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Abstract—Game semantics extends the Curry-Howard iso-
morphism to a three-way correspondence: proofs, programs,
strategies. But the universe of strategies goes beyond intuitionistic
logics and lambda calculus, to capture stateful programs. In this
paper we describe a logical counterpart to this extension, in which
proofs denote such strategies. We can embed intuitionistic first-
order linear logic into this system, as well as an imperative total
programming language. The logic makes explicit use of the fact
that in the game semantics the exponential can be expressed as
a final coalgebra. We establish a full completeness theorem for
our logic, showing that every bounded strategy is the denotation
of a proof.

I. INTRODUCTION

A. Motivation

The Curry-Howard isomorphism between proofs in intu-
itionistic logics and functional programs is a powerful the-
oretical and practical principle for specifying and reasoning
about programs. Game semantics provides a third axis to
this correspondence: each proof/program at a given type
denotes a strategy for the associated game, and typically a
full completeness result establishes that this correspondence
is also an isomorphism [1]. However, in languages with side-
effects such as mutable state it is evident that there are many
programs which do not correspond to intuitionistic proofs.
Game semantics has achieved notable success in providing
models of such programs [2], [3], in which they typically
denote “history-sensitive” strategies — strategies which may
break the constraints of innocence [4] or history-freeness [1]
imposed in fully complete models of intuitionistic or linear
logic.

In this paper we present a first-order logic, WS1, and a
games model for it in which proofs denote history-sensitive
strategies. Thus total imperative programs correspond, via the
game semantics, to proofs in WS1. However, because WS1 is
more expressive than the typing system for a typical program-
ming language, it can express more behavioural properties
of strategies. In particular, we can embed both first-order
intuitionistic logic with equality, and the total fragment of
Idealized Algol [5] over bounded datatypes in WS1. We also
take first steps towards answering some of the questions posed
by the logic and its semantics: Are there any formulas which
only have ‘imperative proofs’, but no proofs in a traditional
‘functional’ proof system? Can we use the expressivity of
WS1 to specify and reason about imperative programs?

B. Related Work

The games interpretation of linear logic upon which WS1
is essentially based was introduced by Blass in a seminal
paper [6]. This also contains instances of history sensitive
strategies which are not denotations of linear logic proofs;
these do, however, correspond to proofs in WS1. The particu-
lar symmetric monoidal closed category of games underlying
our semantics has been studied extensively from both logical
and programming perspectives [7]–[9]. In particular, Longley’s
project to develop a programming language based on it [10]
may be seen as complementary to our aim of understanding
it from a logical perspective.

WS1 and its semantics are a direct development of the logic
WS introduced in [11] together with a notion of categorical
model based on the sequoidal structure identified in [12] and a
fully complete game semantics. To be precise, WS1 augments
WS with quantifiers, predicates, propositional atoms and expo-
nentials; and thus significantly increases its expressive power.

Several logical systems have taken games or interaction
as a semantic basis yielding a richer notion of meaning
than classical or intuitionistic truth, including Ludics [13]
and Computability Logic [14]. The latter also provides an
analysis of Blass’s examples, suggesting further connections
with our logic, although there is a difference of emphasis: the
research described here is more focussed on investigating the
structural properties of the games model on which it is based.
In [15] a proof theory for Conway games is presented, where
formulas are the game trees themselves. This system thus
contains low-level proof rules representing individual moves
of strategies, and the cut rewriting procedure corresponds
to explicit composition of strategies. Our work contains the
analogy of this for tree-games with local alternation.

A quite different formalisation of game semantics for first
order logic is given in [16], also with a full completeness
result.

C. Contribution

The main contribution of this paper is to present an expres-
sive logical system and its semantics, in which proofs corre-
spond to history sensitive strategies. Illustrating the expressive
power of this system, we show how proofs of intuitionistic
first-order logic, and programs of total Idealized Algol may
be embedded in it. We also demonstrate how formulas in the
logic can be used to represent some properties of imperative
programs: for example, we describe a formula for which any



proof corresponds to a well-behaved (single write) Boolean
storage cell.

The interpretation of WS1 includes some interesting de-
velopments of game semantics. In particular, the exponentials
are treated in a novel way: we use the fact that the semantic
exponential introduced in [9] is a final coalgebra, and reflect
this explicitly in the logic in the style of [17]. This formulation
allows us to express the usual exponential introduction rules
(promotion and dereliction) but also proofs that correspond to
strategies on !A that act differently on each interrogation, such
as the reusable Boolean reference cell. Another development
is the interpretation of first-order logic with equality. A proof
corresponds to a family of winning strategies — one for each
possible interpretation of the atoms determined by a standard
notion of L-structure — which must be uniform across L-
structures. This notion of uniformity is precisely captured by
the requirement that strategies are lax natural transformations
between the relevant functors.

We extend the full completeness result of [11]. We show that
any bounded uniform winning strategy is the denotation of a
unique (cut-free) core proof. In the exponential-free fragment,
where all strategies are bounded, it follows that many rules
such as cut are admissible; and it allows us to normalise
proofs to core proofs via the semantics. For the full logic,
since the exponentials correspond to final coalgebras, proofs
can be unfolded to infinitary form. Extending semantics-based
normalisation to the full WS1, the resulting normal forms are
infinitary core proofs.

II. THE LOGIC WS1

The formulas of WS1 are based on first-order linear logic,
with some additional connectives, and subject to a notion
of polarity (essentially, distinguishing conjunctive from dis-
junctive formulas, pace polarized linear logic). Let L be a
collection of complementary pairs of predicate symbols φ
(negative) and φ (positive), each with an arity in N such that
ar(φ) = ar(φ). The negative predicates must include equality,
and we write 6= for its complement. The negative and positive
formulas of WS1 over L are defined by the following grammar
(variables range over some global set V):

M , N := 1 | ⊥ | φ(−→x ) |
M ⊗N | M �N | N � P |
∀x.P | M&N | !N

P , Q := 0 | > | φ(−→x ) |
POQ | P �Q | P �N |
∃x.P | P ⊕Q | ?P

The involutive negation operation ( )⊥ sends negative formu-
las to positive ones and vice-versa by exchanging each atom,
unit or connective for its dual — i.e. 1 for 0, ⊥ for >, φ(−→x )
for φ(−→x ), ⊗ for O, � for �, ∀ for ∃, & for ⊕ and ! for ?.

