
        

Citation for published version:
Faraway, JJ 2012, 'Backscoring in principal coordinates analysis', Journal of Computational and Graphical
Statistics, vol. 21, no. 2, pp. 394-412. https://doi.org/10.1080/10618600.2012.672097

DOI:
10.1080/10618600.2012.672097

Publication date:
2012

Link to publication

Official journal site: http://pubs.amstat.org/loi/jcgs

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161908688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1080/10618600.2012.672097
https://doi.org/10.1080/10618600.2012.672097
https://researchportal.bath.ac.uk/en/publications/backscoring-in-principal-coordinates-analysis(e7bd4115-087b-4524-978c-8704996b48f9).html


Backscoring in Principal Coordinates Analysis∗

Julian J. Faraway†

September 9, 2011

Abstract

Principal coordinates analysis refers to the low-dimensional projection of data obtained from dis-
tance matrix based methods such as multidimensional scaling. Principal components analysis also
produces a low-dimensional projection of data and has the convenience of explicit mappings to and
from the data space and the projected score space being readily available. The map from data to
score is called called out-of-sample embedding. We call the map from score to data, backscoring. We
discuss how these mappings may be obtained for a principal coordinates analysis and demonstrate ap-
plications for orientation, shape, functional and mixed data. The application to functional data shows
how both phase and amplitude variation can be described together. Backscoring is helpful for inter-
preting the meaning of scores and in simulating new data. Data and R code necessary to reproduce
the results are provided as supplemental materials.

Keywords: functional data analysis, mixed data, multidimensional scaling, orientation, shape, prin-
cipal components

1 Introduction
The term principal coordinates analysis (PCO) was introduced by Gower (1966) and refers to a method
for extracting a representation using low-dimensional coordinates from a distance matrix derived from
the data. The method described in the paper is essentially classical multidimensional scaling (cMDS),
although the same considerations apply more widely to other methods of dimension reduction using
distance matrices. The name PCO suggests a similarity to the well-known principal components analysis
(PCA). Let us contrast the two.

Suppose that we have an n× p data matrix X . In PCA, we use a p× p covariance or correlation
matrix R to find an orthogonal representation of the data using scores s1,s2, . . . ,sn. Hopefully, the first
few components of the scores represent a low dimensional projection that captures most of the variation
in the data. In PCO, we use an n×n distance matrix Q to also find a low dimensional projection of the
data except the scores are called coordinates.

For quantitative real-valued data and using Euclidean distances, the two methods produce identical
results, with the PCA computation being simpler. For other types of data and/or different distances, there
is either no necessary equivalence or PCA may not be possible. PCA has been extended to other types
of data such as curves in Besse and Ramsay (1986), Riemmanian manifolds in Pennec (2006) and more
abstract data spaces in Huckemann et al. (2010). The fundamental requirement is that the observations
∗to appear in Journal of Computational and Graphical Statistics
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lie in an inner product space so that PCA can proceed. Traditional PCA is characterized by the use of the
standard Euclidean inner product. However, not all data of interest lie in an inner product space. Shapes,
orientations, tensors, images and other more complex data may lie on a manifold that does not naturally
constitute an inner product space, at least not without additional assumptions. Some data consist of
variables of a mixture of types which complicate the application of PCA. On the other hand, PCO only
requires a distance measure and thus can be applied in a much wider range of situations. One might view
PCA as a special case of PCO that only works in limited circumstances.

In both a PCA and a PCO, we select a low dimensional representation using just the first few di-
mensions. We may apply statistical analysis to these dimension reduced scores. The low dimensional
form is easier to analyse in comparison to the high dimensions of the original data. PCA possesses some
convenient features which are apparently lacking in PCO.

In a PCA, there is an explicit mapping, D→ S, from the data space D to the score space S expressed
in terms of linear combinations of the data. Thus when new data arrive, we can map them onto the score
space. This is important when, for example, we wish to classify or predict from new cases. In a PCO,
this is not so straightforward. Out-of-sample embedding or scoring can be used which we describe later.

In PCA, there is also a linear mapping from S→ D. If dim(S) < dim(D) due to earlier dimension
reduction, the mapping is equivalent to setting the coordinates for the discarded dimensions of S to zero.
This mapping is helpful in interpreting the meaning of principal components. We can map the score,
(0, . . .0,c,0, . . .), where c is in the position of the jth coordinate for a range of values of c to the data
space. Plotting or otherwise examining this sequence of points as c varies suggests the interpretation of
the jth principal component. This is particularly useful for less common data types such as shapes or
functions. Thus we can map conclusions for models on the score space back to the reality of the data
space. We can also use the mapping to simulate new cases from approximately the same distribution as
the data. We simulate new scores in the score space and then map back to the original data space. This is
usually much easier and more effective than trying to simulate data directly in the data space. In a PCO,
there is no obvious S→ D mapping. The construction of such mappings, which we call backscoring, is
the topic of this article.

