables are not directly observable in most experimental settings), we define

n(x, t) =

∫

(p+ + p−)dz, m(x, t) =

∫

p0dz, j(x, t) = s

∫

(p+ − p−)dz,

where n is the density of swimming bacteria, m, that of tumbling bacteria, and
j is the flux of bacteria at (x, t). The observable density is n + m. We also
introduce higher moments of n, m, and j with respect to z as follows:

ni,k =

∫

zi
1z

k
2 (p+ + p−)dz mi,k =

∫

zi
1z

k
2p0dz ji,k = s

∫

zi
1z

k
2 (p+ − p−)dz

In order to derive evolution equations for these quantities, we take moments of
the transport equations for a specific form of f(z, S) and Qσ in the following
section.

2.2. Excitation-adaptation model

A simple model of the internal state of a bacterium may be described using
two variables, denoted by y1 and y2 (we shall return to z briefly). The variable
y1 will vary on the time scale of the excitation, whereas y2 will vary on a slower
time scale of adaptation. An excitation-adaptation model may be written as:

dy1

dt
=

g(S) − (y1 + y2)

te
dy2

dt
=

g(S) − y2

ta

where g(S) describes how the sensing mechanism of the bacterium transmits the
external chemical concentration S to an internal biochemical signal. The func-
tion g should be monotonically increasing as a function of S for a biologically-
relevant model. This model imposes that a bacterium introduced to a step-wise
change in chemoattractant concentration first responds rapidly by adjusting y1

to g(S) − y2 and then more slowly adapts y2 to the new value of g(S) with y1

relaxing to zero.
In E. coli, y1 can be thought of as the concentration of the protein CheY,

which modulates the tumbling frequency by biasing the flagellar motor. The
variable y2 may be associated with CheA, which is associated with the receptor
dynamics and the sensing of the external environment [11]. We normalize the
variables y1 and y2 about their equilibria by letting z1 = y1 and z2 = y2 − g(S).
This will allow us to take moments in z1 and z2 about 0. Noting that S depends
implicitly on t through the motion of the bacteria, the internal dynamics are
now written

dz1

dt
=

−z1 − z2

te
≡ f1(z1, z2)

dz2

dt
= −z2

ta
− g′(S)

(

∇S · v
)

≡ f2(z1, z2), v = ±s, 0.

(2)
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Clearly, z1 and z2 tend towards 0 for a constant value of S. If ∇S is non-
constant, the internal biochemistry of a running bacteria is always off-equilibrium
and never fully adapts. It is this fact that drives chemotactic behavior: if the
bacteria were able to adapt during a run, then chemotaxis would not be possible.

2.3. Transition probabilities

In order to derive simple flux equations for n, m, and j from the transport
equations (1), a model for the transitions Qσ between the three velocity states
is needed. Here again we will assume a simple model. In the case that the
times spent running or tumbling in a uniform environment are exponentially
distributed, for which there is experimental evidence [2], then the probability
of entering a tumble may be considered as λdt. It is also necessary that λ be
dependent on z1, the measure of the adaptation level of the bacteria. If z1 = 0,
the bacteria are fully-adapted to their environment and enter a tumble with a
basal tumbling frequency, which we will call 2λ0 (the factor of 2 will facilitate
a comparison of models later). Assuming a simple linear model, and since an
elevated level of z1 implies an improvement in the environment and therefore a
decrease in tumbling frequency, we define:

λ(z1) = 2λ0 − 2bz1

for some constant b. Mathematically, λ needs to be above 0 to make sense as
a tumbling frequency. Using the steady-state solution for z1, we impose the
constraint on the maximum chemoattractant gradient:

λ0 > bstamax{gx}. (3)

From a biological perspective, this expression for λ could be thought of as the
linearization of a more complicated relation for small z1.

Assuming that the frequency of exiting a tumble be independent of the
internal state (for which there is also support in [2]), and representing this also
by a Poisson process with rate β0 with the bacteria choosing equally between
left and right directions, the forms for the Q quantities may be written:

Q+ = −(2λ0 − 2bz1)p
+ +

β0

2
p0

Q0 = (2λ0 − 2bz1)
(

p+ + p−
)

− β0p
0

Q− = −(2λ0 − 2bz1)p
− +

β0

2
p0

2.4. Simplified cases

There are simplified cases we will consider throughout this paper. First of
all, one could have a system with very short excitation time. The limit te = 0
in (2), which we denote fast excitation, implies that z1 = −z2 and that

dz1

dt
= −z1

ta
+ g′(S)

(

∇S · v
)

, v = ±s, 0.
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A second simplification is the removal of a tumbling state. In this case p0 = 0
which corresponds to the limit β0 → ∞. One should note that the tumbling
state is not completely “passive”, given that the internal excitation-adaptation
dynamics (as a return to zj = 0) is still operating during tumbling. Thus we
have four possibilities: (i) fast-excitation and no tumbling, (ii) fast-excitation
with tumbling, (iii) slow excitation and no tumbling, and (iv) slow excitation
with tumbling.

