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Polyoxyanion compounds, particularly the olivine-phosphate LiFePO4, are receiving considerable attention as alternative 

cathodes for rechargeable lithium batteries. More recently, an entirely new class of polyoxyanion cathodes based on the 

orthosilicates, Li2MSiO4 (where M = Mn, Fe, Co), has been attracting growing interest. In the case of Li2FeSiO4, iron and 10 

silicon are among the most abundant and lowest cost elements, and hence offer the tantalising prospect of preparing cheap 

and safe cathodes from rust and sand! This Highlight presents an overview of recent developments and future challenges of 

silicate cathode materials focusing on their structural polymorphs, electrochemical behaviour and nanomaterials chemistry. 

 

1. Introduction 15 

For the next generation of rechargeable lithium batteries, there is 

intensive research activity targeted on developing new electrode 

materials, particularly for large-scale use in hybrid electric or 

pure electric vehicles and in stationary energy storage of 

solar/wind power [1-3]. Polyoxyanion compounds are receiving 20 

considerable interest as alternative cathodes to the conventional 

intercalation oxides, layered LiCoO2 or spinel LiMn2O4. The 

strong binding of the oxygen within polyoxyanions enhances 

stability and thus safety, compared with transition metal oxides. 

The electronic inductive effect shifts the d-states of the transition 25 

metal ions and hence the redox potentials, providing a means of 

tuning the latter. Phosphate materials, particularly LiFePO4, have 

been extensively studied and continue to be important [2,3].  

More recently, a new class of polyoxyanion cathodes 

based on the orthosilicates, Li2MSiO4 (where M = Mn2+, Fe2+, 30 

Co2+), has been attracting significant attention [4-34]. The 

relatively strong Si-O bonds promote similar lattice stabilization 

effects to the phosphate bonds found in LiFePO4.  Of these 

silicates, the most studied is Li2FeSiO4, with iron and silicon 

being among the most abundant and lowest cost elements.  35 

Indeed, developing cheap, sustainable and safe cathode materials 

is a prime target for large scale lithium batteries.   

A key feature of the Li2MSiO4 system is that, in 

principle, extraction of two lithium ions is possible for a two 

electron redox process (i.e., operating on both M2+/M3+ and 40 

M3+/M4+ redox couples) especially for the Mn system; this should 

produce a higher capacity (e.g. above 300 mAh/g for Li2MnSiO4) 

than the olivine phosphates in which one lithium at most can be 

extracted.  

Although numerous examples are cited, it is beyond the 45 

scope of this short review to give an exhaustive summary of all 

the studies in this highly active field. Rather, this article 

highlights recent developments of silicate-based cathodes with 

emphasis on their crystal structures, electrochemical behaviour 

and nanomaterials chemistry. 50 

 
2. Polymorphism and Defects 
Li2MSiO4 compounds (M = Fe, Mn, Co) belong to a large family 

of materials known as the tetrahedral structures [35,36]. These 

structures are composed of tetragonally packed oxide ions (a 55 

distorted form of hexagonal close packing) within which half the 

tetrahedral sites are occupied by cations, such that face sharing 

between the pairs of tetrahedral sites is avoided. The cations can 

order within the tetrahedral sites in different ways and various 

structural distortions are possible, leading to a rich and complex 60 

polymorphism, as summarised below. 

The tetrahedral structures may be divided into two 

families, designated β and γ (related to the β- and γ polymorphs 

of Li3PO4).  In the β structure all the tetrahedra point in the same 

direction, perpendicular to the close-packed planes, and share 65 

only corners with each other, shown in Figs 1(a), (b). In the case 

of the γ polymorphs, the tetrahedra are arranged in groups of 

three with the central tetrahedron pointing in the opposite 

direction to the outer two, with which it shares edges (Figs 

1(c),(d),(e)). Where both β and γ polymorphs exist for a given 70 

compound the latter is stable at higher temperatures, with the β to 

γ transformation involving inversion of half the tetrahedral sites 

[36]. Several variants of both β and γ exist, involving either 

ordering or distortions of the parent structures; they are 

designated βI, βII, γ0, γII, γs (Fig. 1). In many instances these 75 

phases may be quenched to room temperature, where they exhibit 

long-term stability.  