The key to adding the desirable features of a PCA to a PCO is to construct the D→ S and S→ D
mappings. We describe these in Section 2. In Section 3, we provide four example analyses of different
data types and discuss the application to yet other types of data. In Section 4, we conclude with a
discussion of the methods.

2 Scoring and backscoring
In this section we describe scoring, by which we mean the D→ S mapping, and backscoring, meaning
the S→ D mapping. Scoring is also called out-of sample embedding. We will use classical MDS for the
PCO, but the methods can be adapted to handle other distance matrix-based methods.

Classical multidimensional scaling starts by forming a matrix B from distance matrix Q such that:

Bi j =−(Q2
i j−Q2

i·−Q2
· j +Q2

··)/2

where the dots in the subscripts indicate that means are taken over the index. We then perform the
eigendecomposition so that B = SST with eigenvalues λ1 ≥ λ2 ≥ . . .λn. The columns of matrix S contain
the principal coordinates or scores.

Now suppose we consider a new data point xnew and we would like to place it within this coordi-
nate system. It is possible simply to add this point to the data and recompute the eigendecomposition.
However, this would change the original coordinates. Instead we might wish to view the original data as
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establishing a coordinate system and want to place the new point within these coordinates. Gower (1968)
describes one way this may be achieved:

snew = Λ
−1ST (d2(x, x̄)−d2(x,xnew))/2 = φ(xnew) (1)

where Λ = diag(λ1, . . . ,λn), d is the distance function and x̄ is the centroid. However, d2(x, x̄) =
−diag(B) so explicit computation of the centroid is not yet needed. This computation requires only
the distances d(x,xnew) of the new point to the original points. In practice, we retain only the first few
coordinate directions so appropriately reduced versions of Λ and S would be used, and snew represents a
projection onto the reduced score space.

One might object to this method on the grounds that it introduces an additional dimension. There
are several more recent approaches to this problem. Trosset and Priebe (2008) describe a method with
a more satisfying motivation that can be used for adding multiple new points. For the addition of single
point, a simple approximation to this method turns out to be equivalent to the proposal of Anderson and
Robinson (2003). Further, Trosset and Tang (2010) show that the methods proposed by Bengio et al.
(2004) and de Silva and Tenenbaum (2003) join this equivalence class. Remarkably, we observe that the
method of Gower described above is also identical in that the scores match on the dimensions computed
in common. Thus several different motivations lead to the same solution. We need this simply computed
solution because, as will subsequently become clear, we need to repeat this operation many times.

Now let us consider the backscoring problem of mapping S→D. If we use m-dimensional coordinates
in S and m = p, then a unique solution may exist. However, due to dimension reduction, m < p, each
snew will correspond to a set of solutions in D. Within this set, a natural solution is the one closest to the
mean, that is:

xnew = arg min
snew=φ(x)

d(x, x̄) (2)

This can be justified by making an analogy to PCA. For m < p, the mapping of snew to xnew is equivalent
to the mapping of the augmented scores (snew,v), a vector of length p, to xnew for any v, subject to the
condition that d(xnew, x̄) is minimized. The solution in the PCA case is simply v = 0. In PCO, it would
be difficult to augment the score with zeroes up to dimension p for a number of reasons. Firstly, later
eigenvalues λi in many PCO applications are frequently negative. Normally, this can be ignored as only
the first few coordinates are used, but here this would be problematic. Secondly, finding the xnew that
would satisfy such an equation is more difficult than the constrained minimization problem we do solve.

Actual computation of the S→ D mapping may be difficult. We envisage use of this method where
the application of PCA is difficult or impossible which implies a lack of structure on the data space. With
no inner product and no vector space, an exact solution will be difficult to find. Let us consider a range
of situations:

1. In the most extreme case, we have only the data observed and a way to compute distances between
cases. Suppose for example we wish to visualize the first principal component. We want to find the
set of x corresponding to scores of the form (c,0,0, . . .0), but the best we can do is select observed
cases where the second and remaining components are all small. Thus we will have only a rough
solution and only for those c available in the data. If, as is usually the case, we only have scores in
a few dimensions, we will not even know the values in the higher dimensions which may be quite
different from zero. Thus our attempts to interpret the first PC will be handicapped. In practice,
this is often how PCO results are interpreted, with variable success.

