

Citation for published version:
Chen, C, Davenport, JH, Moreno Maza, M, Xia, B & Xiao, R 2011, Computing with semi-algebraic sets
represented by triangular decomposition. in ISSAC '11 Proceedings of the 36th International Symposium on
Symbolic and Algebraic Computation. Proceedings of the International Symposium on Symbolic and Algebraic
Computation, ISSAC, Association for Computing Machinery, New York, pp. 75-82, 36th International Symposium
on Symbolic and Algebraic Computation, ISSAC 2011, June 8, 2011 - June 11, 2011, San Jose, CA, USA
United States, 1/01/11. https://doi.org/10.1145/1993886.1993903
DOI:
10.1145/1993886.1993903

Publication date:
2011

Document Version
Peer reviewed version

Link to publication

© ACM, 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in ISSAC 2011 - Proceedings of the 36th
International Symposium on Symbolic and Algebraic Computation. New York: Association for Computing
Machinery, pp.75-82, http://dx.doi.org/10.1145/1993886.1993903

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161908651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/1993886.1993903
https://researchportal.bath.ac.uk/en/publications/computing-with-semialgebraic-sets-represented-by-triangular-decomposition(eb4f208f-9b96-4ece-aedc-864ace0cafed).html

Computing with Semi­Algebraic Sets Represented by

Triangular Decomposition

Changbo Chen James H. Davenport Marc Moreno Maza
University of Western Ontario University of Bath University of Western Ontario

cchen252@csd.uwo.ca J.H.Davenport@bath.ac.uk moreno@csd.uwo.ca

Bican Xia
Peking University

xbc@math.pku.edu.cn

ABSTRACT
This article is a continuation of our earlier work [3], which
introduced triangular decompositions of semi-algebraic sys­
tems and algorithms for computing them. Our new contri­
butions include theoretical results based on which we obtain
practical improvements for these decomposition algorithms.

We exhibit new results on the theory of border polynomials
of parametric semi-algebraic systems: in particular a geo­
metric characterization of its “true boundary” (Definition
2). In order to optimize these algorithms, we also propose
a technique, that we call relaxation, which can simplify the
decomposition process and reduce the number of redundant
components in the output. Moreover, we present procedures
for basic set-theoretical operations on semi-algebraic sets
represented by triangular decomposition. Experimentation
confirms the effectiveness of our techniques.

1. INTRODUCTION
Triangular decompositions of semi-algebraic systems were
introduced in [3]. The key notions and notations of this
paper are reviewed in the next section.

That paper presents also an algorithm for generating those
decompositions. This algorithm can either be eager , com­
puting the entire decomposition, or lazy , only computing
the decomposition corresponding to the highest (complex)
dimensional components, and deferring lower-dimensional
components. While a complete decomposition is known to
have a worst-case complexity which is doubly-exponential in
the number of variables [8], under plausible assumptions the
lazy variant has a singly-exponential complexity. Neverthe­
less, it is still desirable to improve the practical efficiency of
both types of decomposition.

The notion of a border polynomial [15] is at the core of our

Rong Xiao
University of Western Ontario

rong@csd.uwo.ca

work. A strongly related notion, discriminant variety, was
introduced in [9] and the link between them was investi­
gated in [14]. Other similar but more restrictive notions
like “generalised discriminant” and “generalised resultant”
were introduced in [10]. For a squarefree regular chain T ,
regarded as a real parametric system in its free variables u,
the border polynomial BP (T) encodes the locus of the u-
values at which T has lower rank or at which T is no longer
a squarefree regular chain. (See §2 for the notions related to
triangular decomposition and regular chains.) Consequently,
for each connected component C of the complement of the
real hypersurface defined by BP (T) the number of real so­
lutions of the regular chain T is constant at any point of C.
However, BP (T) is not an invariant of the variety W (T),
which is a bottleneck in designing better algorithms based
on the notion of a border polynomial. We overcome this
difficulty in two ways.

′ Firstly, in §3, we prove that among all regular chains T
satisfying sat(T ′) = sat(T) there is one and only one (char­

′ acterized in Theorem 1) for which BP (T) is minimal w.r.t.
inclusion. Secondly, in §4, we introduce the concept of an
effective boundary of a squarefree semi-algebraic system, see
Definition 2. This allows us to identify a subset of BP (T)

which is an invariant of W (T), that is, unchanged when re­
′ placing T by T as long as W (T) = W (T ′) holds. In many

ways, our notion of effective boundary is similar to the “bet­
ter projection” ideas in the classical [7, and many others]
approach to cylindrical algebraic decomposition.

In §5, we introduce the technique of relaxation which we
shall motivate by an example. Consider the semi-algebraic
system sys = [f = 0, x − b > 0], where f = ax 3 + bx− a for
the variable ordering a < b < x. The LazyRealTriangularize
algorithm of [3] will compute the border polynomial set B =
{a, b1, b2} and the fingerprint polynomial set (FPS) F =
{a, b1, b2, b, p1, p2, p3}. where b1 = ab3 + b2 − a, b2 = 27a 3 +
4b3 , p1 = 2b3 + 1, p2 = b3 − 4 and p3 = b − 1. Thus
the LazyRealTriangularize(sys) will produce 1 regular semi-
algebraic system S1 = [Q1, {f = 0, x − b > 0}], and 7 un­
evaluated recursive calls, where

mailto:rong@csd.uwo.ca

�
�
�

6 6 = �
�
�

Q1 = (b < 0 ∧ p1 = 6 0 ∧ a 6 0 ∧ b2 =6 0 ∧ b1 = = 6 0)
(p1 > 0 ∧ b1 > 0 ∧ a < 0 ∧ p3 > 0 ∧ p2 6= 0 ∧ b2 6 0) =

(b > 0 ∧ p1 > 0 ∧ b1 6 0 ∧ a < 0 ∧ p3 < 0 ∧ p2 < 0 ∧ b2 6 0) = =
(b > 0 ∧ p1 > 0 ∧ b1 < 0 ∧ a > 0 ∧ p3 < 0 ∧ p2 < 0 ∧ b2 > 0)

and the 7 calls are made for each p ∈ F with the form
LazyRealTriangularize([p = 0, f = 0, x − b > 0]). The key
observation is that some of these recursive calls can simply
be avoided if some of the strict inequalities in Q1 can be
relaxed, that is, replaced by non-strict inequalities. The
results of §5, and in particular Theorem 5 provide criteria
for this purpose. Returning to our example, when relaxation
techniques are used LazyRealTriangularize(sys) will produce
1 regular semi-algebraic system S2 = [Q2, {f = 0, x−b > 0}],
and 3 un-evaluated recursive calls, where

Q2 = (b ≤ 0 ∧ b1 = 0 ∧ a = 0 ∧ b2 6 0)
(p1 ≥ 0 ∧ b1 > 0 ∧ a < 0 ∧ p3 ≥ 0 ∧ b2 6= 0)

(b ≥ 0 ∧ p1 ≥ 0 ∧ b1 6 0 ∧ 6 0) = a < 0 ∧ p3 ≤ 0 ∧ p2 ≤ 0 ∧ b2 =
(b ≥ 0 ∧ p1 ≥ 0 ∧ b1 < 0 ∧ a > 0 ∧ p3 ≤ 0 ∧ p2 ≤ 0 ∧ b2 > 0)

Moreover, it turns that the the 3 un-evaluated recursive calls
are of the form LazyRealTriangularize([p = 0, f = 0, x − b >

0]), for p ∈ B. Continuing with that example, one can check
that the full triangular decomposition of sys produces 16
and 9 regular semi-algebraic systems, without and with re­
laxation techniques, respectively. Therefore, relaxation tech­
niques can help simplify the output of our algorithms.