3. Conservation laws for moments

In order to obtain the moment flux equations for the population, we take
linear combinations of equations (1) with the forms for f and Q chosen, and
with weights ±1,±s, z1 or z2, integrate over z and obtain the following

nt + jx = −2λ0n + 2bn1,0 + β0m

jt + s2nx = −2λ0j + 2bj1,0

mt = 2λ0n − 2bn1,0 − β0m

n1,0
t + j1,0

x = −
(

2λ0 +
1

te

)

n1,0 + 2bn2,0 − 1

te
n0,1 + β0m

1,0

j1,0
t + s2n1,0

x = −
(

2λ0 +
1

te

)

j1,0 + 2bj2,0 − 1

te
j0,1

m1,0
t = 2λ0n

1,0 − 2bn2,0 − 1

te
m0,1 −

(

β0 +
1

te

)

m1,0

n0,1
t + j0,1

x = −sg′Sxj −
(

2λ0 +
1

ta

)

n0,1 + 2bn1,1 + β0m
0,1

j0,1
t + s2n0,1

x = −s2g′Sxn −
(

2λ0 +
1

ta

)

j0,1 + 2bj1,1

m0,1
t = 2λ0n

0,1 − 2bn1,1 −
(

β0 +
1

ta

)

m0,1

(4)

These moment flux equations are not closed, and closing them requires express-
ing the higher order moments n2,0, n1,1, j2,0, and j1,1 as functions of the lower
order moments. Initially, we will take these higher order moments to be zero.
We now nondimensionalize the full system (4) with

x̂ =
x

sta
, t̂ =

t

ta
, n̂ =

n

n0

, ĵ =
j

sn0

n̂0,1 =
n0,1

S0n0

, ĵ0,1 =
j0,1

sS0n0

, n̂1,0 =
n1,0

S0n0

, ĵ1,0 =
j1,0

sS0n0

λ̂0 = λ0ta, b̂ = bS0ta, β̂0 =
β0

ta
, Ŝ =

S

S0

(We have let n0 be the scale of the density n and S0 be the scale of concen-

tration of chemoattractant S.) In addition to the dimensionless λ̂0, β̂0, b̂, we
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have introduced the ratio of excitation to adaptation timescales τ = te/ta < 1,
which may be quite small for biologically relevant scenarios. Dropping the hats
for ease of notation and writing the equations in terms of total population of
bacteria ρ = n + m, the resulting nondimensional, closed system is

ρt + jx = 0

jt + (ρ − m)x = −2λ0j + 2bj1,0 (5)

mt = 2λ0(ρ − m) − 2b(ρ1,0 − m1,0) − β0m

ρ1,0
t + j1,0

x = −τ−1ρ1,0 − τ−1ρ0,1

j1,0
t + (ρ1,0 − m1,0)x = −

(

2λ0 + τ−1
)

j1,0 − τ−1j0,1 (6)

m1,0
t = 2λ0(ρ

1,0 − m1,0) − τ−1m0,1 −
(

β0 + τ−1
)

m1,0

ρ0,1
t + j0,1

x = −g′Sxj − ρ0,1

j0,1
t + (ρ0,1 − m0,1)x = −g′Sx(ρ − m) −

(

2λ0 + 1
)

j0,1 (7)

m0,1
t = 2λ0(ρ

0,1 − m0,1) −
(

β0 + 1
)

m0,1

This is the model we shall consider for the remainder of the paper, with various
simplifications to isolate certain effects. The subcases (i)-(iv) listed above can
be obtained with simplifications of these equations. (i) fast-excitation and no
tumbling: use the first two equations of (5), (7), set all m variables to zero and
in (5) set j1,0 = −j0,1, (ii) fast-excitation with tumbling: use (5), (7), and in
(5) set ρ1,0 = −ρ0,1, j1,0 = −j0,1, m1,0 = −m0,1 (iii) slow excitation and no
tumbling: use the first two equations of (5)–(7), set all m variables to zero, (iv)
slow excitation with tumbling: use the full model.

4. The Keller-Segel equation

In order to derive a Keller-Segel model from equations (5)–(7), the spatio-
temporal scales of interest are important. The flux equations derived in section
3 were derived using the scales affecting individual bacteria: the temporal scales
of the excitation-adaptation behavior of the internal states and the spatial scales
implied by an average bacterial velocity, s. This corresponds to time scales on
the order of milliseconds to seconds and spatial scales on the order of microm-
eters.