2. In other cases, we may have access to other examples of data not used in the construction of Q,
but which are assuredly members of D. Alternatively, we may be able to modify existing cases to
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produce new data values. For example, three of the datasets we will analyse are drawn from the
study of human motion. We may construct a Q based on a particular set of observed motions, but
there often exist other databases of similar motions. There are also several accepted methods of
modifying existing motion data to produce authentic new motion data. In such a situation, we can
use the D→ S mapping to determine the scores for the new cases, giving us a richer set of potential
approximate solutions to S→ D problem. This offers some improvement over the data only case.

3. Given only the ability to construct distances between points, it is still possible to construct convex
combinations of cases. For example, consider the formation of a mean from objects x1, . . .xn ∈ D.
The usual sample mean is n−1

∑i xi. But this may not be meaningful for objects in some spaces.
Instead we can use the Fréchet mean:

argminx∈D

n

∑
i=1

d(x,xi)

This demonstrates how the centroid can be found for (1) using only distances. For IRp, if we define
d(x,y) = ||x− y||2 , the two definitions are identical. We can generalize to convex combinations of
l cases by finding

argminx∈D

l

∑
i=1

wid(x,xi) where ∑
i

wi = 1

This has the advantage of being (potentially) computable on non-vector spaces and may provide
enough flexibility to solve the backscoring problem (2).

4. Another possibility that is used in some PCO applications is to regress x on the scores. This results
in a model that can perform an S→D mapping. It can also aid in the interpretation of the coordinate
directions. However, this is at best an approximate solution to the backscoring problem as posed
here. Another difficulty is that x is at least multivariate and, as in the examples we will consider,
may consist of objects such as shapes or functions. Performing a regression on these objects is not
easy (indeed the PCO is sometimes a vehicle to avoid such regressions).

We will pursue solutions based on the third approach above. Unlike, the D→ S case, there are no
generic solutions. We will present four examples, each with a different type of data, where we present
customized solutions, but with a preference for algorithms that require fewer properties (such as the
existence of inner products) so that the ideas might be easier to extend to yet other data types. We
are not aware of previous research on this problem. de Leeuw and Groenen (1997) discuss “inverse
multidimensional scaling” meaning the construction of the set of distance matrices Q that would give rise
to the chosen set of scores which is a different problem.

3 Examples

3.1 Orientations
The orientation of an object in a three dimensional space lies in a nonlinear space, SO(3). Although
there are several ways of representing an orientation, it is convenient to use a quaternion q written as q =
w+ ix+ jy+kz where x,y,z,w ∈ IR and i, j,k are imaginary numbers such that i2 = j2 = k2 = ijk =−1.
Orientations can be identified with unit quaternions, where ||q||= 1, and thus represent a 3D manifold S3

embedded in a 4D space. See Prentice (1986) for an example of using quaternions to model orientations.
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There is a PCA-type method available here. We construct a tangent space with an origin at the centre
of the data, project the data onto this 3D tangent space, perform the PCA and then project back on to
the orientation space. The mappings to and from the tangent space are conveniently computed with
quaternions by using the log and exponential maps described in Grassia (1998). This will be satisfactory
provided the data are not too dispersed as this will reduce the distortion due to mapping onto the tangent
space. This will provide a useful comparison to the PCO approach described below.

Data for the example are drawn from those described in Faraway and Choe (2009) which also contains
more details on the use of quaternions to model orientations. The data consist of 279 orientations of the
right hand at rest near the knee prior to making a reach from a seated position. The maximum angular
distance between any two points is 71.6◦ indicating that the data are not that tightly clustered.

To perform the PCA, we compute the mean orientation and centre the data at this point. We then
compute the log map, projecting the data onto the tangent space at the origin which in this case lies in
three dimensions. The principal components explain 54.4%, 34.0% and 11.6% of the standard deviation
respectively. A 3D plot of the data in the tangent space is shown in the first panel of Figure 1. Each point
in the plot corresponds to a hand orientation.
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Figure 1: Tangent space projections of the hand orientation data. The left panel shows the data while the
right panel shows a representation of the first principal coordinate. The origin(centroid) is marked by a
solid circle while the solutions for ±1 in the direction of the first principal coordinate are shown by open
circles. The candidate solutions are shown as dots.

