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ABSTRACT 
This article is a continuation of our earlier work [3], which 
introduced triangular decompositions of semi-algebraic sys­
tems and algorithms for computing them. Our new contri­
butions include theoretical results based on which we obtain 
practical improvements for these decomposition algorithms. 

We exhibit new results on the theory of border polynomials 
of parametric semi-algebraic systems: in particular a geo­
metric characterization of its “true boundary” (Definition 
2). In order to optimize these algorithms, we also propose 
a technique, that we call relaxation, which can simplify the 
decomposition process and reduce the number of redundant 
components in the output. Moreover, we present procedures 
for basic set-theoretical operations on semi-algebraic sets 
represented by triangular decomposition. Experimentation 
confirms the effectiveness of our techniques. 

1. INTRODUCTION 
Triangular decompositions of semi-algebraic systems were 
introduced in [3]. The key notions and notations of this 
paper are reviewed in the next section. 

That paper presents also an algorithm for generating those 
decompositions. This algorithm can either be eager , com­
puting the entire decomposition, or lazy , only computing 
the decomposition corresponding to the highest (complex) 
dimensional components, and deferring lower-dimensional 
components. While a complete decomposition is known to 
have a worst-case complexity which is doubly-exponential in 
the number of variables [8], under plausible assumptions the 
lazy variant has a singly-exponential complexity. Neverthe­
less, it is still desirable to improve the practical efficiency of 
both types of decomposition. 

The notion of a border polynomial [15] is at the core of our 
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work. A strongly related notion, discriminant variety, was 
introduced in [9] and the link between them was investi­
gated in [14]. Other similar but more restrictive notions 
like “generalised discriminant” and “generalised resultant” 
were introduced in [10]. For a squarefree regular chain T , 
regarded as a real parametric system in its free variables u, 
the border polynomial BP (T ) encodes the locus of the u-
values at which T has lower rank or at which T is no longer 
a squarefree regular chain. (See §2 for the notions related to 
triangular decomposition and regular chains.) Consequently, 
for each connected component C of the complement of the 
real hypersurface defined by BP (T ) the number of real so­
lutions of the regular chain T is constant at any point of C. 
However, BP (T ) is not an invariant of the variety W (T ), 
which is a bottleneck in designing better algorithms based 
on the notion of a border polynomial. We overcome this 
difficulty in two ways. 

′ Firstly, in §3, we prove that among all regular chains T 
satisfying sat(T ′ ) = sat(T ) there is one and only one (char­

′ acterized in Theorem 1) for which BP (T ) is minimal w.r.t. 
inclusion. Secondly, in §4, we introduce the concept of an 
effective boundary of a squarefree semi-algebraic system, see 
Definition 2. This allows us to identify a subset of BP (T ) 

which is an invariant of W (T ), that is, unchanged when re­
′ placing T by T as long as W (T ) = W (T ′) holds. In many 

ways, our notion of effective boundary is similar to the “bet­
ter projection” ideas in the classical [7, and many others] 
approach to cylindrical algebraic decomposition. 

In §5, we introduce the technique of relaxation which we 
shall motivate by an example. Consider the semi-algebraic 
system sys = [f = 0, x − b > 0], where f = ax 3 + bx− a for 
the variable ordering a < b < x. The LazyRealTriangularize 
algorithm of [3] will compute the border polynomial set B = 
{a, b1, b2} and the fingerprint polynomial set (FPS) F = 
{a, b1, b2, b, p1, p2, p3}. where b1 = ab3 + b2 − a, b2 = 27a 3 + 
4b3 , p1 = 2b3 + 1, p2 = b3 − 4 and p3 = b − 1. Thus 
the LazyRealTriangularize(sys) will produce 1 regular semi-
algebraic system S1 = [Q1, {f = 0, x − b > 0}], and 7 un­
evaluated recursive calls, where 
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Q1 = (b < 0 ∧ p1 = 6 0 ∧ a 6 0 ∧ b2 =6 0 ∧ b1 = = 6 0) 
(p1 > 0 ∧ b1 > 0 ∧ a < 0 ∧ p3 > 0 ∧ p2 6= 0 ∧ b2 6 0) = 