Keller-Segel-type models are used to model populations of bacteria on large
spatial scales and long time scales. For such population densities of bacteria,
relevant spatial scales are on the order of millimeters to centimeters and time
scales of the motion of populations are on the order of hours to days. In our
problem the observational scale is set by the fixed chemoattractant concentra-
tion S(x). Clearly the important scale in the equations is the scale over which
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the chemotactic gradient varies. Thus, one may define the spatial scale of in-
terest as, for example,

L =

∫

Ω

|Sxx|dx

∑

xj∈Ω

|Sxx(xj)|

The numerator is the total variation of the Sx, and xj are the point at which Sxx

attains local extrema. Thus L is the smallest distance over which the changes in
Sx may have occured. If we non-dimensionalize the flux equations with spatial
scale L instead of sta (the length scale for individual bacterial runs), this is
equivalent to introducing x̃ = ǫx where ǫ = sta

L
. The dimensionless quantity

ǫ is the bacterial swimming equivalent to the Knudsen number in molecular
considerations of fluid mechanics. First, we assume that ǫ ≪ 1, which is true
for smooth gradients, and where we expect Keller-Segel models apply. The
fundamental balance ρt + jx = 0 must be satisfied by any chosen scaling. By
definition, ρ, m = O(1) and thus a consistent choice is j = O(ǫ) and t = O(ǫ2).
This is the scaling we use for the remainder of this section, and results in time
scales of L2/s2ta.

This scaling of time and space also implies the rescaling of other quantities:

j0,1 → ǫj0,1, j1,0 → ǫj1,0, ρ0,1 → ǫ2ρ0,1, ρ1,0 → ǫ2ρ1,0,

m0,1 → ǫ2m0,1, m1,0 → ǫ2m1,0.

Regarding ǫ and τ as independent parameters, we obtain from (6), to leading
order in ǫ,

ρ1,0 = −ρ0,1

m1,0 = − 2τλ0

τβ0 + 1
ρ0,1 − 1

τβ0 + 1
m0,1

j1,0 = − 1

2τλ0 + 1
j0,1

Therefore, the closed leading-order equations governing this scaling, from (5)
and (7) become:

ρt + jx = 0

β0

2λ0 + β0

ρx = −2λ0j + 2bj1,0

0 =
(

2λ0 + 1
)

(2τλ0 + 1)j1,0 − g′Sx

β0

2λ0 + β0

ρ

This results in the Keller-Segel model

ρt = Dρxx − ∂x(χρSx)
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with coefficients for diffusion and a chemotactic velocity given by

D =
β0

2λ0(2λ0 + β0)

χ(S) =
bβ0g

′(S)

λ0(2τλ0 + 1)(2λ0 + 1)(2λ0 + β0)

Hence, this formal calculation to leading order in appropriate scaling arguments
results in the Keller-Segel model at a population level.

5. Models for a volcano

As we have seen, the Keller-Segel model attains steady-state extrema at the
corresponding extrema of the chemoattractant concentration. There is evidence
that this is not always the case, in both biological experiments and stochas-
tic models. Thus, we would like to explore whether the simple excitation-
adaptation model is capable of “volcanic” behavior in stochastic simulations
of large numbers of individual bacteria, and, if so, we would like to find an
appropriate population-level model which reproduces this volcano effect.

Biologically, the cause of a volcano effect is that the bacterium cannot sense
rapid changes in its environment quickly enough. The result is that as a bac-
terium crosses a sharp peak in chemoattractant concentration and its environ-
ment starts deteriorating suddenly, the bacteria continue to run in the same
direction for a short period of time before sensing the deterioration. Once it
senses that its direction is no longer optimal, it reorients with higher frequency,
and will again have a similar overshoot if it crosses back over the peak in con-
centration of chemoattractant in any subsequent runs.

It seems clear that the simple excitation-adaptation model with the transi-
tion model proposed would give rise to such overshoots: consider the simplest
case of te = 0 and no tumbling state. A bacterium in a long run towards a peak
in concentration will have a λ < λ0, and this will remain true for a finite amount
of time O(ta) after it crosses the peak. Thus, over a distance O(sta), it will have
a probability of turning around which is lower than λ0, as if it “believed” the
environment were still improving. This can be observed in stochastic simula-
tions of bacteria. In terms of bacterial density, however, there is a subtlety.
Even with overshoots, the maximum density would occur at the peak in con-
centration, for that is the most likely place for the bacterium to be, even if it is
just passing through. Now consider introducing back the tumbling state: since
tumbling occurs most often slightly away from the peak in concentration by the
previous argument, a finite time spent tumbling make bacteria more likely to
be observed away from the peak. As we shall see this will be one way to obtain
a volcano in a continuum model.

In fact, in the models considered in this paper, there are two factors that
might give rise to a volcano effect: the overshoot described above related to
the finite time a bacterium takes to adapt to a worsening environment, and the
effect of finite excitation times. The differences between the two factors are real,
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but subtle. Of course, both factors involve small spatial scales and the fact that
the bacteria take some time to sense and adapt to the external environment. As
we have argued in the previous paragraph, in the first scenario, a tumbling state
is required. In the second, we shall see that a tumbling state is not required.
Later in the paper we will discuss how these two factors interact when both are
present. As it turns out, the two factors combined do not simply result in a
stronger volcano effect.