The PCO analysis requires a distance measure. We use the shortest angular distance between two
points in S3. We compute the distance matrix Q and then perform classical MDS. Eigenvalues for the
decomposition indicate an almost identical explanation of the variation as that seen in the PCA. The
scores are also very similar. The D→ S mapping using the general method described in (1) requires only
the computation of the distance of the new orientation to the existing ones. This is straightforward.
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Now consider the S→ D mapping. If we solve the MDS in three dimensions, there is a 1-1 corre-
spondence that can be solved by inverting the D→ S mapping. This somewhat difficult to compute, but
not very interesting since we will want to consider situations where the dimension of the MDS solution
is rather less than the full dimensionality. For this reason, let us consider the 2D MDS solution where the
S→ D mapping will require finding the best solution in D which is three dimensional. We also wish to
develop an algorithm which uses only the distance measure and weighted averages of the orientations. In
this case, we have rather more structure than that and so a more direct solution is possible. However, we
want an algorithm that will work for the more difficult data types and thus forgo the use of this available
structure.

To generate potential solutions for given snew:

1. Select three orientations, x1, x2 and x3 at random from the data and compute si = φ(xi) for i= 1,2,3.

2. Find wi such that ∑i wisi = snew and ∑i wi = 1.

3. Compute the weighted average xw of the xi’s given weights wi. Find sw = φ(xw).

4. Adjust the weights until sw = snew. (We find that only a one-step adjustment is sufficient in this
example).

We repeat these steps for many randomly selected triplets. We select the solution that is closest to the
centroid. The method is illustrated in Figure 2.

orbit

centroid

Figure 2: A backscoring method: randomly selected triplets of cases are used to generate potential
solutions along an orbit corresponding to the desired score. The chosen solution is that closest to the
centroid.

We note that:

• It is possible that for a given triplet of x, no solution will be found. We then simply sample another
triplet.

• One might prefer to require wi ∈ [0,1] which would mean no solution for some triplets. We did not
restrict the weights here.
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• We could use more than three x, but for more complex data types it tends to be easier to form
convex averages of smaller numbers of objects, especially when there is some concern that the
proposed average might not lie in the data space. For PCO solutions in d dimensions, we would
require at least d +1 sampled cases.

• This algorithm is inefficient, but robust. Certainly one may devise faster methods for given types
of data, but we need a simple approach that will work with a wide range of data types, particularly
the less structured functional data considered in an example to follow.

We applied the algorithm, using 100 randomly selected triplets, to find the orientation corresponding
to the scores (±1,0). This would be useful in interpreting the first principal coordinate. The candidate
and selected solutions are shown in the second panel of Figure 1. The solutions correspond very closely
to the principal components values for (±1,0,0). Note that we would not normally use the tangent space
at all for the PCO, but we have projected our solution onto this space for comparison to the original data
in the other panel. For this particular application, it would be best to visualize this as a dynamically
changing hand orientation.

For this data type, PCA is easier to use, but we have shown that the PCO can produce comparable
results. Furthermore, the PCO is more flexible in that it would still work for widely dispersed data and
allows for the choice of different distance measures.

3.2 Shapes
Shapes described by landmarks in 3D provide another example of nonlinear data where PCO can be
useful. We take our example from a shape consisting of 38 markers placed on the faces of 35 normal
children in part of a study on the effects of cleft lip on facial motion. The motion of the faces is subse-
quently recorded, but in this example we consider only the initial position of the face. The technology
behind the data collection and the motivation in terms of dental surgery is described in Faraway (2004).

Our first PCO analysis is based on the Riemann distance. We form the solution in two dimensions.
The D→ S mapping may be obtained using the scoring method described in (1). Only the distances
of the new data point to 35 shapes are needed. The construction of the S→ D mapping is based on an
extension to the algorithm described for orientations. To implement this algorithm, we need a way to
compute a weighted average of shapes. We use the generalised Procrustes algorithm (Gower (1975)) on,
in this case, the three shapes and then form the weighted average. Other weighted averaging methods
could be used — we merely require that they produce a valid shape.

In the orientation example, the space of orientations having a specified score was only one dimen-
sional, but in this shape example, this potential solution space has about 100 dimensions. Simply gener-
ating random members of this space from triplets of shapes is insufficient to find a solution close to the
optimum. We modify the algorithm to provide a more directed search. One first needs to compute the
centroid before computing shapes corresponding to other scores.

1. Generate an initial candidate solution from a triplet of shapes having the required score. For finding
the centroid, we specify a score of 0. We measure the fitness of the solution by computing the
mean squared distance from the data in the case of the centroid or the distance from the centroid
otherwise.