Nevertheless, even with relaxation techniques, our algorithms
can produce redundant components, that is, a regular semi-
algebraic system S for which there exists another regular
semi-algebraic system S ′ in the same decomposition and
such that ZR(S) ⊆ ZR(S

′) holds. This is actually the case
for our example where 1 out of the 9 regular semi-algebraic
systems is redundant.

To perform inclusion test on the zero sets of regular semi-
algebraic systems, we have developed algorithms for set-
theoretical operations on semi-algebraic sets represented by
triangular decomposition, see §7. Those algorithms rely on
a new algorithm, presented in §6, for computing triangular
decomposition of semi-algebraic systems in an incremental
manner, which is a natural adaption of the idea presented
in [11] for computing triangular decomposition of algebraic
systems incrementally.

The experimentation illustrates the effectiveness of the dif­
ferent techniques presented in this paper. In particular, we
observe that with relaxation, the decomposition algorithm
will produce output with less redundancy without paying a
lot, and accelerate on some hard systems; the incremental
algorithm for computing triangular decomposition of semi-
algebraic systems often outperforms the one in [3]. More­
over, we observe that our techniques for removing redundant
components can usually process in a “reasonable” amount
time the output of the systems that RealTriangularize can
decompose.

2. TRIANGULAR DECOMPOSITION

We summarize below the notions and notations of [3], includ­
ing triangular decompositions of semi-algebraic systems.

Zero sets and topology. In this paper, we use “Z” to denote
the zero set of a polynomial system, involving equations and
inequations, in Cn and “ZR” to denote the zero set of a semi-
algebraic system in Rn . If a semi-algebraic set S is finite, we
denote by #(S) the number of distinct points in it. In Rn ,
we use the Euclidean topology; in Cn, we use the Zariski
topology. Given a semi-algebraic set S, we denote by ∂ S

the boundary of S, by S the closure of S.

Notations on polynomials. Throughout this paper, all poly­
nomials are in Q[x], with ordered variables x = x1 < · · · <

xn. We order monomials of Q[x] by the lexicographical or­
dering induced by x1 < · · · < xn. Then, we require that the
leading coefficient of every polynomial in a regular chain or
in a border polynomial set (defined hereafter) is equal to 1.
Let F ⊂ Q[x]. We denote by V (F) the set of common zeros
of F in Cn . Let p be a polynomial in Q[x] \Q. Then denote
by mvar(p), init(p), and mdeg(p) respectively the greatest
variable appearing in p (called the main variable of p), the
leading coefficient of p w.r.t. mvar(p) (called the initial of p),
and the degree of p w.r.t. mvar(p) (called the main degree
of p). Let v ∈ x. Denote by lc(p, v), deg(p, v), der(p, v),
discrim(p, v) respectively the leading coefficient, the degree,
the derivative and the discriminant of p w.r.t. v.

Triangular set. Let T ⊂ Q[x] be a triangular set, that is, a
set of non-constant polynomials with pairwise distinct main
variables. Denote by mvar(T) the set of main variables of
the polynomials in T . A variable v in x is called algebraic
w.r.t. T if v ∈ mvar(T), otherwise it is said free w.r.t. T .
If no confusion is possible, we shall always denote by u =
u1, . . . , ud and y = y1, . . . , ym (m + d = n) respectively the
free and the main variables of T . When T is regarded as a
parametric system, the free variables in T are its parameters.

Let hT be the product of the initials of the polynomials
in T . We denote by sat(T) the saturated ideal of T : if T
is the empty triangular set, then sat(T) is defined as the
trivial ideal �0�, otherwise it is the colon ideal �T � : h∞ .T

The quasi-component W (T) of T is defined as V (T)\V (hT).

Denote by W (T) the Zariski closure of W (T), which is equal
to V (sat(T)). Denote by WR(T) the set ZR(T) \ ZR(hT).

Iterated resultant. Let p, q ∈ Q[x] \ Q. Let v = mvar(q).
Denote by res(p, q, v) the resultant of p, q w.r.t. v. Let
T ⊂ Q[x] be a triangular set. We define res(p, T) induc­
tively: if T is empty, then res(p, T) = p; otherwise let
v be the largest variable occurring in T , then res(p, T) =
res(res(p, Tv , v), T<v), where Tv and T<v denote respectively
the polynomials of T with main variables equal to and less
than v.

Regular chain. A triangular set T ⊂ Q[x] is called a regular
chain if: either T is empty; or (letting t be the polynomial
in T with maximum main variable), T \ {t} is a regular
chain, and the initial of t is regular w.r.t. sat(T \ {t}). Let
H ⊂ Q[x]. The pair [T,H] is a regular system if each poly­
nomial in H is regular modulo sat(T). A regular chain T or
a regular system [T,H], is squarefree if for all t ∈ T , der(t) is

regular w.r.t. sat(T). Given u ∈ Rd , we say that a squarefree
regular system [T,H] specializes well at u if hT (u) � 0 and=
[T (u),H(u)] is a squarefree regular system. A regular chain
is called d-dimensional if it has d free variables.

Semi-algebraic system. Consider four finite polynomial sets
F = {f1, . . . , fs}, N = {n1 , . . . , nk }, P = {p1, . . . , pe}, and
H = {h1, . . . , hℓ} of Q[x]. Let N≥ denote the set of non­
negative inequalities {n1 ≥ 0, . . . , nk ≥ 0}. Let P> denote
the set of positive inequalities {p1 > 0, . . . , pe > 0}. Let
H � denote the set of inequations {h1 = � 0}.= � 0, . . . , hℓ = We
denote by S = [F,N≥, P>,H �] the semi-algebraic system=

(SAS) defined as the conjunction of the constraints f1 =
· · · fs = 0, N≥, P>, H �=. When N≥, H � are empty, S is=

called a basic semi-algebraic system and denoted by [F, P>].

Regular semi-algebraic system. We call a basic SAS [T, P>]
in Q[u, y] a squarefree semi-algebraic system, SFSAS for
short, if [T, P] forms a squarefree regular system. Let [T, P>]
be an SFSAS. Let Q be a quantifier-free formula of Q[u]. We
say that R := [Q, T, P>] is a regular semi-algebraic system if

(i) Q defines a non-empty open semi-algebraic set S in Rd;
(ii) [T, P] specializes well at every point of S,
(iii) at each u ∈ S, the specialized system [T (u), P (u)>]

has at least one real zero.