A. Informal Semantics

By an L-structure L we mean the standard notion: a set |L|
together with an interpretation function IL sending each predi-
cate symbol (with arity n) to a function |L|n → {tt, ff} such

that IL(φ)(−→a ) 6= IL(φ)(−→a ) for all ~a and IL(=)(a, b) = tt

iff a = b. If X ⊆ V an L-model over X is a pair (L, v) where
L is an L-structure and v : X → |L| a valuation function,
yielding an assignment of truth values to all atomic formulas
with variables in X .

We may use this assignment to derive a denotation with
respect to (L, v) for each formula as an alternating dialogue
game between two protagonists, Player and Opponent, such
that in dialogues corresponding to positive (respectively, neg-
ative) formulas Player (respectively, Opponent) must make the
first move. We sketch the interpretation of formulas as games
(which, for the connectives of linear logic, is based on that of
[6]) here, and give further details of the model in Section 3.
• 0 and 1 denote the game with no moves.
• ⊥ and > denote the games with a single move (belonging

to Opponent or Player, respectively).
• Positive atoms which are satisfied in (L, v) are interpreted

as the game with a single (Player) move; positive atoms
which are not satisfied are interpreted as the game with no
moves. Conversely, negative atoms which are satisfied in
(L, v) are interpreted as the empty game, whilst negative
atoms which are not satisfied are interpreted as the game
with a single Opponent move.

• In M&N and P ⊕Q the starting protagonist chooses an
opening move in either of the two components, and play
remains in that component.

• In M⊗N and POQ, dialogues are interleavings of plays
from the two components, with the starting protagonist
able to switch between them. (Note that 1 and 0 are units
for both the additive and multiplicative connectives, and
that our interpretation is therefore affine.)

• If A is a formula of either polarity, the dialogues in
A�M and A�P are left-merges: interleavings where the
starting protagonist must begin in the left-hand compo-
nent, but it is the protagonist who starts in the right-hand
component who may switch between them.

• In !M (resp. ?P ) dialogues are interleavings of arbitrarily
many plays in M (resp. P ); the starting protagonist may
choose at any point to open a new copy, and may switch
between copies.

• In ∀x.N(x) (resp. ∃x.P (x)) dialogues are played in N(a)
(resp. P (a)) for some value a ∈ |L| chosen by the starting
protagonist.

Note that the negation operation corresponds precisely to
exchanging the rôles of Player and Opponent.

A game also includes a specification of its winning po-
sitions, which will be described in Section 3. A proof of a
formula will denote a uniform family of “winning strategies”
for Player on the games denoted by that formula in each L-
model.

B. Proofs

With this interpretation in mind, we can define proof rules
for WS1. A sequent of WS1 is of the form X; Θ ` Γ
where X ⊆ V , Θ is a set of positive atomic formulas and
Γ is a nonempty list of formulas such that FV (Θ,Γ) ⊆ X .



The explicit free variable set X is required for the the tight
correspondence between the syntax and semantics.

We shall interpret such a sequent as a (family of) dialogue
games by interpreting the comma operator in Γ as left-
associative left-merge (either � or � depending on the polarity
of the right-hand operand), so that the first move must occur
in the first element (or head formula) of Γ. This family is
indexed over the collection of Θ-satisfying L-models over X .

Proof rules for WS1 are given in Figure 1. ∆+ ranges over
lists of positive formulas, Γ∗ over non-empty lists of formulas,
and Φ over X; Θ contexts. We obtain the affine fragment of
WS1 by removing the exponentials and all rules that mention
them.

Note that the core introduction rules have a particular shape:
they operate on the head formula of the sequent, and the
only connectives corresponding to a choice of introduction
rule are O, ⊕ and ∃. Core elimination rules work on the
second formula in a sequent, shortening the tail. For the affine
fragment, this provides the basis of a cut-free core subsystem,
in which proof search is particularly simple, and which is
sufficient to express all uniform winning strategies, and so
all of the ‘other’ rules are admissible in this fragment.

All of the core rules are additive. This is particularly striking
in the case of the ⊗ introduction rule: unlike e.g. linear logic,
we explicitly use the fact that ⊗ represents an interleaving of
its subgames, rather than just an arbitrary monoidal structure.
In particular, the rule decomposes it into the possibilities of
starting on the left or starting on the right.

Finally, the exponential rules are based on the fact that !N
is the final coalgebra of the functor X 7→ N � X — this is
represented explicitly in the rule Pana. Together with Pcon and
Pder, we may derive promotion.

C. Embedding of Linear Logic

For any negative formulas M,N , define M ( N to be
N �M⊥. Thus any formula of first-order intuitionistic linear
logic is a negative formula of WS1. To illustrate its expressive
power, we sketch an embedding into WS1 of proofs of ILL
(over the connectives ⊗,(,∀,&,1,⊥,! and (negative) atoms,
formulated with left- and right- introduction rules as in [18]).

Proposition 1: For any proof p of M1, . . . ,Mn ` N in ILL
there is a proof κ(p) in WS1 of ` N,M⊥1 , . . . ,M⊥n .

Proof: We show that for each rule of ILL there is a
derivation in WS1 of the conclusion from the premises. In
most cases, this consists of a single rule, or pair of rules, of
WS1. The important exception is the right-introduction rule
for ! (promotion):

!Γ ` N
!Γ `!N

If Γ is empty, we can use PT
1 and PT

0 together with Pana.
In the case that Γ contains a single formula L, the translation
is as follows:

` N, ?L⊥
Pid `!L, ?L⊥

Pmix ` N, !L, ?L⊥, ?L⊥
PT

O ` N, !L, ?L⊥O?L⊥ con :`!L⊗!L, ?L⊥
Pcut ` N, !L, ?L⊥

Pana `!N, ?L⊥

where con is as follows:

Pid `!L, ?L⊥
Pcon `!L, !L, ?L⊥

Pid `!L, ?L⊥
Pcon `!L, !L, ?L⊥

P⊗
`!L⊗!L, ?L⊥

To deal with cases where Γ contains more than one formula,
one must use the fact that we can derive the equivalence of
!M⊗!N and !(M&N) in WS1.

D. New Provable Formulas

We next sketch some examples of formulas that are not
provable in ILL but are provable in WS1 — i.e. they denote
games on which there are uniform winning history-sensitive
strategies which are expressible in WS1.

1) Memoization: The formula φex = (φ&(φ ( ⊥)) ( ⊥
corresponds to an “additive excluded middle” in (negative)
ILL, and is not provable. This formula is not provable in WS1
either. However, consider the formula φex ( φex⊗φex. This is
not provable in ILL but it is provable in WS1 (as φex⊗φex�
φ⊥ex). While Player can only access the input φex once, in the
corresponding game, he can ‘remember’ whether φ was true
or false, to give a winning history-sensitive uniform strategy.
It is straightforward to derive a proof of φex ( φex⊗φex from
this strategy, although there is no space to give it here. This
example can be extended to the exponentials: while φex (!φex
is not provable in ILL, it is provable in WS1.