The second possible cause for a volcano, the case where there is a non-zero
excitation time te, means that the sensing mechanism has a “delay”: it takes a
short period of time for the bacteria to become aware of its surroundings. With
such a delay, it is possible that the bacteria will not congregate at the peak
concentration, but instead on either side of it. The reason for this is that the
bacterium can confuse improving and deteriorating environments since it is ef-
fectively sensing its environment from a short time before. Suppose a bacterium
has crossed the peak and is within a region of decreasing concentration: it will
eventually sense this and turn around. As it now climbs the gradient it will be
for a while mistaken (since its excitation time is finite) and therefore more likely
to tumble sooner than it should. This may repeat a few times until it makes a
longer run and crosses the peak again. The net result is that it will therefore
spend a finite time on each side of the peak in concentration in a seemingly
“confused” zig-zag.

In order to obtain a volcano effect in numerical simulations of individual
bacteria, as Bray et al. [5] have done, as well as in experiments with live
bacteria, one must have an abrupt change in chemoattractant gradients. Thus,
we can no longer assume ǫ ≪ 1 and we must return to the full flux equations
(4). In order to explore this further, we first consider the case where S has a
single sharp peak centered at x = 0. In controlled chemotaxis experiments the
concentration profile of S(x) is usually chosen such that g′Sx is constant, or
rather that g(S) is linear, so we shall approximate g′Sx near a peak at x = 0
as:

g′Sx =

{

a, x < 0

−a, x > 0
(8)

In the rest of this section, we will use this form for g′Sx, reducing the system to
having constant coefficients, together with appropriate continuity conditions at
x = 0. Since g(S) must be monotonic in S to be biologically relevant, a sharp
peak in S(x) will correspond to a sharp peak in g(S) and vice-versa. We shall
consider two limiting cases: fast-excitation with tumbling and slow excitation
and no tumbling (cases (ii) and (iii) introduced before). It is worth nothing
that this assumption implies L = 0 or ǫ = ∞. In practice this is of course
not possible (one cannot maintain such a sharp S which would itself diffuse),
but is a useful approximation. Later in the paper we shall consider numerical
simulations with sharp, yet not discontinuous, changes in the gradient.
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5.1. Tumbling and fast excitation behavior

We return to the model (4), assuming that the excitation time te = 0. As
was pointed out above, the 9 equations reduce to 6 equations. When seeking
steady-state solutions, the system can be reduced to 3 equations since j = 0 and
since ρ, ρ0,1, m, and m0,1 may be expressed as functions of n, and n0,1. This
linear system is





n
j0,1

n0,1





x

= −





0 2b 0

0 0 2λ0+β0+1

β0+1

g′Sx 2λ0 + 1 0









n
j0,1

n0,1



 (9)

Since g′Sx is symmetric about x = 0, we shall seek solutions to (9) for which n
and n0,1 are symmetric about x = 0 and j0,1 is antisymmetric. This allows us
to consider the domain of x to be R

+ and implies that j0,1 = 0 at x = 0 (or,
equivalently, nx = 0 at x = 0). The problem may then be posed as:

nx = An, x ∈ R
+

n(0) = (N, 0, N0,1)T

n(x) → 0 as x → ∞
(10)

for N and N0,1 real-valued constants. Note that n0,1 need not have a continuous
derivative at x = 0 since g(S) does not. The solutions depend, of course, on the
eigenvalues of matrix A. One can show that there is one positive real-valued
eigenvalue and hence there are either two negative real-valued or two complex
conjugate eigenvalues. To avoid biologically unrealistic solutions with negative
densities, we avoid complex eigenvalues by imposing the restriction

gx ≤
√

(2λ0 + 1)3

27b2
(11)

We must also impose that the solution lies in the eigenspace of the two negative
real eigenvalues so that it does not grow exponentially. This fixes a relation
between N and N0,1, and this relation implies that if N > 0, N0,1 is negative.

The population density ρ can be recovered from solutions with

ρ = n + m = n +
2λ0

β0

n +
2b

β0

n0,1.

First we consider the case of no tumbling, which can be obtained by taking
β0 → ∞. Then ρ = n and therefore, at x = 0: ρ = N > 0, ρx = 0 and
ρxx = 2bn0,1 = 2bN0,1 < 0. These imply a local maxima in ρ at x = 0, and
no volcano effect. Therefore, without tumbling and with te = 0, a volcano-like
population density cannot occur.

However, with the tumbling population the situation changes since n0,1
x > 0

as x → 0+. (To see this, consider the problem on the whole real line which
shows there must be a jump in n0,1

x at x = 0 from the −g′Sxn term.) Then
ρx = 2b

β0

n0,1
x > 0 as x → 0+ and, by symmetry, ρ has a local minimum at x = 0
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in the form of a corner. Since we also know the ρ must decay to 0 as x → ±∞,
there must be a maximum value for ρ at some finite value of x away from 0,
resulting in a volcano.

