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Fig. ESI 1 Evolution of the nematic order parameter during the 
equilibration phase of the 256-molecule samples. 
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Fig. ESI 2 Simulated temperature behaviour of the density in the 
smectic (low T) and isotropic (high T) phase. In each phase, the 
temperature dependence follows a linear trend; the least square fitting 
lines and parameters are also reported. The two lines intersect at 
T=379.7 K 

Fig. ESI 3 Arrhenius plot of the translational diffusion coefficient, 
calculated from the mean square displacements of the centers of mass 
(Dii = �[ri(t) − ri(0)]2�/2t, t=10 ns, i=x,y,z, D⊥ = (Dxx + Dyy)/2, 
D = Dzz). The diffusion is fairly isotropic also in the smectic phase, 
but the phase change is revealed by the two separate regions with 
different activation energy. 
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Fig. ESI 4 The squared excitonic coupling |VDA|2 between two 
chromophores as a function of their relative orientation and distance 
of 8.5 ̊A, which corresponds to the average distance between first 
nearest neighbors within the smectic layers at 300 K. 
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Fig. ESI 7 The electrostatic disorder distribution at 500 K. The 
distributions for the ground and excited states correspond to 
calculation of the electrostatic interaction bewteen a molecule and all 
its neighbours using the ground state and excited state atomic 
charges, respectively. The difference distribution is instead the 
difference between ground and excited state electrostatic energy 
calculated for the same molecule. The standard deviations are 
σ0 =0.62 kcal/mol (0.0267 ev), σ1 =0.77 kcal/mol (0.0334 eV), 
σ1−0 =0.166 kcal/mol (0.007 eV). The difference distribution 
bewteen two arbitrary molecules instead should have standard 
deviation σ1,i−0, j = (σ2

1 + σ2
0)

1/2 =0.99 kcal/mol (0.0429 eV). All 
deviations are of the order or even smaller than the thermal energy at 
500 K which corresponds to 0.994 kcal/mol (0.04308 eV). 

Fig. ESI 5 The distribution of the squared excitonic coupling |VDA|2 

for T=300K and T=500K. 
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Fig. ESI 6 The average waiting time of the exciton as a function of 
temperature. 
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Fig. ESI 8 A trajectory of an exciton as it hops from the site of 
creation (blue) until the site where it recombines (red). 
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