2) Medial Rule: The formulas

((A⊗B ( ⊥)⊗ (C ⊗D ( ⊥) ( ⊥) (
((A( ⊥)⊗(C ( ⊥) ( ⊥)⊗((B ( ⊥)⊗(D ( ⊥) ( ⊥)

are not provable, in general, in intuitionistic linear logic
(in particular, when A,B,C,D are instantiated as negative
atoms) — they are a counterpart in ILL of the medial rule,
[(A ⊗ B)O(C ⊗ D)] ( [(AOC) ⊗ (BOD)]. As observed
by Blass [6], however, there are (uniform) history-sensitive
winning strategies for medial. For example, if Opponent
first chooses the left hand component in the output and the
right hand component in the input, Player can choose to
play copycat between the copies of C, and so on. By our
full completeness theorem (Section 4), therefore, there are
proofs of all (exponential-free) instantiations of this formula
in WS1.

Similarly, the following formula (from [6]) is not provable
in ILL, but is provable in WS1.

[A⊗(C&D)]&[B⊗(C&D)]&[(A&B)⊗C]&[(A&B)⊗D] (
(A&B)⊗ (C&D)



Fig. 1: Proof rules for WS1

Core rules:

P1 Φ ` 1,Γ
P> Φ ` >

X; Θ, φ(−→x ) ` ⊥,Γ
Pat−

X; Θ ` φ(−→x ),Γ

X; Θ, φ(−→x ) ` >,Γ
Pat+

X; Θ, φ(−→x ) ` φ(−→x ),Γ
Φ ` A,N,Γ

P�
Φ ` A�N,Γ

Φ ` A,P,Γ
P�

Φ ` A� P,Γ
Φ `M,N,Γ Φ ` N,M,Γ

P⊗
Φ `M ⊗N,Γ

Φ `M,Γ Φ ` N,Γ
P& Φ `M&N,Γ

Φ ` P,Q,Γ
PO1

Φ ` POQ,Γ
Φ ` Q,P,Γ

PO2
Φ ` POQ,Γ

Φ ` P,Γ
P⊕1

Φ ` P ⊕Q,Γ
Φ ` Q,Γ

P⊕2
Φ ` P ⊕Q,Γ

Φ ` >,Γ
P+
> Φ ` >, P,Γ

Φ ` NP−> Φ ` >, N
Φ ` >, N � P,Γ

P�
> Φ ` >, N, P,Γ

Φ ` >,M ⊗N,Γ
P⊗> Φ ` >,M,N,Γ

Φ ` ⊥,Γ
P−⊥ Φ ` ⊥, N,Γ

Φ ` PP+
⊥ Φ ` ⊥, P

Φ ` ⊥, P �N,Γ
P�⊥ Φ ` ⊥, P,N,Γ

Φ ` ⊥, POQ,Γ
PO
⊥ Φ ` ⊥, P,Q,Γ

(X; Θ ` Γ)[ zx ,
z
y ] X; Θ, x 6= y ` Γ

Pma X; Θ ` Γ

P6=
X; Θ, x 6= x ` Γ

X; Θ ` P [y/x],Γ
Py∃ y ∈ X

X; Θ ` ∃x.P,Γ
X ] {x}; Θ ` N,Γ

P∀ x 6∈ FV (Θ,Γ)
X; Θ ` ∀x.N,Γ

Φ `M, !M,Γ
P! Φ `!M,Γ

Φ ` P, ?P,Γ
P? Φ `?P,Γ

Other rules:
Φ ` Γ∗,M,N,∆

PT
⊗

Φ ` Γ∗,M ⊗N,∆
Φ ` Γ∗,∆

PT
1 Φ ` Γ∗,1,∆

Φ ` Γ∗,M,∆
Pwk Φ ` Γ∗,∆

X; Θ ` Γ,∀x.N,∆
Pe∀ y ∈ X

X; Θ ` Γ, N [y/x],∆

Φ ` Γ∗, P,Q,∆
PT

O
Φ ` Γ∗, POQ,∆

Φ ` Γ∗,∆
PT
0 Φ ` Γ∗,0,∆

Φ ` Γ∗,∆
Pstr Φ ` Γ∗, P,∆

X; Θ ` Γ, P [y/x],∆
PT
∃ y ∈ X

X; Θ ` Γ,∃x.P,∆

PT
>

Φ ` N,∆+,>,∆+
1

Φ ` Γ, P,∆
PT
⊕1 Φ ` Γ, P ⊕Q,∆

Φ ` Γ, Q,∆
PT
⊕2 Φ ` Γ, P ⊕Q,∆

Φ ` Γ∗, N⊥,Γ1 Φ ` N,∆+

Pcut
Φ ` Γ∗,∆+,Γ1

Φ ` Γ, !M,∆
Pder Φ ` Γ,M,∆

Φ ` Γ,M&N,∆
Pe&1

Φ ` Γ,M,∆

Φ ` Γ,M&N,∆
Pe&2

Φ ` Γ, N,∆

Φ `M,Γ,∆+ Φ ` N,∆+
1Pmix

Φ `M,Γ, N,∆+,∆+
1

Φ ` Γ, !M,∆
Pcon Φ ` Γ, !M, !M,∆

Φ ` Γ∗, P,Q,∆
P+
sym Φ ` Γ∗, Q, P,∆

Φ ` Γ∗,M,N,∆
P−sym Φ ` Γ∗, N,M,∆

Φ `M,Γ, P Φ ` N,∆+

P(
Φ `M,Γ, P �N,∆+

Φ `M,P⊥, P
Pana Φ `!M,P

Pid
Φ ` N,N⊥

Φ ` N⊥ Φ ` N,Q
P0
cut Φ ` Q

Φ ` N,Q
Pid�

Φ `M,N,M⊥ �Q

3) Exponentials: We make a comment on the power of
explicit anamorphisms in our logic for the exponential. In ILL
there is a polynomial bound on resources used by proofs:
if σ :!A (!B is the denotation of an ILL proof then there
exists a polynomial p such that if s ∈ σ and s|!B enters n
copies of B then s|!A enters p(n) copies of A (contraction
corresponds to addition and promotion to multiplication).
However, we can define a proof in WS1 representing the
(history-sensitive) strategy on !(⊥�>) (!(⊥�>) which, on
the nth interrogation of the output, interrogates the input 2n

times.