This simple system also allows for an estimate for the height and width of
a volcano. Approximating ρ about x = 0 as ρ ≈ c0 + c1|x| + 1

2
c2x

2 for c0 > 0,
c1 > 0 and c2 < 0 constants. With some algebra, this approximation allows for
one to solve for c1 and c2 in terms of the parameters of the system (λ0, β0, b,
and a). Then, calculating the approximate height and width of the volcano is
simple, giving a height c2

1/2c2 and width 2c1/c2. Figure 1(a) shows the exact
solution of the linear system together with this approximation.
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Figure 1: Moment flux solution and volcano size estimates for both flux models
with λ0 = 1, b = 1, a = 0.3 and g(S) = 1 − a|x|.

5.2. Slow excitation without tumbling

We turn to the case where the bacteria sense changes in their environment
more gradually with te 6= 0, but that there is also no tumbling state so that
the transitions are now directly between right- and left-moving bacteria (case
(iii) mentioned above). We may restrict ourselves to the first two equations of
each set (5)–(7) with m and its moments set to zero. (An ab initio derivation of
these flux equations for a model with no tumbling requires that λ(z1) = λ0−bz1,
without the factors of two, to compensate for bacteria which now cannot return
to a run in the same direction after tumbling.) Again, we are interested in
steady-state solutions and j(x) will be 0, and we restrict ourselves to the specific
case where g(S) takes the form (8). The result is the following system for x ∈ R

+













n
j0,1

n0,1

j1,0

n1,0













x

= −













0 0 0 −2b 0
0 0 1 0 0
−a 2λ0 + 1 0 0 0
0 0 τ−1 0 τ−1

0 τ−1 0 2λ0 + τ−1 0

























n
j0,1

n0,1

j1,0

n1,0












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Assuming τ ≪ 1, consider the following expansions in τ :

n = n̄ + τñ + O(τ2)

ni,k = n̄ i,k + τñ i,k + O(τ2)

j i,k = j̄ i,k + τ j̃ i,k + O(τ2)

The lowest order equations are

O(τ−1) : n̄1,0 = −n̄0,1

j̄ 1,0 = −j̄ 0,1

and the leading order corrections are

O(1) : n̄x = −2bj̄ 0,1 (12)

j̄ 0,1
x = −n̄0,1 (13)

n̄0,1
x = −g′Sxn̄ −

(

2λ0 + 1

)

j̄ 0,1 (14)

j̄ 1,0
x = −ñ1,0 − ñ0,1 (15)

n̄1,0
x = 2λ0j̄

0,1 − j̃ 1,0 − j̃ 0,1 (16)

Equations (12) through (14) are of the same form as (9) and not coupled with
equations (15) and (16). The system (12)–(14) has no volcano for n alone, just
as in in section 5.1 (it was the n0,1 term in m which caused the volcano in the
previous case but now m = 0). Hence, at O(1), there is no volcano-like behavior.
Equations (15) and (16) allow us to write:

n̄0,1 + ñ1,0 + ñ0,1 = 0

g′Sxn̄ + j̄ 0,1 + j̃ 1,0 + j̃ 0,1 = 0

At order τ , the equations for ñ, j̃ 0,1, and ñ0,1 are:

O(τ) : ñx = −2bg′Sxn̄ − 2bj̄ 0,1 − 2bj̃ 0,1

j̃ 0,1
x = −ñ0,1

ñ0,1
x = −g′Sxñ −

(

2λ0 + 1

)

j̃ 0,1

(17)

Equations (17) are again solvable and a closed system because n̄ and j̄ 0,1 can
be found from the order 1 equations. The equation for ñ implies that it must
have a jump in slope at x = 0 because of the g′Sxn̄ term. This jump gives ñ a
volcano-like shape near x = 0.

Since we are interested in the quantity n = n̄ + τñ, we may conclude that
even without the tumbling state (m quantities), a volcano should be present
with a non-zero excitation time due to this jump in slope of ñ at x = 0. This
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volcano effect will be of order τ since it is the result of the ñ dynamics, so it
should be a weak volcano in comparison to the one observed with the tumbling
state. This is illustrated in figure 1. Additionally, an estimate of the height and
width of the volcano is again possible, but this time we take ρ = n = n̄ + τñ ≈
c0 + τc1|x| + 1

2
c2x

2, where we have ignored terms of O(τx2). The c1 term now
comes from the behavior of ñ. Again, using (12)–(14), we can estimate the
values of c1 and c2 and therefore the height and width of the volcano. Figure
1(b) shows the results of this estimation, together with the solution of the linear
system. Although we use a fairly large value of τ for emphasis, note that the
volcano should exist for all values fixed values of τ > 0.