(b > 0 ∧ p1 > 0 ∧ b1 6 0 ∧ a < 0 ∧ p3 < 0 ∧ p2 < 0 ∧ b2 6 0) = = 
(b > 0 ∧ p1 > 0 ∧ b1 < 0 ∧ a > 0 ∧ p3 < 0 ∧ p2 < 0 ∧ b2 > 0) 

and the 7 calls are made for each p ∈ F with the form 
LazyRealTriangularize([p = 0, f = 0, x − b > 0]). The key 
observation is that some of these recursive calls can simply 
be avoided if some of the strict inequalities in Q1 can be 
relaxed, that is, replaced by non-strict inequalities. The 
results of §5, and in particular Theorem 5 provide criteria 
for this purpose. Returning to our example, when relaxation 
techniques are used LazyRealTriangularize(sys) will produce 
1 regular semi-algebraic system S2 = [Q2, {f = 0, x−b > 0}], 
and 3 un-evaluated recursive calls, where 

Q2 = (b ≤ 0 ∧ b1 = 0 ∧ a = 0 ∧ b2 6 0) 
(p1 ≥ 0 ∧ b1 > 0 ∧ a < 0 ∧ p3 ≥ 0 ∧ b2 6= 0) 

(b ≥ 0 ∧ p1 ≥ 0 ∧ b1 6 0 ∧ 6 0) = a < 0 ∧ p3 ≤ 0 ∧ p2 ≤ 0 ∧ b2 = 
(b ≥ 0 ∧ p1 ≥ 0 ∧ b1 < 0 ∧ a > 0 ∧ p3 ≤ 0 ∧ p2 ≤ 0 ∧ b2 > 0) 

Moreover, it turns that the the 3 un-evaluated recursive calls 
are of the form LazyRealTriangularize([p = 0, f = 0, x − b > 

0]), for p ∈ B. Continuing with that example, one can check 
that the full triangular decomposition of sys produces 16 
and 9 regular semi-algebraic systems, without and with re­
laxation techniques, respectively. Therefore, relaxation tech­
niques can help simplify the output of our algorithms. 

Nevertheless, even with relaxation techniques, our algorithms 
can produce redundant components, that is, a regular semi-
algebraic system S for which there exists another regular 
semi-algebraic system S ′ in the same decomposition and 
such that ZR(S) ⊆ ZR(S 

′ ) holds. This is actually the case 
for our example where 1 out of the 9 regular semi-algebraic 
systems is redundant. 

To perform inclusion test on the zero sets of regular semi-
algebraic systems, we have developed algorithms for set-
theoretical operations on semi-algebraic sets represented by 
triangular decomposition, see §7. Those algorithms rely on 
a new algorithm, presented in §6, for computing triangular 
decomposition of semi-algebraic systems in an incremental 
manner, which is a natural adaption of the idea presented 
in [11] for computing triangular decomposition of algebraic 
systems incrementally. 

The experimentation illustrates the effectiveness of the dif­
ferent techniques presented in this paper. In particular, we 
observe that with relaxation, the decomposition algorithm 
will produce output with less redundancy without paying a 
lot, and accelerate on some hard systems; the incremental 
algorithm for computing triangular decomposition of semi-
algebraic systems often outperforms the one in [3]. More­
over, we observe that our techniques for removing redundant 
components can usually process in a “reasonable” amount 
time the output of the systems that RealTriangularize can 
decompose. 

2. TRIANGULAR DECOMPOSITION 

We summarize below the notions and notations of [3], includ­
ing triangular decompositions of semi-algebraic systems. 

Zero sets and topology. In this paper, we use “Z” to denote 
the zero set of a polynomial system, involving equations and 
inequations, in Cn and “ZR” to denote the zero set of a semi-
algebraic system in Rn . If a semi-algebraic set S is finite, we 
denote by #(S) the number of distinct points in it. In Rn , 
we use the Euclidean topology; in Cn, we use the Zariski 
topology. Given a semi-algebraic set S, we denote by ∂ S 

the boundary of S, by S the closure of S. 