2. Generate another potential solution from another randomly selected triplet. Find the best weighted
average of this triplet and the current best solution. Weights are not restricted to [0,1] to allow
moving away from the direction of the triplet.
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3. Repeat the second step until a satisfactory result is obtained.

Some experimentation is necessary to tune the best combination of step lengths and convergence
criteria. Although it is possible to devise much more efficient optimization methods in this particular
example, we wish to restrict ourselves to simpler methods that can be used for data objects have less
structure than shapes. Feasibility is our concern now rather than efficiency of computation. It is important
that we use only weighted averages of small numbers of objects as this increases confidence that these
averages remain within the valid data space. This is not a concern for shapes, but will be a concern in the
example to follow.

We applied these methods to the example data and found a centroid as depicted in the first panel of
Figure 3. The faces corresponding to scores of (±1,0) are shown in the second panel of Figure 3. We
see that this direction represents the contrast between longer, thinner faces and shorter, wider faces.
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Figure 3: The centroid of the faces as viewed from the front is shown on the left. The lines joining points
describe the eyebrows, nose, lip and chin line. The scale is in mm. On the right, faces with a score of
(±1,0) are shown.

The tangent space approach to PCA can also be applied here and will work well provided the shapes
are not too widely dispersed. These methods are described in texts such as Dryden and Mardia (1998).
The Riemann shape distance is the measure consistent with this approach. The PCA is computed using
the shapes package of Dryden (2009). The results of this analysis are very similar to that obtained
in the PCO. The PCA is much easier to compute in this instance, but this does confirm that the PCO
implementation provides sensible solutions.

PCO is more flexible. We can change the distance measure used and the PCO is still available whereas
an equivalent PCA would be hard to devise. For example, in Lele and Richtsmeier (2000), an alternative
methodology for shape analysis is presented based on the interlandmark distances. Suppose we compute
a distance matrix E for each observed shape such that Ei j = d(xi,x j) for i, j = 1, . . .n where xi are the
coordinates of landmark i. We might scale the shape for the size of the face by computing F = E/∑i, j Ei j.
Now given F1 and F2 , we might define the distance between the corresponding shapes as:

∑
i 6= j

(logF1
i j− logF2

i j)
2
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The PCO using this distance resulted in substantially different proportions of the variance explained as
derived from the eigenvalues. The plot showing the interpretation of the first principal component is
shown in Figure 4. We see that the interpretation of this component is fairly similar to the Riemann
distance again resulting in a short/wide vs. long/thin contrast.
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Figure 4: Faces with a score of (±1,0) are shown based on the PCO using the distance proposed by Lele.

Our point is not to advocate this particular distance, but to demonstrate that a PCO analysis is more
flexible than a PCA yet can produce the same useful outputs for subsequent analysis.

3.3 Functions
Data in the form of curves or functions is becoming more commonly available. The data for this example
derives from the same facial motion study described above. We consider 29 normal children used in the
study. We consider the percentage relative change in distance between the commissures (corners of the
lips) while performing a kissing motion. If the distance between commissures at time t is d(t) then our
outcome measure is r(t) = 100(d(t)/d0−1) where d0 is the distance at rest computed using the average
of the first and last observation. The motion is recorded at the rate of 60Hz for 4 seconds resulting in 240
equally spaced observations per curve.

The data is shown in Figure 5, where we also show the pointwise mean. We can see there is some
variation in the start, duration and magnitude of the kiss for these subjects. The pointwise mean is clearly
an unsatisfactory measure of the centre of this data as it is quite unlike any observed curve.

There is a growing body of research on PCA for functional data starting with Besse and Ramsay
(1986). A common solution to the horizontal variation is to align or register the curves first and then apply
PCA as can be seen in Ramsay and Li (1998) and Wang and Gasser (1997). This approach essentially
removes the phase variation and focuses the attention on the amplitude variation. However, we might be
simultaneously interested in both kinds of variation. In Izem and Marron (2007), a partially parametric
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Figure 5: 29 curves showing percentage contraction during kissing. The thicker line is the pointwise
mean.

approach is used tackle this problem, but we shall pursue a more fully nonparametric method here. We
demonstrate here how a PCO allows us to address this problem while still providing PCA-like outputs.