6. Numerical solutions and comparisons
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(a) Tumbling, δ = 0, a = 0.3
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(b) Tumbling, δ = 0.1, a = 0.3
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(c) Tumbling, δ = 1, a = 0.3
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(d) Tumbling, δ = 1, a = 0.15

Figure 2: Tumbling moment flux model with λ0 = 1, b = 1, β0 = 1.

Continuum-level models, like the Keller-Segel equations and the flux model
(5)–(7), describe the average behavior of a population of many bacteria governed
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by stochastic models. Since they are only approximations, we now compare the
continuum model and stochastic many-particle computations to verify whether
the stochastic behavior is well-modeled by the continuum model. Additionally,
we have only shown that volcano-like behavior occurs if g′Sx is piece-wise con-
stant. Here, we show numerical evidence for volcanos in the case that g′Sx takes
on different forms, and that the many-particle stochastic computations also yield
volcanos. In our flux model computations, simple fourth-order Runge-Kutta
schemes in time with finite differences in space are used. Keller-Segel solutions
are found analytically.

The stochastic results are for large populations, making the density relatively
smooth. A population of 4 million bacteria is simulated in each computation.
For each bacterium, its velocity, internal state variables, and spatial position are
computed deterministically at every time step of size ∆t ≪ λ−1. The internal
variables are evolved with equations (2). After each timestep the bacteria are
randomly assigned to change their state (running or tumbling) according to
their probability of tumbling (or turning if there is no tumbling in the model),
λ∆t.

We restrict our comparisons to steady-state behavior, and, for the many-
particle computations, we compute the densities when we believe statistical
steady state is reached. Additionally, in all computations, we use the two-
parameter (a, δ) periodic chemoattractant concentration function

g(S) = 1 −

√

1
2

+ δ2 − 1
2

cos (πxa)
√

1 + δ2
.

The parameters δ and a set the length scale and the maximum slope of the
chemoattractant concentration. It is useful to be able to set these two quantities
independently since both quantities enter in approximations we have made, and
we must ensure that the two conditions 3 and 11 are satisfied. Thus

L ∼ δ

a
√

1 + δ2
, max gx ∼ a

1 + δ2
.

6.1. Steady-state solutions

Figures 2 (for fast excitation with tumbling) and 3 (for slow excitation and
no tumbling) show the results in both smooth and non-smooth chemoattactrant
concentrations. As the length scale of the problem increases (from top left to
bottom right) we expect the stochastic model to result in the highest concentra-
tion of bacteria accumulating at the highest concentration of S (or, equivalently,
a peak in g(S) since g(S) is monotonic in S) and expect Keller-Segel to agree
well. In all cases, the moment flux model captures the behavior more accu-
rately. In the case of sharp changes in the gradient of S(x) the moment flux
model is far more accurate and agrees with the stochastic computations that
show a distinct volcano. In the smoother cases, Keller-Segel overestimates the
chemotactic response of the bacteria, resulting in a higher peak in bacterial
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(b) δ = 1, a = 0.15

Figure 3: Excitation moment flux model with λ0 = 1, b = 1, τ = 0.5.
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density. Using Fourier expansion, one can quantify exactly by how much the
Keller-Segel model overestimates the effects of chemotaxis over the moment flux
model (see Appendix A).

In order to further understand the behavioral differences between the two
models and why they exhibit the volcano effect, it is helpful to consider certain
moments with respect to z1 (which is the variable that modulates the tumbling
frequency) of the right-moving and left-moving bacteria, i.e.

n1,0+ =

∫

z1p
+dz1 =

1

2
(n1,0 + j1,0), n1,0− =

∫

z1p
−dz1 =

1

2
(n1,0 − j1,0)

These quantities give the mean of z1, which is a measure of the level of excitation
of right- and left-going bacteria at position x. Thus, we would expect n1,0+

to have the same sign as the gradient of S and n1,0− to have the opposite.
Another quantity, sgn(Sx)bj1,0, can be interpreted as the difference in mean
run lengths at a given point x between bacteria moving up a gradient and
bacteria moving down a gradient. If the bacteria are chemotaxing correctly, it
would be expected for them to have longer run lengths going up a gradient of
the chemoattractant than down and therefore sgn(Sx)bj1,0 > 0. In the case of
tumbling-only bacteria, we find that this is the case (see figure 4(a)), however,
there is a region after the bacteria cross the peak of the gradient (see figure 4(b))
where they have the opposite sign of n1,0+, n1,0− than expected. This means
there are bacteria going in the wrong direction and are confused in believing
that the environment is improving, and therefore have a low tumbling rate.
Thus there is a lag time before their turning rate adjusts to the deteriorating
environment and rises above the basal rate λ0. Consequently, bacteria swim
back and forth over the maximum and the volcano arises from them spending
time tumbling away from the maximum.
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Figure 4: Comparison of tumbling and excitation models in terms of
sgn(Sx)bj1,0 and n1,0+ and n1,0− with λ0 = 1, b = 1, β0 = 1, τ = 0.5 and
δ = 0.