Notations on polynomials. Throughout this paper, all poly­
nomials are in Q[x], with ordered variables x = x1 < · · · < 

xn. We order monomials of Q[x] by the lexicographical or­
dering induced by x1 < · · · < xn. Then, we require that the 
leading coefficient of every polynomial in a regular chain or 
in a border polynomial set (defined hereafter) is equal to 1. 
Let F ⊂ Q[x]. We denote by V (F ) the set of common zeros 
of F in Cn . Let p be a polynomial in Q[x] \Q. Then denote 
by mvar(p), init(p), and mdeg(p) respectively the greatest 
variable appearing in p (called the main variable of p), the 
leading coefficient of p w.r.t. mvar(p) (called the initial of p), 
and the degree of p w.r.t. mvar(p) (called the main degree 
of p). Let v ∈ x. Denote by lc(p, v), deg(p, v), der(p, v), 
discrim(p, v) respectively the leading coefficient, the degree, 
the derivative and the discriminant of p w.r.t. v. 

Triangular set. Let T ⊂ Q[x] be a triangular set, that is, a 
set of non-constant polynomials with pairwise distinct main 
variables. Denote by mvar(T ) the set of main variables of 
the polynomials in T . A variable v in x is called algebraic 
w.r.t. T if v ∈ mvar(T ), otherwise it is said free w.r.t. T . 
If no confusion is possible, we shall always denote by u = 
u1, . . . , ud and y = y1, . . . , ym (m + d = n) respectively the 
free and the main variables of T . When T is regarded as a 
parametric system, the free variables in T are its parameters. 

Let hT be the product of the initials of the polynomials 
in T . We denote by sat(T ) the saturated ideal of T : if T 
is the empty triangular set, then sat(T ) is defined as the 
trivial ideal �0�, otherwise it is the colon ideal �T � : h∞ .T 

The quasi-component W (T ) of T is defined as V (T )\V (hT ). 

Denote by W (T ) the Zariski closure of W (T ), which is equal 
to V (sat(T )). Denote by WR(T ) the set ZR(T ) \ ZR(hT ). 

Iterated resultant. Let p, q ∈ Q[x] \ Q. Let v = mvar(q). 
Denote by res(p, q, v) the resultant of p, q w.r.t. v. Let 
T ⊂ Q[x] be a triangular set. We define res(p, T ) induc­
tively: if T is empty, then res(p, T ) = p; otherwise let 
v be the largest variable occurring in T , then res(p, T ) = 
res(res(p, Tv , v), T<v ), where Tv and T<v denote respectively 
the polynomials of T with main variables equal to and less 
than v. 

Regular chain. A triangular set T ⊂ Q[x] is called a regular 
chain if: either T is empty; or (letting t be the polynomial 
in T with maximum main variable), T \ {t} is a regular 
chain, and the initial of t is regular w.r.t. sat(T \ {t}). Let 
H ⊂ Q[x]. The pair [T,H ] is a regular system if each poly­
nomial in H is regular modulo sat(T ). A regular chain T or 
a regular system [T,H ], is squarefree if for all t ∈ T , der(t) is 



regular w.r.t. sat(T ). Given u ∈ Rd , we say that a squarefree 
regular system [T,H ] specializes well at u if hT (u) � 0 and= 
[T (u),H(u)] is a squarefree regular system. A regular chain 
is called d-dimensional if it has d free variables. 

Semi-algebraic system. Consider four finite polynomial sets 
F = {f1, . . . , fs}, N = {n1 , . . . , nk }, P = {p1, . . . , pe}, and 
H = {h1, . . . , hℓ} of Q[x]. Let N≥ denote the set of non­
negative inequalities {n1 ≥ 0, . . . , nk ≥ 0}. Let P> denote 
the set of positive inequalities {p1 > 0, . . . , pe > 0}. Let 
H � denote the set of inequations {h1 = � 0}.= � 0, . . . , hℓ = We 
denote by S = [F,N≥, P>,H � ] the semi-algebraic system=

(SAS) defined as the conjunction of the constraints f1 = 
· · · fs = 0, N≥, P>, H �=. When N≥, H � are empty, S is= 

called a basic semi-algebraic system and denoted by [F, P>]. 

Regular semi-algebraic system. We call a basic SAS [T, P>] 
in Q[u, y] a squarefree semi-algebraic system, SFSAS for 
short, if [T, P ] forms a squarefree regular system. Let [T, P>] 
be an SFSAS. Let Q be a quantifier-free formula of Q[u]. We 
say that R := [Q, T, P>] is a regular semi-algebraic system if 

(i) Q defines a non-empty open semi-algebraic set S in Rd; 
(ii) [T, P ] specializes well at every point of S, 
(iii) at each u ∈ S, the specialized system [T (u), P (u)>] 

has at least one real zero. 