Border polynomial [15, 16, 3]. We review briefly the notion
of border polynomial of a regular chain, a regular system, or
an SFSAS. Let R be either a squarefree regular chain T , or
a squarefree regular system [T, P], or an SFSAS [T, P>] in
Q[x]. We denote by Bsep(T), Bini(T), Bineqs([T, P]) the set
of irreducible factors of:

�
t∈T res(discrim(t,mvar(t)), T),

�
t∈T

and
�

f ∈P res(f, T), respectively. Denote by BP(R) the set

Bsep(T) ∪ Bini(T) ∪Bineqs ([T, P]). Then BP(R) (resp. the
polynomial

�
f ∈BP(R) f) is called the border polynomial set

(resp. border polynomial) of R.

Lemma 1 (Lemma 2 in [3]). Let R = [T, P>] be an SF­
SAS of Q[x]. Let u1, u2 be two parameter values in a same
connected component of ZR(

�
f ∈BP(R) f �= 0) in Rd . Then

#ZR(R(u1)) = #ZR(R(u2)).

Fingerprint polynomial set. R = [B� , T, P>] is called a=

pre-regular semi-algebraic system, if for each p ∈ BP([T, P>]),
p is a factor of some polynomial in B. Suppose R is a pre-
regular semi-algebraic system. A polynomial set D ⊂ Q[u]
is called a fingerprint polynomial set (FPS) of R if:

(i) ZR(D=�) ⊆ ZR(B=�) holds,
(ii) for all α, β ∈ �) with α � β, if the signs of p(α)ZR(D= =

and p(β) are the same for all p ∈ D, then R(α) has
real solutions if and only if R(β) does.

Open CAD operator [12, 2, 3]. Let u = u1 < · · · < ud

be ordered variables. For a polynomial p ∈ Q[u], denote by
factor(p) the set of the non-constant irreducible factors of
p; for A ⊂ Q[u], define factor(A) = ∪p∈A factor(p). For a
squarefree polynomial p, the open projection operator (oproj)
w.r.t. a variable v ∈ u is defined as below:

oproj(p, v) := factor(discrim(p, v) lc(p, v)).

∗ If p is not squarefree, then we define oproj(p, v) := oproj(p , v),
∗ where p is the squarefree part of p; then for a polynomial

set A, we define oproj(A, v) := oproj(Πf ∈A f, v).

Given A ⊂ Q[u] and x ∈ {u1, . . . , ud}, denote by der(A, x)
the derivative closure of A w.r.t. x. The open augmented
projected factors of A, denoted by oaf(A), is defined as
follows. Let k be the smallest positive integer such that
A ⊂ Q[u1, . . . , uk] holds. Let C = factor(der(A, uk)); we
have:

1. if k = 1, then oaf(A) := C;
2. if k > 1, then oaf(A) := C ∪ oaf(oproj(C, uk)).

3. BORDER POLYNOMIAL
The relation “having the same saturated ideal” is an equiva­
lence relation among regular chains of Q[x]. We show in this
section that, for each equivalence class, there exists a unique
representative whose border polynomial set is contained in
the border polynomial set of any other representative.

To this end, we rely on the concept of canonical regular
chain. In the field of triangular decompositions, several au­
thors have used this term to refer to different notions. To
be precise, we make use of the one defined in [13].

Definition 1 (canonical regular chain). Let T be
a regular chain of Q[x]. If each polynomial t of T satisfies:

1. the initial of t involves only the free variables of T ,
2. for any polynomial f ∈ T with mvar(f) < mvar(t), we

have deg(t,mvar(f)) < mdeg(f),
res(init(tt), T),3. is primitive over Q, w.r.t. its main variable,

then we say that T is canonical.

Remark 1. Let T = {t1, · · · , tm} be a regular chain; let
dk = mdeg(tk), for k = 1 · · · m. One constructs a canon­

∗ ∗ ∗ ∗ ical regular chain T = {t1 , t2 , . . . , tm} such that sat(T) =
∗ sat(T) in the following way:

∗ 1. set t1 to be the primitive part of t1 w.r.t. y1;
2. for k = 2, . . . , m, let rk be the iterated resultant

res(init(tk), {t1, . . . , tk−1}). Suppose rk = ak init(tk)+ �k−1
citi. Compute t as the pseudo-reminder of aktk+i=1

(
�k−1

citi)y
dk by {t ∗ 1 , . . . , t

∗
k−1}. Set t

∗
k to be the prim­

i=1 k

itive part of t w.r.t. yk.

A canonical regular chain has the minimal border polyno­
mial set among the family of regular chains having the same
saturated ideal, which is stated in the following theorem.

Theorem 1. Given a squarefree regular chains T of Q[x],
∗ there exists a unique canonical regular chain T such that

sat(T) = sat(T ∗). Moreover, we have BP(T ∗) ⊆ BP(T).

The proof of the above theorem relies on some basic prop­
erties of border polynomial set recalled below.

Given a constructible set C defined by a parametric poly­
nomial system, the minimal discriminant variety (MDV) [9]

of C, denoted by mdv(C), is an intrinsic geometric object
attached to C and the parameters. The following results re­
late the border polynomial of a regular chains T and the
discriminant variety of the algebraic variety V (T).

Lemma 2 ([14]). Let T be a squarefree regular chain of
Q[u, y]. Then we have mdv(V (T)) = V (

�
f ∈BP(T) f).

Lemma 3 ([14, Lemma 17]). Let T be a squarefree reg­
ular chain of Q[u, y]. Then we have mdv(W (T)) ⊆ mdv(V (T))

and mdv(V (T)) \mdv(W (T)) ⊆ V (
�

f).
f ∈Bini(T)

Lemma 4. Let T1 and T2 be squarefree regular chains of
Q[x] such that sat(T1) = sat(T2). If Bini(T1) ⊆ Bini(T2),
then we have BP(T1) ⊆ BP(T2).

Proof. Firstly, we have V (
�

f) ⊆ mdv(V (Ti)) f ∈Bini(Ti)

by Lemma 2. Then with Lemma 3, we have mdv(V (Ti)) =

V (
�

f) ∪ mdv(W (Ti)). Since sat(T1) = sat(T2), f ∈Bini(Ti)

we have W (T1) = W (T2). Therefore we have mdv(V (T2)) ⊆
mdv(V (T1)) by the assumption Bini(T1) ⊆ Bini(T2), which
implies the lemma.

Next we prove Theorem 1.

Proof. By Remark 1, we can always construct a canoni­
∗ ∗ cal regular chain T such that sat(T) = sat(T). Moreover,

∗ for each t ∈ T , we have init(t) divides res(init(t), T). There­
∗ ∗ fore, Bini(T) ⊆ Bini(T) holds, which implies BP(T) ⊆

BP(T) by Lemma 4.

Suppose T ⋄ is any given canonical regular chain such that
sat(T ⋄) = sat(T) holds. It is sufficient to show that T ∗ = T ⋄

holds to complete the proof.

Note that T ⋄ , T ∗ and T have the same set of free and al­
gebraic variables, denoted respectively by u and y. Given
I an ideal in Q[u, y], denote by Iext the extension of I in
Q(u)[y]. Since p ext = �1� holds for any prime ideal p in
Q[u, y] with u algebraically dependent, we have �T ∗ �ext =
�T ⋄�ext = sat(T)ext holds. Therefore, the polynomials in T ∗

(or T ⋄) form a Gröbner basis of sat(T)ext (w.r.t. the lexico­
graphical ordering on y) since their leading power products

∗ are pairwise coprime. Dividing each polynomial in T (or
T ⋄) by its initial, we obtain the unique reduced Gröbner
basis of sat(T)ext . This implies T ∗ = T ⋄ .