Dynamic time warping was introduced in signal processing and speech recognition work as a way to
align the same words spoken by different individuals — see Itakura (1975) and Sakoe and Chiba (1978).
The method has also been used in functional data analysis for registration purposes as in Wang and Gasser
(1997) for example. We shall use it for a distance measure. Consider two functions f and g observed at
the same equally spaced m time points and a set of pairs of indices π = ((a1,b1), . . . ,(aK,bK)). A pair
(ak,bk) represents a mapping from fak to gbk . The set π has the constraints:

1. (a1,b1) = (1,1) and (aK,bK) = (m,m)

2. (ak−ak−1,bk−bk−1) ∈ ((1,0),(0,1),(1,1)) for k > 1

The basic form of the algorithm chooses π to minimize a possibly scaled version of ∑
K
i=1( fak − gbk)

2.
The solution is found using dynamic programming. There are many variations on the basic form of
the algorithm most of which constrain the path π so that it cannot vary too far from a 1-1 mapping. In
our case, we apply first differences so that we are matching on the first derivative. We also use the so-
called Itakura parallelogram constraint. This is appropriate when the functions are known to match at
the endpoints and we wish to limit the distortion close to these endpoints. These modifications worked
well for this particular dataset in that they resulted in qualitatively satisfactory matching of curves. The
DTW computations are provided by Giorgino (2009). The procedure illustrated for two selected curves
in Figure 6 where the grey lines denote the pairs (ak,bk).

We define the distance between two functions observed at the same discrete times as

d( f ,g) =

{
1
K

K

∑
i=1

( fak−gbk)
2

v2
y

+
(ak−bk)

2

v2
x

}1/2

10



0 50 100 150 200

−
30

−
25

−
20

−
15

−
10

−
5

0

Frame number

Figure 6: Mean of two curves using DTW mapping. The curves are shown with thin black lines. The
DTW mapping is given by the grey lines connecting the two curves. The short dashed line is the DTW
mean while the long dashed line is the pointwise mean.

where vy and vx are scale factors chosen to place the two components of the sum on a similar scale.
They represent the relative weighting of amplitude and phase variation. In this application, we set vx and
vy equal to the observed ranges. This distance measure is complicated and not convenient for analysis.
Small changes in f or g could result in discrete changes in the DTW mapping. Hence there is a lack of
continuity that makes difficult the optimisation needed below.

Using this distance a PCO analysis can be performed. The first two dimensions explain about 52% of
the variation. We cannot perform a PCA based on this distance because we lack the necessary structure
such as an inner product. The D→ S mapping can be achieved using the general method described earlier.
All we need are the distances of the new point to the existing points. The S→ D mapping requires more
effort. First we need to compute a weighted average of two curves with respect to the distance using the
following procedure:

1. Compute the DTW mapping between f and g as π = ((a1,b1), . . . ,(aK,bK))

2. Compute, using weight w, ( f g)w = w fai +(1−w)gbi for i = 1, . . . ,K

3. Linearly interpolate ( f g)w to produce the weighted mean

The procedure illustrated for two selected curves in Figure 6. The pointwise mean is seen to be inadequate
as it has slopes less than either curve and a region of “maximum kiss” which is also less than either curve.
The DTW mapping successfully connects the corresponding points in each curve and results in a more
credible mean.

The backscoring algorithm requires us to form convex averages of small numbers of cases. The
DTW-based weighted mean does not lend itself to more than two curves, but we may sequentially form
weighted means of pairs of curves in the group to be averaged in order to construct an overall weighted
average. In our example, we shall use scores in two dimensions only so we shall need convex averages
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of three curves. We shall take the weighted mean of the first two and then combine the result with the
third curve. Due to nonlinearity, the outcome depends on the ordering of the computation. However, in
practice, we find little difference. In Liu and Muller (2004), a different method of convex averaging for
time warped curves is presented, but our method is simpler for the purposes required in this application.

The backscoring algorithm to produce the curve corresponding to the target score works as for the
shapes example except we now make the restriction that wi ≥ 0. Although the averaging method de-
scribed above could accept wi < 0, it might produce atypical curves and so we avoid that here. If for any
given triplet, a solution that obeys this constraint is not available, we simply randomly generate another
triplet. For a target score far from the origin, it is possible that no solution exists, but this may not be a
practical concern.

We calculate the centroid and the curves corresponding to (1,0),(−1,0),(0,1) and (0,−1). The
result is shown in Figure 7.
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Frame number

Figure 7: PCO analysis of functional data. The grey lines indicate the data, the thick line is the centroid,
the thin solid lines correspond to scores of (±1,0) and the dashed lines correspond to (0,±1).

We see that the direction of the first component corresponds to the length of the kiss while the second
component corresponds to the magnitude of the kiss.