Border polynomial [15, 16, 3]. We review briefly the notion 
of border polynomial of a regular chain, a regular system, or 
an SFSAS. Let R be either a squarefree regular chain T , or 
a squarefree regular system [T, P ], or an SFSAS [T, P>] in 
Q[x]. We denote by Bsep(T ), Bini(T ), Bineqs([T, P ]) the set 
of irreducible factors of: 

�
t∈T res(discrim(t,mvar(t)), T ),

�
t∈T 

and 
�

f ∈P res(f, T ), respectively. Denote by BP(R) the set 

Bsep(T ) ∪ Bini(T ) ∪Bineqs ([T, P ]). Then BP(R) (resp. the 
polynomial 

�
f ∈BP(R) f) is called the border polynomial set 

(resp. border polynomial) of R. 

Lemma 1 (Lemma 2 in [3]). Let R = [T, P>] be an SF­
SAS of Q[x]. Let u1, u2 be two parameter values in a same 
connected component of ZR(

�
f ∈BP(R) f �= 0) in Rd . Then 

#ZR(R(u1)) = #ZR(R(u2)). 

Fingerprint polynomial set. R = [B� , T, P>] is called a=

pre-regular semi-algebraic system, if for each p ∈ BP([T, P>]), 
p is a factor of some polynomial in B. Suppose R is a pre-
regular semi-algebraic system. A polynomial set D ⊂ Q[u] 
is called a fingerprint polynomial set (FPS) of R if: 

(i) ZR(D=� ) ⊆ ZR(B=� ) holds, 
(ii) for all α, β ∈ � ) with α � β, if the signs of p(α)ZR(D= = 

and p(β) are the same for all p ∈ D, then R(α) has 
real solutions if and only if R(β) does. 

Open CAD operator [12, 2, 3]. Let u = u1 < · · · < ud 

be ordered variables. For a polynomial p ∈ Q[u], denote by 
factor(p) the set of the non-constant irreducible factors of 
p; for A ⊂ Q[u], define factor(A) = ∪p∈A factor(p). For a 
squarefree polynomial p, the open projection operator (oproj) 
w.r.t. a variable v ∈ u is defined as below: 

oproj(p, v) := factor(discrim(p, v) lc(p, v)). 

∗ If p is not squarefree, then we define oproj(p, v) := oproj(p , v), 
∗ where p is the squarefree part of p; then for a polynomial 

set A, we define oproj(A, v) := oproj(Πf ∈A f, v). 

Given A ⊂ Q[u] and x ∈ {u1, . . . , ud}, denote by der(A, x) 
the derivative closure of A w.r.t. x. The open augmented 
projected factors of A, denoted by oaf(A), is defined as 
follows. Let k be the smallest positive integer such that 
A ⊂ Q[u1, . . . , uk ] holds. Let C = factor(der(A, uk)); we 
have: 

1. if k = 1, then oaf(A) := C; 
2. if k > 1, then oaf(A) := C ∪ oaf(oproj(C, uk )). 

3. BORDER POLYNOMIAL 
The relation “having the same saturated ideal” is an equiva­
lence relation among regular chains of Q[x]. We show in this 
section that, for each equivalence class, there exists a unique 
representative whose border polynomial set is contained in 
the border polynomial set of any other representative. 

To this end, we rely on the concept of canonical regular 
chain. In the field of triangular decompositions, several au­
thors have used this term to refer to different notions. To 
be precise, we make use of the one defined in [13]. 

Definition 1 (canonical regular chain). Let T be 
a regular chain of Q[x]. If each polynomial t of T satisfies: 

1. the initial of t involves only the free variables of T , 
2. for any polynomial f ∈ T with mvar(f) < mvar(t), we 

have deg(t,mvar(f)) < mdeg(f), 
res(init(tt), T ),3. is primitive over Q, w.r.t. its main variable, 

then we say that T is canonical. 