In the case of bacteria with a finite excitation time, sgn(Sx)bj1,0 < 0 for
a region near the maxima, shown in figure 4(a). This means that for these
bacteria, the runs are longer in the downgradient direction! That is, bacteria

18



will tend to zig-zag beside maximum concentration. In figure 4(c), not only
there is a region where n1,0+, n1,0− has the opposite sign than expected, but
in fact, the maximum of these quantities lie in the wrong region. Just like in
the tumbling case, this indicates that there are a significant number of bacteria
running in the wrong direction in this region and that bacteria will spend a
finite time on each side of the gradient seemingly “confused”.

One can thus form a picture of the two effects. In the tumbling-only case,
the volcano is generated by a delay in the adaptation dynamics that yield the
“cartoon” of bacteria crossing the maximun back-and-forth and spending most
of their time tumbling away from the peak of S. In the finite excitation time
bacteria, the delay in excitation creates a situation in which there are a finite
amount of direction reversals on either side of the peak of S that delay the
bacteria there. In some sense, the finite excitation time has “created” a ghost
of the tumble dynamics on their own on either side of the peak.

6.2. Time-evolution of bacterial densities

One may also compare the moment flux model to stochastic results for a
bacterial density as it evolves from unstable initial data toward a steady-state.
This also serves to illustrate the difference in behavior of the volcano effect due
to tumbling as compared to a finite excitation time. In the case of tumbling, the
bacterial population spreads towards the maximal concentration and a volcano
effect begins to develop around the peak in g(S) once the population reaches
that location. This is shown in figure 5. In the case of excitation, a more
complex transient behavior occurs, as seen in figure 6. One sees unstable peaks
in bacterial density which are not always localized around the peak in g(S).
This behavior occurs due to this “zig-zag” confused behavior we have described
earlier: the population’s delayed sensing mechanism causes the bacteria to sense
peaks and troughs in g(S) at the wrong spatial coordinates. As the density
evolves, it slowly averages out some of this incorrect sensing, but only where
g(S) is smooth, as it cannot correctly resolve the sharp change in the gradient
of g(S) at the peak. Additionally, in both models it is clear that this moment
flux model is correctly modeling the average behavior of the stochastic model.
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(b) Tumbling, t = 12.5.
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(c) Tumbling, t = 21.

Figure 5: Time evolution of a bacterial population with a tumbling state.
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(a) Excitation, t = 0.
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(b) Excitation, t = 0.8.
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(c) Excitation, t = 3.3.
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(d) Excitation, t = 4.2.
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(e) Excitation, t = 5.8.
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(f) Excitation, t = 8.3.

Figure 6: Time evolution of a bacterial population with a non-zero excitation
time.

7. Other closures for the moment flux model

Other closures (other than setting higher moments to zero) for this system
have been proposed in the work of Erban and Othmer [7]. The reason for
considering other closures is to model the cases where gx may be large and
therefore moments with respect to z2

j may not be small compared with moments
with respect to zj . Erban and Othmer worked with a fast-adaptation model,
in which one can propose the assumption that z2 ≈ ∓g′Sx (in nondimensional
form) which reduces the higher-order moments in z2 to lower-order moments.
There are two choices: either to assume that z2

2 ≈ ∓g′Sxz2 or z2
2 ≈ (g′Sx)2.

Such closures might result in the better agreement with the stochastic results
for large gradients, but only in the cases that they consider where the gradient
is of one sign. This type of closure is assuming the bacteria are close to adapted
to their environment which is precisely the opposite of what happens when a
chemoattractant density has sharp changes in gradients and volcano behavior
is observed. The less accurate agreement of this type of a closure (compared
to the original closure) in the volcano setting is shown for both tumbling and
excitation models in figure 7. In order to get a better closure for the model, one
idea is to approximate z2 with the type of closure described only for bacteria
climbing a gradient. Bacteria descending a gradient should probably remain
with the zero closure we have assumed throughout. One possibility is therefore
that m0,2 = 0 and

n0,2 =

∫

z2
2(n++n−) ≡

{

∫

z2
2n+ ≈ −gx

∫

z2n
+ = − 1

2
gx(n0,1 + j0,1), gx > 0

∫

z2
2n− ≈ gx

∫

z2n
− = 1

2
gx(n0,1 − j0,1), gx < 0
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which can be rewritten

n0,2 ≡ −1

2
|gx|n0,1 − 1

2
gxj0,1.

Similarly,

j0,2 ≡ −1

2
gxn0,1 − 1

2
|gx|j0,1.

−3 −2 −1 0 1 2 3
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

x

B
ac

te
ria

l D
en

si
ty

 

 

Original closure
z2

2
≈ ∓z2g

′Sx closure
Stochastic model

(a) Tumbling model, β0 = 1.
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(b) Excitation model, τ = 0.5.