Li2FeSiO4. Several structures have been proposed to 

describe Li2FeSiO4. The first was reported by Nyten et al [5] who 

suggested an orthorhombic structure (based on -Li3PO4), with 80 

space group Pmn21 (Fig. 1a). In this structure chains of LiO4 

tetrahedra run along the a direction parallel to chains of 

alternating FeO4 and SiO4 tetrahedra.  Later, Nishimura et al. [7] 

reported the structure of Li2FeSiO4 prepared at 800oC using a 

monoclinic space group P21. The structure has been designated 85 

by these authors as γs, Fig. 1(c). It differs from the other γ 

structures in that there are no edge sharing trimers of tetrahedra; 

instead one set of LiO4 tetrahedra are arranged in edge sharing 

pairs with FeO4 tetrahedra, whilst the other set of LiO4 tetrahedra 

forms edge sharing pairs with itself, Fig. 1(c).  More recently this 90 

description has been simplified using the higher symmetry space 

group P21/n [7b,17]. 

Sirisopanaporn et al [16] have described the crystal 

structure of a new γII-polymorph of Li2FeSiO4, Fig 1(e), obtained 

by quenching from 900°C; the structure was established by 95 

electron microscopy, XRD, and neutron diffraction; it is 
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isostructural with Li2CdSiO4 (space group Pmnb), and differs 

from the γs structure obtained by quenching from 800°C [7]. A 

simple βII polymorph (Fig. 1(a)), space group Pmn21, may be 

prepared by hydrothermal synthesis at low temperature [8].  

 5 
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Fig 1. Structures of Li2MSiO4 polymorphs; (a) βII structure in which all 
the tetrahedra point in the same direction, perpendicular to the close-
packed planes, and share only corners with each other; chains of LiO4 
along the a-axis and parallel to chains of alternating MO4 and SiO4 (b) βI 
structure, all tetrahedral point in same direction with chains of alternating 45 

LiO4 and MO4 tetrahedra along a, parallel to chains of alternating LiO4 
and SiO4 tetrahedra, c) γs structure, half tetrahedra pointing in opposite 
directions and contain pairs of LiO4/MO4 and LiO4/LiO4 edge-sharing 
tetrahedra (inset), d) γ0 structure in which the tetrahedra are arranged in 
groups of three with the central tetrahedron pointing in the opposite 50 

direction to the outer two, with which it shares edges; the group of 3 
edge-sharing tetrahedra consist of the sequence Li-Li-M (inset), e) γII 
structure in which the group of 3 edge-sharing tetrahedra consist of the 
sequence Li-M-Li (inset). SiO4 (yellow); MO4 (brown); LiO4 (blue); light 
and dark blue tetrahedra represent crystallographically distinct Li sites. 55 

 

 

It has been demonstrated that variations in the FeO4 

geometry (orientation, size, and distortion) influence the 

equilibrium potential measured during the first oxidation of Fe2+ 60 

to Fe3+ in all polymorphs. Shorter and hence stronger (more 

covalent) Fe-O bonds result in greater splitting in energy between 

bonding and anti-bonding states, lowering the Fe2+/Fe3+ redox 

potential vs. Li+/Li0 (Fig. 2) [18]. Magnetic susceptibility 

measurements [6] indicate that Li2FeSiO4 powders prepared at 65 

800 oC possess an antiferromagnetic ordering below TN = 25 K 

due to long range Fe-O-Li-O-Fe interactions.  
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 Fig 2. Local environments around FeO4 tetrahedra (in green) in the three 
polymorphs of Li2FeSiO4: βII (LFS@200); γs (LFS@700); γII (LFS@900). 
(LiO4 in grey, SiO4 in blue) and derivative plots obtained from PITT in 
the first oxidation of these three polymorphs [18].  5 

 

Li2MnSiO4. From powder X-ray diffraction (XRD), 

Dominko et al [8] proposed an orthorhombic II structure for 

Li2MnSiO4 (based on -Li3PO4, space group Pmn21); they also 

pointed out the possibility of another γII-polymorph (Pmnb) 10 

detected by electron diffraction. XRD studies by Politaev et al 

[19] reported a γ0 structure with monoclinic symmetry (space 

group P21/n) based on -Li3PO4, similar to that reported for 

monoclinic Li2CoSiO4 [32] (Fig. 1d); they also observed a small 

amount of Li/Mn cation exchange in Li2MnSiO4. Atomistic 15 

defect modelling studies on Li2MnSiO4 [20] indicate that the 

most energetically favourable intrinsic disorder is the Li-Mn anti-

site or cation exchange defect, suggesting a small population of 

Li on Mn sites and Mn on Li sites, dependent on synthesis routes 

and thermal history. 20 
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Fig 3..  6Li MAS NMR spectra of three Li2MnSiO4 polymorphs (after ref 35 

[15]). The upper part shows isotropic bands and lower part presents the 

entire manifolds of spinning sidebands. 