Remark 1. Let T = {t1, · · · , tm} be a regular chain; let 
dk = mdeg(tk), for k = 1 · · · m. One constructs a canon­

∗ ∗ ∗ ∗ ical regular chain T = {t1 , t2 , . . . , tm} such that sat(T ) = 
∗ sat(T ) in the following way: 

∗ 1. set t1 to be the primitive part of t1 w.r.t. y1; 
2. for k = 2, . . . , m, let rk be the iterated resultant 

res(init(tk ), {t1, . . . , tk−1}). Suppose rk = ak init(tk)+ �k−1 
citi. Compute t as the pseudo-reminder of aktk+i=1 

(
�k−1 

citi)y 
dk by {t ∗ 1 , . . . , t 

∗ 
k−1}. Set t 

∗ 
k to be the prim­

i=1 k

itive part of t w.r.t. yk.


A canonical regular chain has the minimal border polyno­
mial set among the family of regular chains having the same 
saturated ideal, which is stated in the following theorem. 

Theorem 1. Given a squarefree regular chains T of Q[x], 
∗ there exists a unique canonical regular chain T such that 

sat(T ) = sat(T ∗ ). Moreover, we have BP(T ∗ ) ⊆ BP(T ). 

The proof of the above theorem relies on some basic prop­
erties of border polynomial set recalled below. 

Given a constructible set C defined by a parametric poly­
nomial system, the minimal discriminant variety (MDV) [9] 



of C, denoted by mdv(C), is an intrinsic geometric object 
attached to C and the parameters. The following results re­
late the border polynomial of a regular chains T and the 
discriminant variety of the algebraic variety V (T ). 

Lemma 2 ([14]). Let T be a squarefree regular chain of 
Q[u, y]. Then we have mdv(V (T )) = V (

�
f ∈BP(T ) f). 

Lemma 3 ([14, Lemma 17]). Let T be a squarefree reg­
ular chain of Q[u, y]. Then we have mdv(W (T )) ⊆ mdv(V (T )) 

and mdv(V (T )) \mdv(W (T )) ⊆ V (
�

f).
f ∈Bini(T ) 

Lemma 4. Let T1 and T2 be squarefree regular chains of 
Q[x] such that sat(T1) = sat(T2). If Bini(T1) ⊆ Bini(T2), 
then we have BP(T1) ⊆ BP(T2). 

Proof. Firstly, we have V (
�

f) ⊆ mdv(V (Ti)) f ∈Bini(Ti ) 

by Lemma 2. Then with Lemma 3, we have mdv(V (Ti)) = 

V (
�

f) ∪ mdv(W (Ti)). Since sat(T1) = sat(T2), f ∈Bini(Ti ) 

we have W (T1) = W (T2). Therefore we have mdv(V (T2)) ⊆ 
mdv(V (T1)) by the assumption Bini(T1) ⊆ Bini(T2), which 
implies the lemma. 

Next we prove Theorem 1. 

Proof. By Remark 1, we can always construct a canoni­
∗ ∗ cal regular chain T such that sat(T ) = sat(T ). Moreover, 

∗ for each t ∈ T , we have init(t ) divides res(init(t), T ). There­
∗ ∗ fore, Bini(T ) ⊆ Bini(T ) holds, which implies BP(T ) ⊆ 

BP(T ) by Lemma 4. 

Suppose T ⋄ is any given canonical regular chain such that 
sat(T ⋄) = sat(T ) holds. It is sufficient to show that T ∗ = T ⋄ 

holds to complete the proof. 

Note that T ⋄ , T ∗ and T have the same set of free and al­
gebraic variables, denoted respectively by u and y. Given 
I an ideal in Q[u, y], denote by Iext the extension of I in 
Q(u)[y]. Since p ext = �1� holds for any prime ideal p in 
Q[u, y] with u algebraically dependent, we have �T ∗ �ext = 
�T ⋄�ext = sat(T )ext holds. Therefore, the polynomials in T ∗ 

(or T ⋄) form a Gröbner basis of sat(T )ext (w.r.t. the lexico­
graphical ordering on y) since their leading power products 

∗ are pairwise coprime. Dividing each polynomial in T (or 
T ⋄) by its initial, we obtain the unique reduced Gröbner 
basis of sat(T )ext . This implies T ∗ = T ⋄ . 

4. EFFECTIVE BOUNDARY AND FPS 
In this subsection, we will focus on an SFSAS S = [T, P>] 
in Q[u, y] where u = u1, . . . , ud are the free variables of T . 