4. EFFECTIVE BOUNDARY AND FPS
In this subsection, we will focus on an SFSAS S = [T, P>]
in Q[u, y] where u = u1, . . . , ud are the free variables of T .

Definition 2 (Effective boundary). Let h be a (d−
1)-dimensional hypersurface in the parameter space Rd of S.
We call h an effective boundary of S if for every hypersur­
face H �⊇ h in Rd, there exists a point u ∗ in h\H satisfying:

∗ ∗ for any open ball O(u) of u , there exist two points α1,
∗ α2 ∈ O(u) \ h, s.t. #ZR(S(α1)) =� #ZR(S(α2)). Denote

by E(S) the union of all effective boundaries of S.

Recall that the hypersurface defined by the border polyno­
mial of an SFSAS partitions the parametric space into re­
gions, where the number of real solutions is locally invariant.
One might imagine that the effective boundaries are strongly
related to the border polynomial set. Indeed, we have the
following Lemma stating the relation.

Lemma 5. We have E(S) ⊆ ZR(
�

f ∈BP(S) f = 0).

Proof. Let h ∈ E(S) such that h �⊆ ZR(
�

f ∈BP(S) f =

0) holds. Then for each u ∈ h \ ZR(
�

f ∈BP(S) f = 0), we

can choose an open ball O(u) of u contained in a connected
component of the set ZR(

�
f ∈B f � 0). By Lemma 1, for =

any two points α1, α2 ∈ O(u), #ZR(S(α1)) = #ZR(S(α2))
holds. That is a contradiction to the assumption of h being
an effective boundary.

Lemma 5 implies that the set of effective boundaries repre­
sented by irreducible polynomials of Q[u] is finite and can
be given by polynomials from the border polynomial set.

Definition 3. A polynomial p in BP(S) is called an ef­
fective border polynomial factor if ZR(p = 0) is an effective
boundary of S. We denote by ebf(S) the set of effective
border polynomial factors.

The example below shows that some of the polynomials in a
border polynomial may not be effective. Roughly speaking,
the factors in Bini are not effective. This property is formally
stated in a soon coming extended version of this article.

Example 1. Consider an SFSAS R = [{ax 2+bx+1}, { }].
Its border polynomial set is {a, b2 −4a}. One can verify from
Figure 1 that ZR(b

2 − 4a = 0) is an effective boundary of R,
while ZR(a = 0) is not. Indeed, all a, b-values in the blank
(resp, filled) area specialize R to have 2 (resp. 0) real solu­
tions.

Figure 1: Effective and non-effective boundary

Since E(S) can be described by border polynomial factors,
we derive the following theorem, which can be viewed as a
“computable-version” of Definition 2.

Theorem 2. A polynomial p in BP(S) is an effective bor­
der polynomial factor if and only if there exist two connected
components C1, C2 of ZR(

�
f ∈BP(S) f � 0) satisfying =

(1) ∂ C1 ∩ ∂ C2 ∩ ZR(p = 0) is of dimension d− 1,
(2) for all point α1 ∈ C1 and for all point α2 ∈ C2 we have

#ZR(S(α1)) � #ZR(S(α2)).=

Proof. “⇒”. Suppose p is an effective border polynomial
∗ factor. By definition, there exists a point u ∈ ZR(p =

0) \ ZR(
�

f ∈BP(S)\{p} f = 0) and a sufficiently small open

ball O(u ∗) centered at u ∗ satisfying the properties below:

∗ (i) O(u = 0) ⊆ ZR(
�

f ∈BP(S) f � 0);) \ ZR(p =

(ii) O(u ∗) ∩ ZR(
�

f ∈ebf(S) f = 0) ⊆ ZR(p = 0);

(iii) there exist two points α1, α2 in O(u ∗)\ZR(p = 0), such
that we have #ZR(S(α1)) � #ZR(S(α2)); =

∗ ∗ ∗ (iv) O(u) \ ZR(p = 0) = O(u) ∩ C1 ∪· O(u) ∩ C2, where
Ci is the connected component of ZR(

�
f ∈BP(S) f �= 0)

containing αi, for i = 1, 2.

Property (iv) can be achieved by imposing that ZR(p = 0) is
∗ not singular at u . Property (iii) and Lemma 1 imply that

∗ ∗ O(u) \ ZR(p = 0) is not a connected set. Since O(u) is an
∗ open ball, we deduce that O(u) ∩ ZR(p = 0) must be d− 1

dimensional. Then Property (iv) implies O(u ∗) ∩ ZR(p =

0) = O(u ∗) ∩ C1 ∩O(u ∗) ∩ C2. and O(u ∗) ∩ Ci = O(u ∗)∩Ci

for i = 1, 2. Therefore, we have: O(u ∗) ∩ ZR(p = 0) ⊆
(∂ C1 ∩ ∂ C2) ∩ ZR(p = 0). Hence (∂ C1 ∩ ∂ C2) ∩ ZR(p = 0)
is also of dimension d− 1.

“⇐”. Suppose there exist two connected components C1, C2

of ZR(
�

f ∈BP(S) f �= 0) satisfying the above (1) and (2) in

the theorem statement. Let H be a hypersurface with H �⊇
ZR(p = 0). Since the dimension of (H∪ZR(

�
f ∈BP(S)\{p} f =

0)) ∩ ZR(p = 0) cannot be d− 1, the set S defined by
 

(∂ C1 ∩ ∂ C2 ∩ ZR(p = 0)) \H ∪ ZR(
�

f = 0) 
f ∈BP(S)\{p}

is not empty. Let u ∗ be a point of S. Any open ball O(u ∗)
∗ centered at u contains at least one point α1 (resp. α2)

from C1 (resp. C2). From (2) we deduce #ZR(S(α1)) =�
#ZR(S(α2)). That is, ZR(p = 0) is an effective boundary
according to Definition 2.

The above theorem suggests some practical ways to compute
the effective border polynomial factors, using the adjacency
information and sample points of the connected components
of ZR(

�
f ∈BP(S) � 0). =

Corollary 1. If two points α1, α2 ∈ ZR(
�

f ∈BP(S) f �=

0) are in the same connected component of the complement
of E(S), then #ZR(S(α1)) = #ZR(S(α2)) holds.

Proof. Let C be a connected component of the com­
plement of E(S). Observe that C \ ZR(

�
f ∈BP(S) f = 0)

is the union of a finite set O of connected components of
ZR(

�
f ∈BP(S) f �= 0). Indeed, E(S) ⊆ ZR(

�
f ∈BP(S) f =

0) holds by Lemma 5. If O contains only one element, the
conclusion is trivially true.

Assume from now that O contains more than one elements.
We can number the elements of O such that for any two el­
ements with consecutive numbers, say Ci, Ci+1, the dimen­
sion of ∂ Ci ∩ ∂ Ci+1 is d − 1. Proceeding by contradiction,
assume that the conclusion of the corollary is false. Thus,
there exist two consecutive elements of O, say Ci, Ci+1, and
two points αi ∈ Ci, αi+1 ∈ Ci+1, such that #ZR(S(αi)) �=
#ZR(S(αi+1)) holds. Since C lies in the complement of
E(S), there exists a non-effective border polynomial factor
p such that ∂ Ci ∩ ∂ Ci+1 ⊆ ZR(p = 0) holds. However, this
also implies that p is an effective border polynomial factor
by Theorem 2, which is a contradiction.