 

 
6Li MAS NMR spectroscopy has proved to be a very 40 

useful tool to distinguish between different Li2MnSiO4 

polymorphs [15]. Lithium nuclei occupying crystallographically 

inequivalent lithium sites within a single polymorph exhibited 

NMR signals at different and well resolved positions (Fig. 3).  

Density functional theory (DFT) calculations [9] on 45 

orthorhombic Li2MnSiO4 predict that this phase is unstable on 

extraction of large amounts of lithium. Arroyo-de Dompablo et al 

[12] also reported DFT calculations on the thermodynamic 

stability of Li2MnSiO4 polymorphs predicting that the lowest 

energy is found for the β-Li3PO4-based derivatives. Atomistic 50 

defect modelling studies [20] predict favourable Al3+ dopant 

incorporation on the Si site with Li interstitial compensation; this 

suggests a possible synthesis-doping strategy of introducing 

additional lithium into Li2MnSiO4 for higher capacities. Recent 

DFT-based studies have investigated the electronic structure, 55 

structural stability and ion substitution in the Li2MSiO4 materials 

[31]. 

Li2CoSiO4. The third member of the orthosilicate 

family of cathode materials, Li2CoSiO4, has received 

comparatively less attention [32-34]. Three polymorphic forms 60 

(βII, βI, and γ0) have been prepared and investigated with powder 

diffraction and 7Li MAS NMR [32,33]. The βII (Pmn21) 

polymorph was obtained by hydrothermal synthesis (150 oC), and 

subsequent heat treatments yielded the βI (Pbn21) form (700oC) 

and the γ0 (P2,/n) form (1100 oC then quenching from 850oC). 65 

Rietveld refinement of X-ray and neutron powder diffraction 

patterns reveal antisite disorder for βII with Li on the Co site and 

Co sharing the Li site (essentially an inverse βII structure 

analogous to inverse spinels), very moderate Li/Co mixing for βI, 

and no mixing for γ0.  
7Li MAS NMR spectra have been recorded 70 

for the three forms, and the nature and number of signals were 

analyzed in relation to the site occupancies for each compound 

[33]. 

 

3. Electrochemistry and nanomaterials 75 

Li2FeSiO4. Li2FeSiO4 was shown to undergo an initial charge at 

voltages above 3V vs Li while subsequent charges were at 2.84V 

vs Li [5]. Such a shift in potential suggested a change of 

structure, which was confirmed by X-ray diffraction and 

Mossbauer spectroscopy during the first two cycles. Studies on 80 

the cycled material by neutron diffraction identified conversion 

from the s structure to a structure corresponding to the inverse II 

(originally observed for Li2CoSiO4, described above) [5a,18]. 

Further studies to investigate such structural changes are 

warranted, and efforts will doubtless be directed towards the 85 

synthesis of polymorphs that are stable from the outset to ensure 

the electrochemistry does not change on cycling.  

Most of the reported electrochemical studies were 

conducted at elevated temperatures (e.g 60 oC) to improve the 

rate performance and increase capacity. Typical capacities are 90 

120-140 mA h g-1 in the voltage range below 4V vs. Li (Fig 4) 

[24, 28]. The cycling stability of the Li2FeSiO4 cathode after 

conversion to the  phase is good [14]. However, due to low 

intrinsic conductivity, the rate performance needs to be improved 

to a similar degree to LiFePO4 in order to become competitive for 95 

commercial applications. By analogy with LiFePO4, the strategy 

has been to reduce the particle size and to use carbon coatings 

(Fig. 5) [4,8,14,22]. In practice, this strategy usually involves the 

addition of a carbon precursor (citrate anion, ethylene glycol, 

etc.) that also acts as a complexing agent promoting the formation 100 

of a homogeneous gel. The presence of carbon during heat 

treatment suppresses active particle growth and particle 

agglomeration [8,10]. 