Definition 2 (Effective boundary). Let h be a (d− 
1)-dimensional hypersurface in the parameter space Rd of S. 
We call h an effective boundary of S if for every hypersur­
face H �⊇ h in Rd, there exists a point u ∗ in h\H satisfying: 

∗ ∗ for any open ball O(u ) of u , there exist two points α1, 
∗ α2 ∈ O(u ) \ h, s.t. #ZR(S(α1)) =� #ZR(S(α2)). Denote 

by E(S) the union of all effective boundaries of S. 

Recall that the hypersurface defined by the border polyno­
mial of an SFSAS partitions the parametric space into re­
gions, where the number of real solutions is locally invariant. 
One might imagine that the effective boundaries are strongly 
related to the border polynomial set. Indeed, we have the 
following Lemma stating the relation. 

Lemma 5. We have E(S) ⊆ ZR(
�

f ∈BP(S) f = 0). 

Proof. Let h ∈ E(S) such that h �⊆ ZR(
�

f ∈BP(S) f = 

0) holds. Then for each u ∈ h \ ZR(
�

f ∈BP(S) f = 0), we 

can choose an open ball O(u) of u contained in a connected 
component of the set ZR(

�
f ∈B f � 0). By Lemma 1, for = 

any two points α1, α2 ∈ O(u), #ZR(S(α1)) = #ZR(S(α2)) 
holds. That is a contradiction to the assumption of h being 
an effective boundary. 

Lemma 5 implies that the set of effective boundaries repre­
sented by irreducible polynomials of Q[u] is finite and can 
be given by polynomials from the border polynomial set. 

Definition 3. A polynomial p in BP(S) is called an ef­
fective border polynomial factor if ZR(p = 0) is an effective 
boundary of S. We denote by ebf(S) the set of effective 
border polynomial factors. 

The example below shows that some of the polynomials in a 
border polynomial may not be effective. Roughly speaking, 
the factors in Bini are not effective. This property is formally 
stated in a soon coming extended version of this article. 

Example 1. Consider an SFSAS R = [{ax 2+bx+1}, { }]. 
Its border polynomial set is {a, b2 −4a}. One can verify from 
Figure 1 that ZR(b

2 − 4a = 0) is an effective boundary of R, 
while ZR(a = 0) is not. Indeed, all a, b-values in the blank 
(resp, filled) area specialize R to have 2 (resp. 0) real solu­
tions. 

Figure 1: Effective and non-effective boundary 

Since E(S) can be described by border polynomial factors, 
we derive the following theorem, which can be viewed as a 
“computable-version” of Definition 2. 



Theorem 2. A polynomial p in BP(S) is an effective bor­
der polynomial factor if and only if there exist two connected 
components C1, C2 of ZR(

�
f ∈BP(S) f � 0) satisfying = 

(1) ∂ C1 ∩ ∂ C2 ∩ ZR(p = 0) is of dimension d− 1, 
(2) for all point α1 ∈ C1 and for all point α2 ∈ C2 we have 

#ZR(S(α1)) � #ZR(S(α2)).= 

Proof. “⇒”. Suppose p is an effective border polynomial 
∗ factor. By definition, there exists a point u ∈ ZR(p = 

0) \ ZR(
�

f ∈BP(S)\{p} f = 0) and a sufficiently small open 

ball O(u ∗ ) centered at u ∗ satisfying the properties below: 

∗ (i) O(u = 0) ⊆ ZR(
�

f ∈BP(S) f � 0); ) \ ZR(p = 

(ii) O(u ∗ ) ∩ ZR(
�

f ∈ebf(S) f = 0) ⊆ ZR(p = 0); 

(iii) there exist two points α1, α2 in O(u ∗ )\ZR(p = 0), such 
that we have #ZR(S(α1)) � #ZR(S(α2)); = 

∗ ∗ ∗ (iv) O(u ) \ ZR(p = 0) = O(u ) ∩ C1 ∪· O(u ) ∩ C2, where 
Ci is the connected component of ZR(

�
f ∈BP(S) f �= 0) 

containing αi, for i = 1, 2. 

Property (iv) can be achieved by imposing that ZR(p = 0) is 
∗ not singular at u . Property (iii) and Lemma 1 imply that 

∗ ∗ O(u ) \ ZR(p = 0) is not a connected set. Since O(u ) is an 
∗ open ball, we deduce that O(u ) ∩ ZR(p = 0) must be d− 1 

dimensional. Then Property (iv) implies O(u ∗ ) ∩ ZR(p = 

0) = O(u ∗) ∩ C1 ∩O(u ∗) ∩ C2. and O(u ∗) ∩ Ci = O(u ∗)∩Ci 

for i = 1, 2. Therefore, we have: O(u ∗ ) ∩ ZR(p = 0) ⊆ 
(∂ C1 ∩ ∂ C2) ∩ ZR(p = 0). Hence (∂ C1 ∩ ∂ C2) ∩ ZR(p = 0) 
is also of dimension d− 1. 