E. Imperative Programs

We next describe how imperative programs and their prop-
erties can be explicitly modelled in WS1. First, we define
a (negative) formula of WS1 corresponding to the type of
Booleans: B = ⊥�>⊕> (i.e. ⊥&⊥( ⊥) — this has one
initial Opponent-move q and two possible Player responses,

representing True or False. There is a conditional B (
N&N ( N for each N .

We can also define Bi = (⊥&⊥)�>, which has two initial
Opponent-moves inputTrue and inputFalse and one
possible response to this, ok. The formula !Bi⊗!B represents
the type of a Boolean variable — it has a write method
which takes a Boolean input and has a single output move,
and a read method which on interrogation outputs a Boolean
value, and these methods can be used arbitrarily many times.
This formula is equivalent to var =!(Bi&B).

In WS1 we can use the Pana rule to give a proof of B (
var representing a Boolean cell with a given starting value. In
particular, we take the anamorphism of a map B ( (B&Bi)�
B. This proof is given in Figure 2. In this proof, if a rule is not
labelled it is the unique core rule, and some steps are omitted
for brevity. Its semantics is the history-sensitive Boolean cell
strategy given in [2]. The proof pread corresponds to the map
B ( B � B which reads its argument and propagates it to



the next call, and pwrite corresponds to the map B ( Bi�B
which ignores its argument and propagates the written value
to the next call.

Similarly, we may define a proof of ` var representing a
stack with unbounded memory: the Bi component represents
a push, and the B component a pop.

1) Language Embedding: We have now seen how terms
of the simply-typed lambda calculus (in the guise of proofs
of intuitionistic linear logic), simple finitary data types such
as the Booleans, and Boolean reference types and cells may
be expressed as formulas and proofs of WS1. Thus we may
translate the recursion-free fragment of Idealized Algol [5]
over finite datatypes into WS1, for example. We also have
proofs corresponding to non-local control operators such as
catch [19] and coroutines [3]. Interpretation via WS1 thus
gives a semantics of an imperative total programming language
with all of these features as games and history sensitive
strategies, consistent with existing games models of such
languages [2], [3].

The formulas of WS1 are more expressive than the types
of languages such as Idealized Algol, and hence they enable
the behaviour of history sensitive strategies to be specified
more precisely. For example, formulas can specify the order
in which arguments are interrogated, how many times they are
interrogated, and relationships between inputs and outputs of
ground type (using the first-order structure).

F. Good Variables
One respect in which the game semantics of Idealized Algol

(and other imperative languages) fails to reflect its syntax fully
is in the existence in the model of bad variables which do not
return the last value assigned to them [2]. In WS1 we may
define formulas for which all proofs denote good variables.

The formula worm = Bi�!B represents a Boolean vari-
able which can be written once, then read many times. One
proof/strategy of this formula will indeed be a valid Boolean
cell: if Opponent plays inputX then Player responds with ok,
if Opponent then tries to read the cell q, then Player responds
with X. But there are also bad variables: for example, the
read method may always return True regardless of what was
written.

To exclude such behaviour, we can replace the input/output
moves with atoms. Define B′ = ⊥ � (φ ⊕ ψ) and Bi′ =
(φ&ψ)�>, with worm′ = Bi′�!B′. If φ and ψ are assigned
tt, then this denotes the same dialogue as worm. However,
the denotation of any proof of worm′ at such a model must
be the good variable strategy. The rule for φ (and semantically,
uniformity of strategies) ensures that φ must be played before
φ, and ψ before ψ. Consequently, Player can only respond
with a particular Boolean in the read component if it has
previously been given as an input in the write component.
A proof of this formula is next shown, using only the core
rules and the promotion operator defined in Section 2C. Note,
however, that this example does not scale to variables that
allow multiple write operations.

φ ` >
φ ` φ

P⊕1
φ ` φ⊕ ψ
φ ` ⊥, φ⊕ ψ
φ ` ⊥� φ⊕ ψ

prom
φ `!(⊥� φ⊕ ψ)

φ ` >, !(⊥� φ⊕ ψ)

φ ` >�!(⊥� φ⊕ ψ)

φ ` ⊥,>�!(⊥� φ⊕ ψ)

φ ` ⊥,>, !(⊥� φ⊕ ψ)

` φ,>, !(⊥� φ⊕ ψ)

ψ ` >
ψ ` ψ

P⊕2
ψ ` φ⊕ ψ
ψ ` ⊥, φ⊕ ψ
ψ ` ⊥� φ⊕ ψ

prom
ψ `!(⊥� φ⊕ ψ)

ψ ` >, !(⊥� φ⊕ ψ)

ψ ` >�!(⊥� φ⊕ ψ)

ψ ` ⊥,>�!(⊥� φ⊕ ψ)

ψ ` ⊥,>, !(⊥� φ⊕ ψ)

` ψ,>, !(⊥� φ⊕ ψ)

` (φ&ψ),>, !(⊥� φ⊕ ψ)

` (φ&ψ)�>, !(⊥� φ⊕ ψ)

` ((φ&ψ)�>)�!(⊥� φ⊕ ψ)

III. SEMANTICS OF WS1

We now give a formal semantics of WS1 — proofs are
given semantics as uniform families of winning history-
sensitive strategies, indexed by L-models, where uniform
means that the family can be expressed as a lax natural
transformation. To formulate this we need to interpret formulas
as functors from a category of L-models to a category of
games and strategies.

A. A Category of Games and Strategies

We first recall the symmetric monoidal category (Gw,⊗, I)
of (negative) games and winning history-sensitive strategies
introduced in [9]. A game is a tree together with a winning
condition: a triple (M,P,W ) where M is a set (of “moves”),
P is a prefix-closed subset of sequences (plays) from M , and
W is a function from infinite plays to {O,P} identifying the
winner of each such play. Assuming that Opponent starts, we
may then derive the ‘owner’ of each subsequent move in a
play.

The games M ⊗N and M ( N are defined as in Section
2A (with M ( N = N � M⊥) and are formally played
over the disjoint sum of the moves of M and N . A play is
P-winning on M ⊗N if it is P-winning (by restriction) on M
and N , and it is P-winning on M ( N if it is P-winning on
N or O-winning on M . The unit I for ⊗ is the empty game
(with no moves, and one empty play).