3.4 Mixed Data
Data of mixed type, that is some variables quantitative and some categorical often arise in practice,
but standard PCA cannot be directly applied. In Hill and Smith (1976) a PCO-like approach to the
analysis of this type of data was proposed. The idea is based on yet another equivalent interpretation of
PCA. Suppose we find the vector y1 of length of n that is best correlated with the data in the sense of
maximising:

p

∑
j=1

cor2(x j,y1)

Once suitably normalised, y1 is identical to the first coordinate of the scores from a PCA when all x j are
quantitative. The second coordinate y2 may be found by performing the same maximisation subject to the
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constraint that it is uncorrelated with y1. The other coordinates may be found iteratively in this manner.
Now when an x j is categorical, we replace the squared correlation in the sum with the R2 from the one-
way ANOVA of y on x j. Notice that this method provides only the scores, but no linear combinations of
the variables so it is analogous to PCO and not PCA. We discuss how the method may be supplemented
so that it does have functionality equivalent to PCA.

An implementation of this can be found in Dray and Dufour (2007) where a more convenient, but less
intuitive method is used resulting in the following mappings. The data to score space mapping is given
by

S = XWA

where X is a data matrix derived from the original data using binary indicators for the categorical vari-
ables. An l-level factor is represented within X as an p× l binary incidence matrix where each row
contains a single one in the column corresponding to the level that was observed. The continuous vari-
ables appear standardized as columns in X . W is a diagonal matrix of variable weights where continuous
variables have weight one while the l entries for a categorical variable sum to one with the entries pro-
portional to the frequency of each level within the factor. A is the weighted principal components of X .
It is formed from the eigenvectors of XT XW normalised so that ATWA = I. S is a matrix of scores. Thus
any new data point can be mapped to the score space after a suitable transformation to dummy variables.

For the mapping from score space to the data space, for a given score s we seek an x that maps to the
required score subject to the constraint that it is closest to the mean value of the data. The mean is in the
transformed dummy space of X and thus needs to be weighted. This amounts to solving:

minxTWx s.t. s = xTWA (3)

The solution simplifies to x = As. Thus the solution is effectively PCA on X with appropriate weighting.
Now the x in the model matrix space needs to be mapped back to the real data space. For quantitative

variables, the transformation is direct. For categorical variables the corresponding part of x is a vector
of length equal to the number levels in the factor. The vector sums to one and could be regarded as a
probability of each level outcome. For interpretation purposes, we can take the most probable level. For
simulation, the probability of each level can be used, although some normalisation is required when a
computed probability is less than zero.

To illustrate these ideas, we take some environmental data on dune meadows as also used in Dray
and Dufour (2007). The data has 20 cases with three quantitative and two categorical variables, one
with three levels and the other with four. We apply the Hill–Smith method to find a two-dimensional
decomposition. The information is usually displayed in a duality diagram, which does provide some
suggestion as to how the coordinate directions should be interpreted. We take an alternate approach here
displaying the mapping of the first component having score (c,0) for c ∈ [−2,2] to the data space as
described above. We also show the second component by varying (0,c) in the same manner. Figure 8
shows these components.

We have kept the three quantitative variables on the standardized scale to ease comparison. We
see that the first component varies along an axis varying from high values of manure, the “Both” level of
“Use” and the “SF” level of “Management” at one end of the scale to low levels of manure, the “Hayfield”
level of “Use” and the “NM” level of management. The second component may be interpreted in similar
manner (note that the plot for “Use” for each component is almost but not exactly the same). Of course,
roughly the same information might be extracted from the duality diagram although perhaps our diagram
does allow a more direct interpretation.

A more interesting application of the backscoring algorithm in this instance is in simulating data
from the same underlying distribution that gave rise to the observed data. In general one can do this
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Figure 8: Interpretation of the components for Hill–Smith analysis of some mixed variable type data.
The first row of plots shows the values corresponding to a score of (c,0) for c ∈ [−2,2] and thus provides
an interpretation of the first principal component. The second row of plots provides the corresponding
interpretation of the second component.

by modelling the data and then simulating from that model, but perhaps we do not want to impose the
parametric assumptions necessary for such modelling. In bootstrapping, one simply resamples from the
observed cases to make this simulation, but this is somewhat crude for purposes other than bootstrapping.
We propose an intermediate alternative here:

1. Simulate score s from N(0,Λ) where Λ = diag(λ1,λ2, . . .)

2. Find x from (3)

3. For categorical components of x, simulate realised level of the variable using the probabilities
derived from x. For quantitative components, rescale and round as necessary.