Figure 7: Original closure of moment flux model (taking higher order moments
to be 0) as compared to the closure using z2

2 ≈ ∓z2g
′Sx and stochastic model

with λ0 = 1, b = 1 and δ = 0.

8. Discussion

We have shown two effects which result in volcano-like steady state bacterial
densities for abrupt changes in the environment. It is important to note that
without either excitation time or a tumbling phase, regardless of what closure
is chosen for the moment flux equations, it is not possible to obtain a volcano
in the bacterial density. The idea is that the bacteria tend to spend more time
on either side of a sharp change in chemoattractant gradient either because of
a higher tumbling frequency in this region, or because of a delayed ability to
sense its current environment.

While these are two mathematically different processes, biologically, the
more relevant process appears to be the tumbling state. However, since clearly
both an excitation phase and adaptation phase must be present in real bacteria,
it is helpful to consider the full model with both tumbling and excitation phases.
As it turns out, these two behaviors that cause a volcano do not create an all-
around larger volcano when combined. The addition of a finite excitation time
smoothens the tumbling-only solution: it decreases the height of the volcano
while increasing the width slightly. An example of this is shown in figure 8.
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Figure 8: Comparison of tumbling alone, excitation alone, and tumbling and
excitation moment flux models with λ0 = 1, b = 1, β0 = 1, τ = 0.5 and δ = 0
The height of the volcano for the combined model is approximately 10% smaller
than the volcano of tumbling model.

One important mathematical question is one of positivity of ρ in the so-
lutions: we have imposed some reasonable conditions on the maximum of gx

and, with that, have not encountered any problems. Thus, we believe that as
modeling equations the system we propose is appropriate.

9. Conclusions and further work

One of the fundamental reasons for mathematical modeling in biology is
to show that, whilst a biological problem may have thousands of parameters,
the generic behavior may depend on a far fewer number. While our model
has made some simple assumptions to approximate the biology involved, one
could include a more complex biological description if desired, and the dynamics
would reduce to the same type of overall system as long as it is governed by
excitation-adaptation dynamics.

There are several areas which merit further work: first, one would like to
extend this model to higher dimensions (chemotaxis is a 2- or 3-dimensional
phenomena in most experimental settings), and to compare the model against
actual experiments: either those mentioned above which motivated this work,
or to new, more controlled experiments now that we have some understanding
on what to expect and the scalings involved.
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Appendix A. Fourier expansions of moment flux solutions

One may use Fourier expansions to represent the densities n and m and their
associated fluxes and moments for periodic chemoattractant concentrations. We
consider here the simple form for g′Sx , namely g(S) = A(1+cos(πx/L)) so that
g′Sx = −Aπ

L
sin(πx/L), to examine the steady-state solution of the tumbling

flux equations (9). Now we use a Fourier expansion for j0,1 and g′Sxn by
letting

j0,1 =

∞
∑

k=1

aksin

(

kπx

L

)

g′Sxn =
∞
∑

k=1

bksin

(

kπx

L

)

n =

∞
∑

k=0

ckcos
(kπx

L

)

Using equation (9) we obtain the following recursion relation for ck

c1 =
AbB

π2

L2 + (2λ0 + 1)B
(2c0 − c2)

kck =
AbB

k2π2

L2 + (2λ0 + 1)B
(ck−1 − ck+1) for k ≥ 2

(A.1)

where c0 may be any constant and is proportional to the total population and
B = 2λ0+β0+1

β0+1
. (Recall that if one is interested in the case with no tumbling

state then, taking the limit β0 → ∞ one gets B = 1.) The other quantities are
then given by

ak = − B
k2π2

L2 + (2λ0 + 1)B
bk

{

b1 = Aπ
2L

c2 − c0

bk = Aπ
2L

(ck+1 − ck−1) for k ≥ 2

For Keller-Segel solutions, the k2 term is absent in the denominator and the
result is

c1 =
Ab

2λ0 + 1
(2c0 − c2)

kck =
Ab

2λ0 + 1
(ck−1 − ck+1)

(A.2)

For the Keller-Segel equations, ck ∼ (αK)k/k! and for L large the moment flux
equations have the same behavior, while k2π2 = o(L) and ck ∼ (αF )k/(k!)3 for
L = o(k2π2). (In reality, for the moment flux equations, we are interested in the
total population ρ = n + m = 2λ0+β0

β0

n + 2b
β0

n0,1, which again may be expressed

as a Fourier expansion in terms of ck alone.) This indicates that the moment
flux model solution is much smoother than the Keller-Segel one (explaining the
higher peaks of Keller-Segel solutions) and that, if L is small, the solutions
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differ completely. Figure A.9 shows the results of both the tumbling and finite
excitation time models for such a form of g(S).
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(a) Tumbling, β0 = 1.
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(b) Excitation, τ = 0.5.

Figure A.9: Moment flux models for Fourier Expansion. λ0 = 1, a = 0.4, b =

1, A = 0.4 and g(S) = A
πa

(1 + cos (πax))
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