A strategy on a negative game (M,P,W ) is a non-empty
subset σ of P containing plays of even-length, that is even-
prefix-closed and deterministic (if sa, sb ∈ σ then a = b).
We may form a symmetric monoidal category G in which
objects are games, and arrows from M to N are strategies on
M ( N , in which composition of strategies σ : M ( N
and τ : N ( L is by ‘parallel composition plus hiding in N ’
to yield a strategy τ ◦ σ : M ( L. G is poset-enriched by
inclusion of strategies.

A strategy σ : A is total if s ∈ σ ∧ so ∈ PA ⇒ ∃p.sop ∈
σ. Total strategies are maximal with respect to inclusion. A



Fig. 2: Proof Denoting a Boolean Cell

pwrite :` (⊥&⊥)�>,⊥� (>⊕>),>� (⊥&⊥) pread :` ⊥� (>⊕>),⊥� (>⊕>),>� (⊥&⊥)

` ((⊥&⊥)�>)&(⊥� (>⊕>)),⊥� (>⊕>),>� (⊥&⊥)
Pana `!(((⊥&⊥)�>)&(⊥� (>⊕>))),>� (⊥&⊥)

where pwrite is

` >
` >, (>� (⊥&⊥))

P⊕1 ` > ⊕>, (>� (⊥&⊥))
PO1 ` (>⊕>)O(>� (⊥&⊥))

` ⊥, (>⊕>)O(>� (⊥&⊥))

` (⊥� (>⊕>))� (>� (⊥&⊥))

` >, (⊥� (>⊕>))� (>� (⊥&⊥))

` (>� (⊥� (>⊕>))),>� (⊥&⊥)
PO1 ` (>� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥, (>� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥,>,⊥� (>⊕>),>� (⊥&⊥)

` >
` >, (>� (⊥&⊥))

P⊕2 ` > ⊕>, (>� (⊥&⊥))
PO1 ` (>⊕>)O(>� (⊥&⊥))

` ⊥, (>⊕>)O(>� (⊥&⊥))

` (⊥� (>⊕>))� (>� (⊥&⊥))

` >, (⊥� (>⊕>))� (>� (⊥&⊥))

` (>� (⊥� (>⊕>))),>� (⊥&⊥)
PO1 ` (>� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥, (>� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥,>,⊥� (>⊕>),>� (⊥&⊥)

` ⊥&⊥,>,⊥� (>⊕>),>� (⊥&⊥)

` (⊥&⊥)�>,⊥� (>⊕>),>� (⊥&⊥)

and pread is

` >P⊕1 ` > ⊕>
` ⊥, (>⊕>)

` >,⊥� (>⊕>)
P⊕1 ` > ⊕>,⊥� (>⊕>)

` ⊥, (>⊕>)� (⊥� (>⊕>))

` >P⊕2 ` > ⊕>
` ⊥, (>⊕>)

` >,⊥� (>⊕>)
P⊕2 ` > ⊕>,⊥� (>⊕>)

` ⊥, (>⊕>)� (⊥� (>⊕>))

` ⊥&⊥, (>⊕>)� (⊥� (>⊕>))

` >, (⊥&⊥)� ((>⊕>)� (⊥� (>⊕>)))

` > � (⊥&⊥), (>⊕>)� (⊥� (>⊕>))
PO2 ` ((>⊕>)� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥, ((>⊕>)� (⊥� (>⊕>)))O(>� (⊥&⊥))

` ⊥� (>⊕>),⊥� (>⊕>),>� (⊥&⊥)

strategy is winning if it is total and if, given infinite s such that
all even prefixes of s are in σ, W (s) = P. Winning strategies
form a full-on-objects symmetric monoidal closed subcategory
Gw of G (but total strategies do not compose in general). Both
categories also have products given by &.

B. Sequoidal Structure

Let Gs be the full-on-objects subcategory of G consisting of
strict arrows: an arrow σ : M → L is strict if it responds to
the first move in L with a move in M , if it responds at all. We
may define an action � of the SMC (G,⊗, I) on Gs based
on the game M �N in which plays (resp. winning plays) are
those (resp. winning) plays in M ⊗N in which the first move

is in M . In fact we have a sequoidal closed category [12] in
which �B : Gs → Gs is left adjoint to B ( : Gs → Gs.

The sequoidal closed structure restricts to Gw and Gs,w (the
category of strict, winning strategies). In the terminology of
[11], we have a WS-category, which is a semantics for WS
(the affine, unit-only fragment of WS1) in which proofs are
given semantics as winning strategies. A proof of ` M,Γ is
interpreted as an arrow I → JM,ΓK. Positive formulas are
handled by setting JP K = JP⊥K and a proof of ` P,Γ is
interpreted as an arrow JP,ΓK→ o, where o is the game with
a single maximal play of one move.

The categories G and Gw are equipped with an exponential



comonad [9]. The move set of !N is MN × ω; a play is
an interleaving of plays in multiple copies of N tagged
with natural numbers, such that the tags are introduced in
successive order. An infinite play is P-winning just if the play
restricted to each copy is P-winning. As well as ! enjoying
the structure of a linear exponential comonad [18], we can
also express !N as a terminal coalgebra.

Proposition 2: In the category Gw, !N is the terminal
coalgebra of the functor X 7→ N �X .

Proof: There is an evident morphism α :!N → N�!N .
Let σ : M → N�M be a winning strategy. We must construct
$σ% : M →!N . Define $σ%n : M → (N � )n(M) by
$σ%1 = σ and $σ%n+1 = (id�$σ%n) ◦ σ.

Any play s in !N must take place in a finite number of
copies of N since it is finite: let tg(s) be the largest tag
occurring in s. Then s is also a play in (N � )tg(s)(M). In
particular, if s is a play in M (!N then we can consider
s as a play in M ( (N � )tg(s|!N )(M). Thus we let
$σ% = {s : s ∈ $σ%tg(s|!N )}.

It is routine to show that $σ% is the unique winning
strategy such that α ◦$σ% = (id�$σ%) ◦ σ.

Constructing !N as a limit can also be performed in the setting
of Conway games [20].

C. Semantics of Sequents as Functors

Let M and N be games. An embedding-projection pair (or
just an embedding) M ⇀ N is a pair of strategies (in : M (
N, out : N ( M) with out ◦ in = id and in ◦ out v id.
We can construct a category Ge of games and embeddings,
with functors i : Ge → Gs and p : Ge → Gops selecting the
embedding and projection components respectively.

A morphism of L-models over X from (L, v) to (L′, v′)
is a function f : |L| → |L′| such that f(v(x)) = v′(x) for
all x ∈ X , and for all positive atomic predicates φ in L,
IL(φ)(~a) = tt implies IL′(φ)( ~f(a)) = tt. Note that this
implies that f is injective as inequality is a positive atom.