For the example data, we obtain approximately the same marginal distribution for the data as em-
pirically observed. An exact result is difficult in this case because the three quantitative variables have
been severely rounded. In addition, we have approximately the same correlation structure (in the sense
of Hill–Smith method as implemented here).

Dray and Dufour (2007) describe several other models involving categorical data including corre-
spondence analysis where the same formulation applies and the above methods could be used.

3.5 Other examples
There are other data types which might benefit from these methods. In Wang and Marron (2007), tree-
structured data was described with binary splits combined with lengths for the tree “branches”. The data
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described the structure of blood vessels. It is difficult to do PCA on such data because of the lack of
necessary structure. In the paper, the authors developed a method with PCA-like characteristics, but also
rather unlike standard PCA. Defining a distance measure on such tree objects is somewhat easier. PCO
could then be applied, which combined with the backscoring algorithm, can lead to a result more closely
analogous to PCA.

Diffusion tensors as used in MRI (Pajevic and Basser (2003), Fletcher and Joshi (2004)) do not have a
natural vector space, but defining distance measures is a more straightforward task leading again to PCO
supplemented by backscoring.

Three of the examples above extract components of human motion data, which is a composite of the
motion of head, hands, legs etc. Although PCA is available for some parts of this motion, it is difficult
to apply it to the aggregate. In contrast, it is somewhat easier to define distances between motions that
can be weighted according to the specific application. We have the choice to experiment with different
choices of distance measure. With these distances, PCO is possible along with backscoring to allow a
more direct interpretation as well as synthesise new motions. This an example of data of more complex
structure for which these methods may be useful.

In Schölkopf et al. (1998), a method known as kernel PCA was introduced. The lower dimensional
data is mapped to a much higher dimensional feature space. The PCA is performed in this higher dimen-
sional which would be impractical were it not for the use of the so-called kernel trick which allows the
computation of an n× n matrix on which the PCA is carried out. There are several kernels in common
use, one of these being the radial basis function kernel which is a function of the distance matrix Q that
we have used above. Although described as a PCA-like method, kernel PCA is more akin to PCO in
that the scores are computed directly from the inner products. For PCO, this possibility was noted by
Gower (1966). In a very precise sense, PCO is the original kernel method. The link between non-metric
MDS and kernel PCA has also been pointed out by Williams (2002). A backscoring approach is possible
here also. The map from data to scores follows directly from the method while the algorithms described
earlier can provide the backscoring.

Finally we remark that the ISOMAP method of Tenenbaum et al. (2000) involves a projection of high
dimensional data onto a nonlinear low dimensional space. The same problems with placing a new point
in this smaller space and interpreting the meaning of the projected data in the lower dimensional space
arise.

4 Discussion
There are a substantial number of PCO-like methods in so far as they are based on a distance matrix Q.
There is some potential to upgrade these to PCA-like functionality by using methods like those described
in this paper. In some cases, a data space possesses sufficient structure to directly develop PCA or related
methods. Our interest is more in those data spaces which possess only a distance and a smaller amount of
structure, such as the ability to perform convex averaging, to enable the backscoring to take place. Thus
the value of the methods described here is for data types lacking strong structure or for less malleable
distance measures, such as DTW, which make it difficult to develop the structure for a PCA-like method.

The methodology here is presented more as proof of general concept than recommended practical
implementation. For any particular type of data and distance, more efficient algorithms for backscoring
could be developed and more concrete results obtained. For example, the backscoring for the curve
data example took several hours to compute although no great effort was made at code optimization.
However, the lack of structure means it is inherently difficult to perform such calculations quickly. For
problems with larger n some adjustments will be necessary. For example, in de Silva and Tenenbaum
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(2003) Landmark MDS is introduced as a method of dealing with very large distance matrices. At the
same time, larger n makes the backscoring problem easier in that there is a higher chance of finding a
data points close to the required solution.

The notion of object oriented data analysis is described Wang and Marron (2007). Just as in object
oriented programming, where different types of classes may have methods in common, we might consider
different data types which require certain common statistical methods. For example, we often require a
summary that represents a central observation. The details on how this measure of centre is computed
differ from data type to data type — a simple average may suffice for continuous univariate data while
something more sophisticated would be needed for, say, shape data. However, we would like this “centre”
method to exist for all data types. PCA could be viewed as method for describing variation in data, but
this only works for a limited, if commonly used, range of data types. The purpose of this paper, viewed
in an OOP light, is to develop the corresponding methods for a wider range of data types.
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