Yang and co-workers have made a number of advances 

in synthetic methods; for example Gong et al [22] reported a 105 

carbon-coated Li2FeSiO4 material with uniform nanoparticles 

(~40-80nm) from a hydrothermal-assisted sol-gel process; this 

showed a discharge capacity of 160 mAh g-1 at C/16 rate, and 

almost no capacity loss up to 50 cycles. Zhang et al [24] reported 
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a sol-gel method based on citric acid to prepare Li2FeSiO4 in 

which the citric acid acts as both a chelating agent and a carbon 

source in the synthetic process; they observed a maximum 

discharge capacity of 153.6 mAh g-1 in the third cycle, with 

98.3% of this capacity retained after 80 charge-discharge cycles. 5 
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Fig 4. Electrochemical properties of Li2FeSiO4; (a) Discharge-charge 
curves for samples at C/20 rate. (b) Cycling performance at different 
current densities (marked as C-rates). [10, 14] 10 

 

 

 
 

Fig. 5: SEM micrographs of Li2FeSiO4 obtained by a) modified Pechini 15 

synthesis method [10] and b) hydrothermal synthesis method [14]. 

 

Manthiram and co-workers [28] have synthesized 

nanostructured Li2FeSiO4 and Li2MnSiO4 by a facile microwave-

solvothermal process; they report that the Li2FeSiO4/C 20 

nanocomposite exhibits good rate capability and stable cycle life, 

with discharge capacities of 148 mAh g-1 at room temperature 

and 204 mAh g-1 at 55ºC, whereas Li2MnSiO4/C suffers from 

poor rate capability and drastic capacity fade. Capacities greater 

than 200 mAh g-1, have been observed by several groups. Such 25 

capacities exceed the theoretical value for Fe2+/3+ redox couple 

(166 mAhg-1); the results have been interpreted as implying either 

Fe4+ formation and/or electrolyte degradation. 

Photoelectron spectroscopy (PES) has been used by 

Thomas and co-workers [5c] to examine the Li2FeSiO4 cathode 30 

surface extracted from lithium-ion batteries; a thin surface film is 

formed on electrochemical cycling of Li2FeSiO4 electrodes at 

60ºC using a LiN(SO2CF3)2 salt based electrolyte, with high salt 

stability and only small amounts of solvent reaction products. It is 

suggested that the excellent capacity retention observed (<3% 35 

over 120 cycles) during the first cycle is probably a result of this 

thin surface film [5c]. 

Li2MnSiO4. Li2MnSiO4 could be viewed as an 

attractive cathode material, in terms of energy density and 

possibility of >1-electron redox process since the higher 40 

manganese oxidation state Mn4+ is more accessible than Fe4+. 

Li2MnSiO4 is found to have a redox potential near 4.1V vs Li, but 

initial studies show substantial irreversible capacity loss [8-11]. 

in-situ XRD studies indicate that for Li2FeSiO4 cycling proceeds 

through a plateau relating to a two-phase mechanism, whereas 45 

lithium exchange from Li2MnSiO4 involves the formation of an 

amorphous phase along the oxidation plateau at approximately 

4.1V (Fig. 6) [10,23].  
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Fig 6. in situ X-ray diffraction patterns and voltage profiles for 

Li2MSiO4/C at C/50 rate [10] (a) Li2MnSiO4 (b) Li2FeSiO4. Bragg 

reflections marked with asterisk denotes in situ cell reflections. 

 

Li et al [23] have reported the synthesis of a high 80 

capacity Li2MnSiO4/C nanocomposite material with good rate 

performance and a reversible capacity of 209 mAh g-1 in the first 

cycle; their XRD and IR results also indicate that the poor cycling 

behavior might be due to an amorphization of the silicate 
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material. Aravindan et al [30] have recently employed an adipic 

acid assisted sol–gel route to prepare Li2MnSiO4 nanoparticles, 

with their Li/Li2MnSiO4 cell delivering a stable discharge 

capacity profile ( 125 mAh g−1) for up to 50 cycles. 

Due to problems with the pure Mn-based material, 5 

there have been recent studies on mixed-cation Li2(Fe,Mn)SiO4 

solid solutions [13,21]. Preliminary studies on mixed-metal 

materials suggest the use of the Li2Fe0.5Mn0.5SiO4 composition.  

The basic concept was to stabilize the local environment of Mn3+ 

in tetrahedral coordination by introducing Fe as a “stabilizer”, in 10 

line with DFT-based calculations [9]. Gong et al [21] reported an 

optimal composition of Li2Fe0.5Mn0.5SiO4 that delivers high 

capacity (214 mAh.g-1) within a wide voltage window, but with 

serious capacity fade during cycling.  

Studies on Li2Fe0.8Mn0.2SiO4 show good reversibility 15 

with a large voltage polarisation in the formation cycles [13]. 