LetMX denote the category of L-models over X and such
morphisms. If Θ is a set of positive atoms, we can consider
the full subcategory of MX consisting of only the models
satisfying Θ — we denote this subcategory by MΘ

X .
A sequent X; Θ ` Γ is interpreted as a functor MΘ

X → Ge.
We can describe this map just for the negative formulas,
defining JP K = JP⊥K. The constructs !, (, �, ⊗, & all
extend to covariant (bi)functors on Ge. This leaves only the
interpretation of the atoms and quantifiers.

We set Jφ(−→x )K(L, v) = o (the single move game) if
(L, v) |= φ(−→x ) and I (the empty game) otherwise. To extend
this to a functor, consider f : (L, v) → (L′, w). If the truth
value of φ(−→x ) is the same in (L, v) and (L′, w), we use
the identity embedding (id, id). If the truth value of φ(−→x ) is
different, we must have (L, v) |= φ(−→x ) and (L′, w) |= φ(−→x )
since morphisms inMΘ

X preserve truth of positive atoms. Thus
we need an embedding I ⇀ o — we can take (ε, ε) where ε

is the strategy containing just the empty sequence. This action
is functorial.

We let J∀x.NK(L, v) =
∏
l∈|L|JNK(L, v[x 7→ l]).

Suppose f : (L, v) → (M,w). We need to give an
embedding J∀x.NK(f) :

∏
l∈|L|JNK(L, v[x 7→ l]) ⇀∏

m∈|M |JNK(M,w[x 7→ m]). The embedding part (left to
right) is given by 〈gm〉m where gm = ε if m is not in the
image of f , and gm = iJNK(f) ◦ πl if m = f(l) (note in
this case l is unique by injectivity of f ). The projection part
is given by 〈pJNK(f) ◦ πf(l)〉l. It is routine to verify that this
forms a valid embedding/projection pair.

We give the semantics of positive formulas via duality:
JP K = JP⊥K. Proofs of positive formulas are interpreted as
strategies on JP K ( o (Opponent plays an initial ‘dummy’
move first).

D. Semantics of Proofs as Uniform Strategies
Let F,G : C → G. A lax natural transformation F ⇒ G

is a family of maps ηA : F (A) → G(A) with ηB ◦ F (f) w
G(f) ◦ ηA.

Definition 3: A uniform winning strategy from F to G is
a lax natural transformation F ⇒ G such that for each object
A in C, σA is winning.

We give semantics to a proof of X; Θ ` N,Γ as a uniform
winning strategy I ⇒ i◦JN,ΓK and a proof of X; Θ ` P,Γ as
a uniform winning strategy i◦JP,ΓK⇒ o. In the negative case,
this is a winning strategy σ(L,v) on the game JN,ΓK(L, v) for
each Θ-satisfying L-model (L, v) over X such that if f :
(L, v)→ (M,w) then σ(M,w) w iJN,ΓK(f) ◦ σ(L,v).

The proof rules for the units and connectives ⊗,�,& (and
their duals) are interpreted by adapting the semantics from
[11]: the operations on strategies lift to operations on uniform
strategies. To do this we need to use vertical composition and
horizontal composition (in general lax natural transformations
do not compose horizontally, but they do if one of the
transformations is the identity, which is enough). We also need
to check that we can curry uniform strategies, which is routine.

We thus focus on the new rules. For Pat+, we start with a lax
natural transformation JpK : J>,ΓK ⇒ o with functors map-
pingMΘ,φ(−→x )

X → Ge. But for any (L, v) inMΘ,φ(−→x )
X we have

Jφ(−→x ),ΓK(L, v) = J>,ΓK(L, v). Hence JpK : Jφ(−→x ),ΓK⇒ o,
and we take JPat+(p)K = JpK.

For the rule Pat−, suppose JpK : I ⇒ J⊥,ΓK with functors
MΘ,φ(−→x )

X → Ge. Then set JPat−(p)K(L, v) = ε if (L, v) |=
φ(−→x ) and JpK(L, v) if (L, v) |= φ(−→x ). For lax naturality, we
need to check that the appropriate diagram lax commutes:

I
JPat−(p)K(M,w)- Jφ(−→x ),ΓK(M,w)

w

I

id

?

JPat−(p)K(L, v)
- Jφ(−→x ),ΓK(L, v)

iJφ(−→x ),ΓK(f)

?



Note that if (L, v) and (M,w) agree on φ(−→x ) then
the diagram lax commutes by lax naturality of ε or
JpK. If they disagree, then we must have (L, v) |=
φ(−→x ) and (M,w) |= φ(−→x ). We need to show that
JPat−(p)K(L, v) w iJφ(−→x ),ΓK(f) ◦ JPat−(p)K(M,w). To
see this, note that pJφ(−→x ),ΓK(f) ◦ JPat−(p)K(L, v) =
JPat−(p)K(M,w) as both sides map into the terminal ob-
ject, so JPat−(p)K(L, v) w iJφ(−→x ),ΓK(f) ◦ pJφ(−→x ),ΓK(f) ◦
JPat−(p)K(L, v) = iJφ(−→x ),ΓK(f) ◦ JPat−(p)K(M,w).

For the quantifiers, we have JP∀(p)K(L, v) = dist ◦
〈JpK(L, v[x 7→ l])〉l where dist :

∏
l∈LJN,ΓK(L, v[x 7→ l]) ∼=

J∀x.N,ΓK(L, v). Set JPy∃(p)K(L, v) = JpK(L, v)◦πv(y)◦dist−1.
We can check that these define uniform winning strategies.

Semantics of P6= is trivial, asMΘ
X has no objects. For Pma,

we note that if x, y ∈ X then MΘ
X is the disjoint sum of the

categories MΘ,x=y
X and MΘ,x 6=y

X (there are no maps between
these subcategories, as morphisms are injective). Thus to give
a lax natural transformation F ⇒ G with F,G : MΘ

X → Ge
is precisely to give a pair of lax natural transformations
F |MΘ,x=y

X
⇒ G|MΘ,x=y

X
and F |MΘ,x 6=y

X
⇒ G|MΘ,x6=y

X
. The

two premises of Pma provide these transformations. In the
latter case this is direct; in the former case one must note
that JΘ, x = y ` ΓK = J(Θ ` Γ)[ zx ,

z
y ]K ◦ H where H :

MΘ,x=y
X → MΘ[ zx ,

z
y ]

X/{x,y}]{z} : (M,v) 7→ (M,v[z 7→ v(x)])
and use horizontal composition.

Semantics of non-core rules involving these constructs can
be given similarly.