Given a pre-regular system R = [B� , T, P>], we can rely on =

ebf([T, P>]) to compute an FPS of R rather than B (which
is often much larger than ebf([T, P>])).

Theorem 3. Given a pre-regular system R = [B� , T, P>],=

let D = oaf(ebf([T, P>])). Then D ∪ B is an FPS of R.

Proof. By Theorem 3 in [3] on the property of the oaf
operator, each realizable strict sign conditions on D defines
a connected components of ZR(

�
f ∈D f �= 0). Therefore,

for any two points α1, α2 ∈ ZR(
�

f ∈B f �= 0) satisfying the

same realizable sign condition of D, we have #ZR(R(α1)) =
#ZR(R(α2)) by Corollary 1. Hence D ∪ B is an FPS of R

by definition.

Theorem 4. Given two SFSASes R1 = [T1, P>] and R2 =
[T2, P>] with sat(T1) = sat(T2), then E(R1) = E(R2) holds.

Proof. Let B = BP(R1)∪BP(R2) and let h be an effec­
tive boundary of R1 defined by a polynomial p in BP(R1).
Let H �⊇ h be any hypersurface and denote by S the set h \�
ZR(

�
f ∈B\{p} f = 0) ∪ H

�
. Observe that S is not empty.

∗ We can find a point u ∈ S satisfying: for any open ball
∗ ∗ ∗ O(u) centered at u , there exist two points α1, α2 ∈ O(u)\

h, such that #ZR(R1(α1)) � #ZR(R1(α2))= holds.

Since sat(T1) = sat(T2) holds, for all u ∈ ZR(
�

f ∈B f �= 0),

we have ZR(R1(u)) = ZR(R2(u)). When an open ball O at
∗ u is sufficiently small, O ∩ ZR(

�
f ∈B\p f = 0) = ∅ holds.

Therefore, ZR(R1(u)) = ZR(R2(u)) holds for any u ∈ O \ h.

From the above arguments and Definition 2, we deduce that
h is also an effective boundary of R2. This shows E(R1) ⊆
E(R2). Similarly E(R1) ⊇ E(R2) can be proved.

Let R = [T, P>], Ri = [Ti, P>] (i = 1, 2) be three SF-
SASes with sat(T) = sat(T1) ∩ sat(T2). One can prove that
E(R) ⊆ E(R1) ∪ E(R2) holds. Moreover, one can prove that
ebf(R1) ∩ ebf(R2) = ∅ implies E(R) = E(R1)∪E(R2). These
results and their proofs will appear in an extended version
of this article.

L

Table 1 The timing and number of components in the output of different algorithms
RTD|re−relax RTD|re+relax RTD|inc−relax RTD|inc+relax

sys
RTD RR RTD RR RTD RR RTD RR

8-3-config-Li
dgp6

Leykin-1

Mehta0
EdgeSquare
Enneper
IBVP
MPV89
SEIT

Solotareff-4b
Xia

Lanconelli
MacLane
MontesS12
MontesS14
Pappus
Wang168

xia-issac07-1

418.6 203
65.17 20

4.9 28
14.9 69
1294 21
247.7 116

6.1 18
14.1 8
2.7 6
NA NA

3223 3
223.7 12

1.1 7
17.4 79

197.8 163
3.4 23

750.5 409
7.0 16
2.7 13

1727 45
17.44 15
20.1 18
94.3	 20
NA NA
NA NA
12.4	 13
NA NA
84.1	 6
NA NA

229.0	 3
NA NA
2.4 6

240.5 28
346.5 62
14.1 13
NA NA
8.4 10
NA NA

410.6 203
64.37 20

4.9 28
14.9 69

713.6 15
725.3 91

5.4 13
16.8 4
2.4 5

1411 1
3222 3
224.8 10

1.1 7
17.3 79

197.4 163
3.4 23

748.2 409
7.1 16
4.4 11

1688 45 30.5 47 129.5 47 30.4 47 129.1 47
17.59 15 47.73 19 22.38 17 47.43 19 22.24 17
20.8 18 6.5 19 13.9 19 6.5 19 14.0 19
96.9 20 2.6 19 11.7 19 2.6 19 11.7 19
NA NA 1558 20 NA NA 998.9 15 NA NA
NA NA 116.8 43 NA NA 629.4 33 NA NA
11.0 12 4.9 17 12.7 12 4.9 12 10.1 11
NA NA 2.5 8 NA NA 7.6 4 NA NA
53.1 5 2.1 7 73.4 6 2.1 6 53.4 5
0.00 1 NA NA NA NA NA NA NA NA

228.4 3 3424 3 230.0 3 3424 3 228.4 3
NA NA 21.4 9 NA NA 20.5 8 NA NA
2.4 6 1.0 7 2.2 6 1.0 7 2.2 6

239.5 28 5.8 27 35.8 27 5.8 27 35.6 27
344.7 62 49.9 85 413.9 61 49.7 85 433.8 61
14.1 13 2.8 15 11.0 13 2.9 15 11.1 13
NA NA 29.1 119 1127.6 119 29.0 119 1125 119
8.4 10 3.4 11 5.6 10 3.5 11 5.6 10
NA NA 2.2 12 NA NA 4.2 10 NA NA

5. RELAXATION TECHNIQUES
Given a pre-regular semi-algebraic system R = [B� , T, P>]=

as input, the algorithm GenerateRegularSas in [3] generates
an FPS F ⊇ B of R and a regular semi-algebraic system
[Q, T, P>] such that ZR(F �) ∩ ZR(R) = ZR([Q, T, P>]). De­=

note by B ∗ the polynomial set oaf(B), which is proved to be
an FPS of R by Theorem 4 in [3]. The notations R, B, T ,
P , F, B ∗ will be fixed in this section.

Note that if F = B, then we have ZR(R) = ZR([Q, T, P>];
otherwise, for each b ∈ F\B, we have to compute recursively
a triangular decomposition of [T ∪{b}, { }, P>, B�] to obtain =

a complete triangular decomposition of R. There are two
directions to reduce the number of such recursive calls, which
will help to produce output with less redundancy:

(i) minimize the number of polynomials in F, where the
effective boundary theory in Section 4 can help;

(ii) relax some polynomials in F \ B such that there is
no need to make recursive calls for those polynomials,
which we will discuss in this section.

The following notions of sign condition and relaxation appear
in [1] in a more general setting. We adapt them to our
study of regular semi-algebraic systems. Throughout this
subsection, we consider a finite set F ⊂ Q[x] of coprime
polynomials.

Definition 4. We call any semi-algebraic system of the
form

�
f σf 0,	 (1)

f ∈F

where σf is one of >,<,≥, ≤, a sign condition on F , or
an F -sign condition. An F -sign condition is called strict if
every σf involved belongs to {>,<}. An F -sign condition C
is called realizable if C has at least one real solution.