Using in-situ Mössbauer spectroscopy and XANES it was shown 

that most of the iron was reversibly oxidised to FeIII, while only a 

part of the manganese was reversibly oxidised to MnIII. 

Importantly, neither iron nor manganese in the tetravalent state 20 

was detected [13]. Future studies are likely to explore whether the 

performance of other mixed-metal solid solutions proves superior 

to the pure compounds as found in the case of the layered LiMO2 

cathodes (e.g. Li(Co1/3Mn1/3Ni1/3)O2) [2]. 

Li2CoSiO4. Lyness et al [32] show that the three 25 

polymorphs of Li2CoSiO4 exhibit electrochemical activity when 

ball-milled, although with severe capacity fading after a few 

cycles, which is also the case for the corresponding cobalt-based 

phosphate, LiCoPO4. For the βI polymorph, coating the as-

prepared material with carbon switches on electrochemistry 30 

without the need for ball-milling and gives superior charge 

capacity (170 mA h g−1 ≡ 1.1 Li per formula unit) and cyclability, 

compared with the same phase when ball-milled with carbon 

(Fig. 7). Only one Li could be extracted up to 4.6 V in agreement 

with theoretical predictions.  35 

Gong et al [34] have prepared Li2CoSiO4 by a solution-

hydrothermal route, and find reversible lithium 

extraction/insertion at 4.1V vs Li, but limited to 0.46 lithium per 

formula unit for the Li2CoSiO4/C composite materials, with a 

reported charge capacity of 234 mAh g-1. 40 
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Fig.7. Electrochemical properties of Li2CoSiO4; a) Variation of voltage 

with state of charge (Li content) on cycling the I polymorph carbon 

coated by the xerogel process at a rate of 10 mAg-1. Inset shows 50 

performance of uncoated material. b) Variation of discharge capacity with 

cycle number for the carbon-coated I polymorph cycled between 2.0 and 

4.6 V at 10 mAg-1 [32]. 

 

4. Conclusions and future outlook 55 

This review has highlighted an important class of polyoxyanion 

compounds based on the orthosilicates, Li2MSiO4 (where M = 

Mn, Fe, Co), which are attracting growing interest as possible 

low-cost and safe cathodes for new generations of rechargeable 

lithium batteries. It serves to illustrate the value of fundamental 60 

studies of new materials, including the synthesis and 

characterisation of silicate polymorphs. However, there are a 

number of important challenges facing the silicates before they 

could be considered as viable cathodes and especially as 

alternatives to LiFePO4. The challenges have been discussed 65 

above and are summarised here.  

 (i) For all Li2MSiO4 compounds there are significant differences 

between the first charge and subsequent cycling, which is 

indicative of structural changes, possibly involving Li/M cation 

exchange. Further fundamental studies to investigate these 70 

structural changes are warranted. In addition to crystallographic 

studies of the average structure, increasing use of local structure 

techniques and computer modelling to probe local defects, nano-

scale structures, and Li-ion conduction pathways, will be 

important. Efforts will doubtless be directed to the preparation of 75 

polymorphs that are stable from the outset to ensure the 

electrochemistry does not change on cycling.  

(ii) Although the components, Fe, Mn, Si, are low cost, so also 

must the synthesis methods and their precursors, if truly low cost 

electrodes are to be obtained. Furthermore the synthesis methods 80 

must be scalable. 

(iii) The rate capability needs to be improved. This will 

necessitate a better understanding of the origins of the low rate; 

especially studies of ionic and electronic transport and the 

kinetics of phase transitions. Optimising the rate performance 85 

will doubtless involve the synthesis of nanostructured materials, 

the control of particle size and morphology, and the use of 

chemical doping and surface coatings.  

(iv) Higher capacities than are associated with one Li per formula 

unit (170 mAh g-1) are desirable, preferably with higher voltages 90 
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such as those associated with Li2MnSiO4. Modifying the 

stoichiometric materials to enhance the Li composition range will 

be important.  

(v) Most studies have concentrated on pure Li2MSiO4 

compositions, which are a necessary prelude to studying solid 5 

solutions of Li2MSiO4, with mixed M of Fe, Mn and Co. It will 

be interesting to see whether the performance of such mixed-

metal solid solutions proves superior to the pure phases as 

observed in the case of the layered LiMO2 cathodes (e.g. 

Li(Co1/3Mn1/3Ni1/3)O2), and therefore of technological 10 

significance. 
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