For the exponentials, semantics of Pana, P?, P! and Pder use
the fact that !N is the final coalgebra of X 7→ N�X (we can
check that the anamorphism of a lax natural transformation is
lax natural). For semantics of Pcon, we use the fact that !N is
the carrier of a comonoid.

E. Consistency

It follows that WS1 is consistent: if we had proofs `M and
`M⊥, their denotations would be uniform winning strategies
I ⇒ JMK and JMK ⇒ o, which would compose to give a
winning strategy on I ⇒ o — but there are no such strategies.

IV. FULL COMPLETENESS

We now show that the core rules suffice to represent any
uniform winning strategy σ on a type object provided σ
is bounded — i.e. there is a bound on the size of plays
occurring in σ. In particular, such a strategy is the semantics
of a unique core proof. Given a sequent X; Θ ` Γ, we say Θ
is lean if it contains x 6= y for all distinct x and y in X and
does not contain x 6= x. A proof in WS1 is core if it uses
only core rules and has the following additional restrictions:
all rules that are not P6= or Pma can only be applied to
conclude sequents with a lean Θ; if Pma is used to conclude
X; Θ ` Γ then x and y are the least two variables in X not
to be declared distinct by Θ and z is the least fresh variable.

Theorem 4: Let X; Θ ` Γ be a sequent of WS1 and σ a
bounded uniform winning strategy on JX; Θ ` ΓK. Then there
is a unique core proof p of X; Θ ` Γ with JpK = σ.

All strategies on the denotations of affine sequents are
bounded. Consequently, in the affine fragment we can perform
reduction-free normalisation from proofs to (cut-free) core
proofs, by reification of their semantics. We thus see that
all of the non-core rules are admissible (when restricted to
this fragment). In particular, we can extract a syntactic cut
elimination procedure from the full completeness result, as
defined explicitly in [11].

The rest of this section sketches the proof of this full com-
pleteness result, and describes an extension to reify unbounded
strategies as infinitary core proofs.

A. Uniform Choice

First, we show that in any uniform winning strategy, each
component makes the same choice when the outermost con-
nective is a ⊕ or ∃ (and that in the later case the value chosen
by Player must be the value of some variable).

The first key observation is that if Θ is lean and
(L, v), (M,w) ∈ MΘ

X then there exists an L-model (L, v) t
(M,w) and maps f(L,v,M,w) : (L, v) → (L, v) t (M,w) and
g(L,v,M,w) : (M,w) → (L, v) t (M,w). If (L, v) is an L-
model, define U(L,v) to be the elements of |L| not in the
image of v. Then the carrier of (L, v) t (M,w) is defined to
be X ]U(L,v) ]U(M,w). The L-structure validates all positive
atoms, and the valuation is just inj1. Then the map f(L,v,M,w)

sends v(x) to inj1(x) and u ∈ U(L,v) to inj2(u). This is an
injection because Θ is lean. g(L,v,M,w) is defined similarly.

The second key observation is that if f : (L, v) → (M,w)
then σ(L,v) is determined entirely by f and σ(M,w). In
particular, uniformity for positive strategies σ : N ⇒ o
requires that σ(L,v) v σ(M,w) ◦ N(f) but since σ(L,v) is
total, it is maximal in the ordering and so we must have
σ(L,v) = σ(M,w) ◦N(f).

Proposition 5: Suppose Θ is lean, and let σ : M1×M2 ⇒ o
be a uniform winning strategy. Then σ = τ ◦ π1 for some
uniform winning strategy τ : M1 ⇒ o, or σ = τ ◦π2 for some
uniform winning strategy τ : M2 ⇒ o.

Proof: We know that each σ(L,v) is of the form τ(L,v)◦πi
for some i ∈ {1, 2} since in the game M1(L, v)×M2(L, v) (
o we must respond to the initial Opponent-move either with a
move in M1 or a move in M2. But we need to check that i is
uniform across components. Suppose that i is not uniform —
then we have (L, v) and (T,w) with σ(L,v) = τ(L,v) ◦ π1 and
σ(T,w) = τ(T,w)◦π2. Now consider (L, v)t(T,w) and let k be
such that σ(L,v)t(T,w) = τ(L,v)t(T,w) ◦πk. By our second key
observation, σ(L,v) = σ(L,v)t(T,w) ◦ (M1×M2)(f(L,v,T,w)) =
τ(L,v)t(T,w) ◦ πk ◦ (M1 × M2)(f(L,v,T,w)) = τ(L,v)t(T,w) ◦
Mk(f(L,v,T,w))◦πk. But since σ(L,v) is of the form τ(L,v)◦π1,
we must have k = 1. But we can reason similarly using σ(T,w)

and g(L,v,T,w) and discover that k = 2. This is a contradiction.
Thus there is some i such that each σ(L,v) can be decom-

posed into τ(L,v) ◦ πi. We know that τ is lax natural as it is
equal to σ ◦ 〈id, ε〉 if i = 1 or σ ◦ 〈ε, id〉 if i = 2.



Proposition 6: Suppose Θ is lean, and let σ : ∀x.M ⇒ o be
a uniform winning strategy. Then there exists a unique variable
y ∈ X and uniform winning strategy τ : M ⇒ o such that
σ(L,v) = τ(L,v) ◦ πv(y).

Proof: First, we show that given any L-model (L, v)
there is some y with σ(L,v) = τ(L,v) ◦ πv(y). Suppose for
contradiction that σ(L,v) = τ(L,v) ◦ πu for some u ∈ U(L,v).
Build the L-model L′ = X ]{a, b}]U(L,v) with the obvious
valuation and validating all positive atoms. Then there are two
distinct maps m1,m2 : (L, v) → L′ both behaving in the
obvious way, except m1 sends u to a, and m2 sends u to b.
By using similar reasoning to the above, we can use m1 to
show that σL′ = τL′ ◦πa and m2 to show that σL′ = τL′ ◦πb,
which is a contradiction.

Similarly, we can show that y is uniform across all (L, v).
Finally we need to check that τ : M ⇒ o is lax natural: we
can show that it is σ ◦ ρ where ρ : M ⇒ ∀x.M is defined by
〈gm〉m where gm = ε if m 6= v(y) and gv(y) = id.