Definition 5 (Relaxation of sign condition). For
an F -sign condition C given as in (1) and a subset E of F ,

the (partial) relaxation of C w.r.t. E, denoted by C�E , is

defined by


≤, if p ∈ E and σp is <, �
p σ�p 0 where σ�p =


≥, if p ∈ E and σp is >,

p∈F
otherwise.

σp,

Let Q = ∨i
e
=1Ci be a quantifier free formula, where each

Ci is an F -sign condition. The relaxation of Q w.r.t. E,
E

denoted by Q�E , is defined as ∨i
e
=1 C�i . If E contains only

one polynomial h, then we also denote the relaxation by Q�h .

Let us fix the following notations as well in the rest of this
section. Let D ⊆ Q[u] such that B ⊆ D ⊆ F. Let Qi

(i = 0, 1) be a quantifier free formula in disjunctive form such
that each conjunction clause C of it is in the following form:
C = ∧f ∈F f σf 0, where σf ∈ {>,<} if f ∈ D and σf ∈
{≥, ≤} if f ∈ F \D. Moreover, assume that for any u such
that D(u) � 0, R(u) has (resp. has no) real solutions if and =
only if Q1(u) (resp. Q0(u)) is true. Let h be a polynomial
in D \ B. Denote by Dh the set D \ {h}. Denote by ∂i

(i = 0, 1) the boundary of the set ZR(Qi). Denote by Gi
h

(i = Qi)∩ ZR(Qi). Let Si (i =0, 1) the set ZR(�	 0, 1) be the
h

semi-algebraic set such that ZR(�) = Gi∪Si, where the Qi ·
symbol ∪· denotes disjoint union.

The following Theorem states an criterion for relaxation.

Theorem 5. The following two statements are equiva­
lent:

h h
(i) ZR(Q�1) ∩ ZR(Q�0) = ∅,
(ii) for any u ∈ ZR(D�

h), R(u) has real solutions if and =
h

only if Q�1 (u) is true; R(u) has no real solutions if
h

and only if Q�0 (u) is true.

Before providing the proof, we supply several lemmas on the
properties of the objects we defined.

Lemma 6. ZR(Q0) and ZR(Q1) are both open sets.

Proof.	 On one hand, ZR(D�) = ZR(Q0)∪·ZR(Q1). On =

the other hand, there exists a finite set of connected open
sets, O = {C1, . . . , Ce}, such that ZR(D�=) = ∪e

i=1Ci holds.
By Lemma 1, for each Ci ∈ O, either Ci ⊆ ZR(Q0) or Ci ⊆
ZR(Q1) holds. Therefore, both ZR(Q0) and ZR(Q1) are a
union of finitely many elements of O and thus are open.

Lemma 7. For any u ∈ ZR(Q0) ∩ ZR(B=�), R(u) has no

real solutions; for any u ∈ ZR(Q1) ∩ ZR(B�), R(u) has real =

solutions.

Proof. Suppose u is in ZR(Q0) ∩ ZR(B�=). There ex­
ists a connected component C of ZR(Q0) and a connected

′	 ′ component C of ZR(B�=) such that u ∈ C ∩ ZR(B�=) ⊆ C
′ holds. Since C ⊆ ZR(Q0) ⊆ ZR(B=�), we have C ⊆ C . Since

′ the number of real solutions of R is constant above C (by
Lemma 1) and R has no real solutions above C, we conclude
that R(u) has no real solutions. The other part of the lemma
can be proved similarly.

h
Note that Gi = Qi ZR(B=�) ∩ ZR(Qi) (i =ZR(�) ∩ ZR(Qi) ⊆
0, 1) holds. We have the following proposition as a direct
consequence of Lemma 7.

Proposition 1. For any u ∈ G0, R(u) has no real solu­
tions; for any u ∈ G1, R(u) has real solutions.

Lemma 8. The following relations hold: (i) ∂0 ∪ ∂1 =
ZR(

�
f ∈D f); (ii) ∂0 ∩ ∂1 ⊆ ZR(

�
f ∈B f).

Proof. By Lemma 6, both ZR(Q0) and ZR(Q1) are open
sets. We have ∂0 ∪ ∂1 = ∂(ZR(Q0)∪ZR(Q1)), since ZR(Q0)∩
ZR(Q1) = ∅ holds. Therefore, we have

∂0 ∪ ∂1	 = ZR(Q0) ∪ ZR(Q1) \ (ZR(Q0) ∪ ZR(Q1))

= ZR(D=�) \ (ZR(D=�))
= ZR(

�
f ∈D f).

By Lemma 7, ZR(Q0) ∩ ZR(B�=) and ZR(Q1) ∩ ZR(B�) has =

no intersection. Therefore ZR(Q0) ∩ ZR(Q1) ∩ ZR(B�) = ∅.=

Then the conclusion follows by ∂i ⊆ ZR(Qi) (i = 0, 1).

Lemma	 9. The following relations hold: (a) for (i = 0, 1),
h h h

ZR(Qi) ∩ ZR(D�
h) ⊆ ZR(�); (b) ZR(�) ∪ ZR(�) = = Qi Q0 Q1

ZR(D�
h).=

D
Proof.	 Since ZR(Q�i) is a closed set, we have ZR(Qi) ⊆

D
ZR(�). Therefore, we have Qi

D h
ZR(D

h) ∩ ZR(Qi) ⊆ h) ∩ ZR(�) Qi� ZR(D� Qi = ZR(�).=	 =

h
By (a), we have ZR(D�

h	 ⊆ ∪i=0,1ZR(�), =)∩ (∪i=0,1ZR(Qi)) Qi
h h

which implies that ZR(D
h)). And �=) ⊆ ZR(Q�0 ∪ ZR(Q�1

h h
ZR(Q�0) ∪ ZR(Q�1) ⊆ ZR(D�

h) holds since all polynomials =

in Dh remain strict after relaxing h.

Proposition 2. For i = 0, 1, we have Si ⊆ ZR(h =
h

0) ∩ ZR(Q�i) holds.

h	 h
Proof. Recall that Gi = Qi) ∩ ZR(Qi), Qi) =ZR(� ZR(�

h
Gi ∪· Si. Therefore, we have ZR(Qi) ⊆ Gi and Si = Qi)\ZR(�

h
Gi ⊆ ZR(�) \ ZR(Qi) = 0) hold. Hence, we de-Qi ⊆ ZR(h

h
duce that Si ⊆ ZR(h 0) ∩ ZR(�) holds. = Qi

Lemma	 10. Both S1 ⊆ G0 and S0 ⊆ G1 hold.

Proof. By Lemma 8, we have ∂0 ∪ ∂1 = ZR(
�

f ∈D f =

0). Since h ∈ D, we have ZR(h = 0) ⊆ ∂0 ∪ ∂1, which
implies ZR(h = 0) can be rewriten as

ZR(h = 0) ∩ ((∂0 \ ∂1)∪· (∂1 \ ∂0)∪· (∂0 ∩ ∂1)).