B. Reification Procedure

We next define the function reify from uniform winning
strategies on a formula-object to proofs. Informally, reify is
a semantics-guided proof-search procedure. It is defined by
case analysis on the head of Γ, by induction on a compound
measure involving the size of the strategy, the number of
pairs of free variables that are not declared distinct by Θ,
and a further measure that depends on the nature of the head
formula. Informally, if Θ is not lean:
• If Θ contains x 6= x we use P6= and halt.
• Otherwise, we consider the least two variables x, y ∈ X

that are not declared distinct by Θ and split the family
into those models that identify x and y, and those that
do not. In the former case, we can substitute fresh z for
both x and y. We then apply the inductive hypothesis to
both halves and apply Pma.

If Θ is lean, then:
• If the head formula is 1, then σ is the unique (empty)

strategy on this game. The head formula cannot be 0,
since there are no uniform winning strategies on this
game.

• If the head formula is ⊥, then we may use the P−⊥,
PO
⊥, P�⊥ rules to shorten the tail of the sequent until

it is a single positive formula P or empty. The latter
case is impossible, as there are no winning strategies on
this game. In the former case, we can obtain a uniform
strategy on P by removing the first move in σ. We can
then proceed inductively using P+

⊥. If the head formula
is > we may proceed similarly (but in this case an empty
tail is possible, in which case we use P>).

• If the head formula is a positive atom φ(−→x ) then we
must have φ(−→x ) in Θ, as otherwise there can be no
uniform winning strategies on JΓK (since some games
in that family have no winning strategies). Thus we can
proceed inductively and apply Pat+.

• If the head formula is a negative atom φ(−→x ) then we can
split the family σ into those models that satisfy φ(−→x ) and

those that do not. All strategies in the latter group must
be empty, as there are no moves to play. All strategies in
the former group form a uniform strategy on JΘ, φ(−→x ) `
⊥,ΓK and we can proceed inductively using Pat−.

• If the outermost connective of the head formula is &, ⊗,
�, �, !, ? or ∀, then we may reverse the associated rule
to decompose the head formula.

• If the outermost connective of the head formula is ⊕ —
i.e. Γ = P1 ⊕ P2,Γ

′ – then σ must play its first move
in either JP1K or JP2K for each model. By Proposition 5,
it must chose the same component i for each valuation.
This yields a uniform strategy on J` Pi,Γ′K and we can
proceed inductively using the rule P⊕i. If the outermost
connective is O, then similar reasoning applies.

• If Γ = ∃x.P,Γ′ then each component of σ must choose
an x in the appropriate model, and give a corresponding
substrategy. By Proposition 6, the value of x must be v(y)
for some unique y ∈ X , and further y must be constant
throughout all components. This can be used to construct
a uniform strategy on JΘ ` P [y/x],ΓK, we can apply the
inductive hypothesis and use the Py∃ rule.

C. Termination

We next argue for termination of our procedure. Intuitively,
the full completeness procedure first breaks down the head
formula until it is ⊥ or >. It then uses the core elimination
rules to compose the tail into (at most) a single formula. These
steps do not increase the size of the strategy. Finally, the head
is removed using P+

⊥ or P−>, strictly reducing the size of the
strategy. If Θ is not lean, the number of distinct variable pairs
that are not declared distinct in Θ is reduced by using Pma.

Formally, we can see this as a lexicographical ordering of
four measures on σ,X ,Θ,Γ:

• The most dominant measure is the length of the longest
play in σ.

• The second measure is the length of Γ as a list if the
head of Γ is ⊥ or >, and ∞ otherwise.

• The third measure is the size of the head formula of Γ.
• The fourth measure is

|{(x, y) ∈ X ×X : x 6≡ y ∧ x 6= y /∈ Θ}|

If Θ is lean:

• If Γ = ⊥, P or >, N then the first measure decreases in
the call to the inductive hypothesis.

• Otherwise, if Γ = A,Γ′ with A ∈ ⊥,> the first measure
does not increase and the second measure decreases.

• If Γ = A,Γ′ with A 66∈ {⊥,>}, the first measure does not
increase and either the second or third measure decreases.

If Θ is not lean and the Pma rule is applied, in the call to
the inductive hypotheses the first three measures stay the same
and the fourth measure decreases.

Thus, the inductive hypothesis is used with a smaller value
in the compound measure on N×N ∪ {∞}×N×N ordered
lexicographically.



D. Proof Normalisation

Our full completeness theorem ensures that in the affine
fragment, we can normalise a proof to a core proof. We can
in fact do something similar in full WS1, except in this case
the resulting normal form will be an infinitary core proof —
i.e. a proof using the core rules that may be infinite. The
collection of such proofs is the final coalgebra of the core
proof rules. Using this coalgebraic formulation, we can give
semantics of infinitary core proofs as uniform total strategies
(but these strategies need not be winning).

Theorem 7: Let X; Θ ` Γ be a sequent of WS1 and
σ a uniform total strategy on JX; Θ ` ΓK. Then σ is the
denotation of a unique infinitary core proof.

To show this, we use our reification procedure as described
above. The termination of this procedure depends on bound-
edness of σ; for unbounded σ we can use a coalgebraic
formulation to construct an infinitary core proof.

Thus the infinitary core proofs correspond precisely to the
uniform total strategies. It is possible to introduce a constraint
to say when an infinitary core proof is winning by emulating
the definition of play restrictions in strategies, but we will not
pursue this here.

We can thus perform proof normalisation for arbitrary
proofs in WS1, with the caveat that the resulting normal form
is an infinitary core proof: we take the semantics of a proof as a
uniform winning strategy, and then generate the corresponding
infinitary core proof. This normal form will have the same
semantics as the proof we started with. Indeed, two proofs
have the same semantics if and only if they have the same
infinitary normal form. Similarly, for our language embedding,
two programs are observationally equivalent if and only if their
proof translations have the same (infinitary) normal form.

V. FURTHER DIRECTIONS

In this paper, we have given some simple examples of
“stateful proofs”. We aim to investigate further examples in
more expressive logics, and to specify additional properties of
programs in more powerful programming languages (such as
the games-based language in e.g. [10]). Further extensions to
our work which may be required in order to do so include:
• WS1 has been presented as a general first-order logic. By

adding axioms, we may specify and study programs in
particular domains. For example, can we derive a version
of Peano Arithmetic in which proofs have constructive,
stateful content (cf [21])?

• WS1 and its semantics may be extended with function-
symbols. Establishing full completeness then becomes a
non-trivial unification problem.

• Extension with propositional variables (and potentially,
second-order quantification) would allow generic “copy-
cat strategies” to be captured. On the programming side,
this would allow us to model languages with polymor-
phism.

• We have interpreted the exponentials as greatest fixpoints.
Adding general inductive and coinductive types, as in
µLJ [17] would extend WS1 to a rich collection of
datatypes (including finite and infinite lists, for example).
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