By Lemma 8, we have ∂0 ∩ ∂1 ⊆ ZR(
�

f ∈B f = 0), which

implies that ZR(D�
h) ∩ ∂0 ∩ ∂1 = ∅. Let Sh be ZR(h = =

0) ∩ ZR(D�
h). Then Sh can be rewriten as (ZR(h = 0) ∩=

ZR(D
h ·�=) ∩ (∂0 \ ∂1)) ∪ (ZR(h = 0) ∩ ZR(D�=

h) ∩ (∂1 \ ∂0)).

Intersecting both sides of relation (a) of Lemma 9 with ZR(Qi),

we obtain ZR(D
h)∩ZR(Qi) ⊆ Gi, which implies that ZR(D

h)∩�=	 �=

∂i ⊆ Gi. Therefore, Sh ⊆ G0 ∪G1 holds.

h	 h
Since ZR(�) ⊆ ZR(D

h), we have = 0) ∩ ZR(�) ⊆Qi � ZR(h= Qi
h

Sh. By Proposition 2, we have Si ⊆ ZR(h = 0) ∩ ZR(Q�i).
Therefore, Si ⊆ Sh holds.

We then deduce the conclusion by combining the facts Si ∩
Gi = ∅, Si ⊆ Sh, and Sh ⊆ G0 ∪G1.

h h
Corollary 2. We have ZR(Q�1) ∩ ZR(Q�0) = S0∪· S1.

h h
Proof. We can rewrite ZR(Q�1) ∩ ZR(Q�0) as the dis­

joint union (S1 ∩ G0)∪· (S0 ∩ G1)∪· (S1 ∩ S0)∪· (G0 ∩ G1). By
Proposition 1, G0 ∩ G1 = ∅. Together with Lemma 10, we

h h
have ZR(Q�1) ∩ ZR(Q�0) = S0∪· S1.

Next, we complete the proof for Theorem 5.

h h
Proof. By Lemma 9, ZR(Q�0) ∪ ZR(Q�1) = ZR(D�

h). =

(i) ⇒ (ii). By Corollary 2, we have S0 = S1 = ∅ and
h

Qi) = Gi (i = 0, 1). Then the conclusion follows from
Proposition 1.
ZR(�

(ii) ⇒ (i). We prove by contradiction. Assume (i) does not
h

ZR(D
hhold. There exists u ∈ �=), such that both Q�0 (u) and

h
Q�1 (u) are true. This is a contradiction to (ii).

We have the following remarks on relaxation once (i) of The­
orem 5 is checked to be true.

h
• One can verify that, � (i 0, 1) and Dh have the Qi =

same configuration as that we assumed on Qi (i = 0, 1)
h

and D. So ZR(Q�1) is still open by Lemma 6.
• If [Q1, T, P>] is a regular semi-algebraic system, then

h
so is [Q�1 , T, P>].

6. INCREMENTAL DECOMPOSITION
In this section, we present algorithms to compute a full tri­
angular decomposition of a semi-algebraic system in an in­
cremental manner, which serves as a counterpart of the re­
cursive algorithm in our previous paper [3]. Given a semi-
algebraic system S := [F,N≥, P>,H �], the incremental de­=

composition is realized by passing the empty regular chain
∅ and S to Algorithm 1, whose incrementality is mainly due
to its subroutine Triangularize, which computes a Lazard tri­
angular decomposition by solving equations one by one [11].

External algorithms. We recall the specifications of the al­
gorithms BorderPolynomialSet and GenerateRegularSas, (see
[3]), Triangularize, Intersect, RegularOnly (see [11]). Border-
PolynomialSet computes the border polynomial set of a regu­
lar system, whereas GenerateRegularSas decomposes the zero
set of a pre-regular semi-algebraic system as a union of zero
sets of regular semi-algebraic systems. Let p be a polyno­
mial, F be a polynomial list, and T be a regular chain.
The algorithm Triangularize(F, T,mode = Lazard) computes
regular chains Ti, i = 1, . . . , e, such that V (F) ∩ W (T) ⊆

∪e
i=1W (Ti) ⊆ V (F)∩W (T). The algorithm Intersect(p, T) is

equivalent to Triangularize({p}, T, mode = Lazard). The al­
gorithm RegularOnly(T, F) computes regular chains Ti, i =
1, . . . , e, s.t. W (T) \ V (

�
h∈F h) = i=1W (Ti) \ V (

�
h∈F h)∪e

and every polynomial in F is regular modulo sat(Ti).

The proof of the termination and correctness of the algo­
rithms rely on standard arguments used in the proof of al­
gorithm PCTD in paper [4]. Limited to space, we will not
expand the proof here.

Algorithm 1: RealTriangularize(T, F,N≥, P>,H �)=

Input: a regular chain T and a semi-algebraic system
S = [F,N≥, P>,H �=]

Output: a set of regular semi-algebraic systems Ri,
i = 1 · · · e, such that WR(T) ∩ ZR(S) = ∪i

e
=1ZR(Ri).

T := Triangularize(F, T,mode = Lazard);
for C ∈ T do

output RealTriangularize(C,N≥, P>, H � ∪ init(T) �=); =

7. SET THEORETICAL OPERATIONS
In paper [3], we proved that every semi-algebraic set can be
represented by the union of zero sets of finitely many regular
semi-algebraic systems. It is natural to ask how to perform
set theoretical operations, such as union, intersection, com­
plement and difference of semi-algebraic sets based on such
a representation.

Note that each (regular) semi-algebraic system can also be
seen as a quantifier free formula. So one can implement the
set operations naively based on the algorithm RealTriangu­
larize and logic operations. However, an obvious drawback of

such an implementation is that it totally neglects the struc­
ture of a regular semi-algebraic system.

Indeed, if the structure of the computed object can be ex­
ploited, it is possible to obtain more efficient algorithms.
One good example of this is the Difference algorithm, which
computes the difference of zero sets of two regular systems,
presented in [6]. This algorithm exploits the structure of a
regular chain and outperforms the naive implementation by
several orders of magnitude.

Apart from the algebraic computations, the idea behind the
Difference algorithm of paper [6] is to compute the difference
(A1 ∩A2) \ (B1 ∩B2) in the following way:

(A1 ∩B1) ∩ (A2 \B2)

(A1 \ B1) ∩ A2.

Observe that if A1 ∩B1 = ∅, then the difference is (A1 ∩A2).
Moreover, computing ∩s

i=1Ai \ ∩t
i=1Bi (s, t ≥ 2) can be

reduced to the above base case.

In this section, we present algorithms (Algorithm 4 and 5)
which take advantage of the algorithm Difference (also an
algorithm Intersection derived from it) and the idea presented
above for computing the intersection and difference of semi-
algebraic sets represented by regular semi-algebraic systems.

Algorithm 2: RealTriangularize(T, N≥, P>,H �)=

Input: a regular chain T and a semi-algebraic system
S = [∅, N≥, P>,H �=]

Output: a set of regular semi-algebraic systems Ri,
i = 1, . . . , e, such that WR(T) ∩ ZR(S) = ∪e

i=1ZR(Ri).
H := init(T) ∪H ;
T := {[T, ∅]}; T ′ := ∅;
for p ∈ N do

′ ′ for [T , N] ∈ T do

T ′ := T ′ ∪ {[C,N ′] | C ∈ Intersect(p, T ′)};

T ′ := T ′ ∪ {[T ′ , N ′ ∪ {p}]}

T := T ′ ; T ′ := ∅;

T := {[T ′ , N ′ ∪ P,H] | [T ′ , N ′] ∈ T};
while T � ∅ do =

′ ′ ′ ′ let [T , P , H] ∈ T; T := T \ {[T , P , H]};
′ ′ for C ∈ RegularOnly(T , P ∪H) do

′ BP := BorderPolynomialSet(C, P ∪H);
′ (DP,R) = GenerateRegularSas(BP,C, P);

if R � ∅ then output R;=
′ for f ∈ DP \ (P ∪H) do

′ T := T ∪ {[D, P ,H] | D ∈ Intersect(f, C)};

Algorithm 3: RealTriangularize(T,Q)

Input: T , a regular chain; Q, a quantifier free formula

Output: a set of regular semi-algebraic systems Ri,

i = 1, . . . , e, such that WR(T) ∩ ZR(Q) = ∪e

i=1ZR(Ri).

for each conjunctive formula F ∧N≥ ∧ P> ∧H � do
=

output RealTriangularize(T, F,N≥, P>,H �); =

8. EXPERIMENTATION
In this section, we report on the experimental results of the
techniques presented in this paper. The systems were tested

Algorithm 4: DifferenceRsas(R,R ′)

Input: two regular semi-algebraic systems R = [Q, T, P>]
[Q ′ ′ ′ and R ′ = , T , P >]

Output: a set of regular semi-algebraic systems Ri,
i = 1, . . . , e, such that ZR(R) \ ZR(R ′) = ∪i

e
=1ZR(Ri).

begin

Q := Q ∧ P>;
Q ′ ′ := Q ′ ∧ P>;

T := Difference(T, T ′);

T ′ := Intersection(T, T ′);

if T ′ = ∅ then return R;

for [T ∗ ,H ∗] ∈ T ′ do

Q ∗ = Q \Q ′ ∧H �
∗ ;=

output RealTriangularize(T ∗ , Q ∗)

for [T ∗ ,H ∗] ∈ T do

Q ∗ = Q ∧H �

∗ ;
=

output RealTriangularize(T ∗ , Q∗)

Algorithm 5: IntersectionRsas(R,R ′)

Input: two regular semi-algebraic systems R = [Q, T, P>]
[Q ′ ′ ′ and R ′ = , T , P >]

Output: a set of regular semi-algebraic systems Ri,
i = 1, . . . , e, such that ZR(R) ∩ ZR(R ′) = ∪e

i=1ZR(Ri).
Q ∗ ′ := Q ∧ P> ∧Q ′ ∧ P>;
for [T ∗ ,H ∗] ∈ Intersection(T, T ′) do

∗ output RealTriangularize(T , Q ∗ ∧H �
∗
=)

on a machine with Intel Core 2 Quad CPU (2.40GHz) and
3.0Gb total memory. The time-out is set as 3600 seconds.
The memory usage is limited to 60% of total memory. NA

means the computation does not finish in the resource (time
or memory) limit.

In Table 1, RTD denotes RealTriangularize. The subscripts
re and inc denote respectively the recursive and incremen­
tal implementation of RealTriangularize. The suffixes +relax

and −relax denote respectively applying and not applying
relaxation techniques. The name RR, short name for Re­
moveRedundantComponents, is an algorithm, implemented
based on the algorithm DifferenceRsas, to remove the redun­
dant components in the output of RTD. For each algorithm,
the left column records the time (in seconds) while the right
one records the number of components in the output.

Table 1 illustrates the effectiveness of the techniques pre­
sented in this paper. For system 8-3-config-Li, RTD|inc

greatly outperforms RTD|re. Moreover, RR helps reduce
the number of the output components of RTD|re from 203
to 45. For system Metha0, with the relaxation technique,
both timing and the number of components in the output
are reduced. For system SEIT, with the help of relaxation,
RTD|re can now solve it within half an hour.

To conclude, the algorithms of [3] can, in practice, be of­
ten substantially improved by better analysis of the border
polynomials, by relaxation (where allowed) and by the in­
cremental approach. The experimentation shows that the
latter can sometimes result in a speed-up by more than 10.

Acknowledgments. The authors would like to thank the
reviewers for their valuable remarks, the support from Maple-
soft, MITACS and NSERC of Canada, and the Exacta
project supported by Anr (ANR-09-BLAN-0371-01) and Nsfc
(60911130369 and 91018012).

9. ADDITIONAL AUTHORS
10. REFERENCES
[1] S. Basu, R. Pollack, and M-F. Roy. Algorithms in real

algebraic geometry. Springer-Verlag, 2006.

[2] C. W. Brown. Improved projection for cylindrical algebraic

decomposition. J. Symb. Comput., 32(5):447–465, 2001.

[3] C. Chen, J.H. Davenport, J. May, M. Moreno Maza, B. Xia,

and R. Xiao. Triangular decomposition of semi-algebraic

systems. In Proc. of ISSAC 2010, pages 187–194, 2010.

[4] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and
W. Pan. Comprehensive triangular decomposition. In Proc. of
CASC’07, volume 4770 of Lecture Notes in Computer Science,
pages 73–101, 2007.

[5] C. Chen and M. Moreno Maza. Algorithms for Computing

Triangular Decompositions of Polynomial Systems In Proc. of

ISSAC 2011, ACM Press, 2011.

[6] C. Chen, M. Moreno Maza, W. Pan, and Y. Xie. On the

verification of polynomial system solvers. Frontiers of

Computer Science in China, 2(1):55–66, 2008.

[7] G.E. Collins. Quantifier Elimination for Real Closed Fields by

Cylindrical Algebraic Decomposition. In Proc. of 2nd. GI

Conference Automata Theory & Formal Languages, pages

134–183, 1975.

[8] J.H. Davenport and J. Heintz. Real Quantifier Elimination is

Doubly Exponential. J. Symbolic Comp., 5:29–35, 1988.

[9] D. Lazard and F. Rouillier. Solving parametric polynomial

systems. J. Symb. Comput., 42(6):636–667, 2007.

[10] S. McCallum and C. W. Brown. On delineability of varieties in
cad-based quantifier elimination with two equational
constraints. In Proc. of ISSAC 2009, pages 71–78, 2010.

[11] M. Moreno Maza. On triangular decompositions of algebraic
varieties. Technical Report TR 4/99, NAG Ltd, Oxford, UK,
1999. Presented at MEGA-2000, Bath, England.

[12] A. Strzeboński. Solving systems of strict polynomial
inequalities. J. Symb. Comput., 29(3):471–480, 2000.

[13] D. M. Wang. Elimination Methods. Springer, New York, 2000.

[14] R. Xiao. Parametric Polynomial System Solving. PhD thesis,
Peking University, Beijing, 2009.

[15] L. Yang, X. Hou, and B. Xia. A complete algorithm for
automated discovering of a class of inequality-type theorems.
Science in China, Series F, 44(6):33–49, 2001.

[16] L. Yang and B. Xia. Real solution classifications of a class of
parametric semi-algebraic systems. In Proc. of the A3L’05,
pages 281–289, 2005.

[17] N. Phisanbut, R.J. Bradford, and J.H. Davenport. Geometry of
Branch Cuts. Communications in Computer Algebra,
44:132–135, 2010.