“⇐”. Suppose there exist two connected components C1, C2 

of ZR(
�

f ∈BP(S) f �= 0) satisfying the above (1) and (2) in 

the theorem statement. Let H be a hypersurface with H �⊇ 
ZR(p = 0). Since the dimension of (H∪ZR(

�
f ∈BP(S)\{p} f = 

0)) ∩ ZR(p = 0) cannot be d− 1, the set S defined by 
  

(∂ C1 ∩ ∂ C2 ∩ ZR(p = 0)) \H ∪ ZR( 
� 

f = 0)  
f ∈BP(S)\{p} 

is not empty. Let u ∗ be a point of S. Any open ball O(u ∗ ) 
∗ centered at u contains at least one point α1 (resp. α2) 

from C1 (resp. C2). From (2) we deduce #ZR(S(α1)) =�
#ZR(S(α2)). That is, ZR(p = 0) is an effective boundary 
according to Definition 2. 

The above theorem suggests some practical ways to compute 
the effective border polynomial factors, using the adjacency 
information and sample points of the connected components 
of ZR(

�
f ∈BP(S) � 0). = 

Corollary 1. If two points α1, α2 ∈ ZR(
�

f ∈BP(S) f �= 

0) are in the same connected component of the complement 
of E(S), then #ZR(S(α1)) = #ZR(S(α2)) holds. 

Proof. Let C be a connected component of the com­
plement of E(S). Observe that C \ ZR(

�
f ∈BP(S) f = 0) 

is the union of a finite set O of connected components of 
ZR(

�
f ∈BP(S) f �= 0). Indeed, E(S) ⊆ ZR(

�
f ∈BP(S) f = 

0) holds by Lemma 5. If O contains only one element, the 
conclusion is trivially true. 

Assume from now that O contains more than one elements. 
We can number the elements of O such that for any two el­
ements with consecutive numbers, say Ci, Ci+1, the dimen­
sion of ∂ Ci ∩ ∂ Ci+1 is d − 1. Proceeding by contradiction, 
assume that the conclusion of the corollary is false. Thus, 
there exist two consecutive elements of O, say Ci, Ci+1, and 
two points αi ∈ Ci, αi+1 ∈ Ci+1, such that #ZR(S(αi)) �= 
#ZR(S(αi+1)) holds. Since C lies in the complement of 
E(S), there exists a non-effective border polynomial factor 
p such that ∂ Ci ∩ ∂ Ci+1 ⊆ ZR(p = 0) holds. However, this 
also implies that p is an effective border polynomial factor 
by Theorem 2, which is a contradiction. 

Given a pre-regular system R = [B� , T, P>], we can rely on =

ebf([T, P>]) to compute an FPS of R rather than B (which 
is often much larger than ebf([T, P>])). 

Theorem 3. Given a pre-regular system R = [B� , T, P>],=

let D = oaf(ebf([T, P>])). Then D ∪ B is an FPS of R. 

Proof. By Theorem 3 in [3] on the property of the oaf 
operator, each realizable strict sign conditions on D defines 
a connected components of ZR(

�
f ∈D f �= 0). Therefore, 

for any two points α1, α2 ∈ ZR(
�

f ∈B f �= 0) satisfying the 

same realizable sign condition of D, we have #ZR(R(α1)) = 
#ZR(R(α2)) by Corollary 1. Hence D ∪ B is an FPS of R 

by definition. 

Theorem 4. Given two SFSASes R1 = [T1, P>] and R2 = 
[T2, P>] with sat(T1) = sat(T2), then E(R1) = E(R2) holds. 

Proof. Let B = BP(R1)∪BP(R2) and let h be an effec­
tive boundary of R1 defined by a polynomial p in BP(R1). 
Let H �⊇ h be any hypersurface and denote by S the set h \�
ZR(

�
f ∈B\{p} f = 0) ∪ H

� 
. Observe that S is not empty. 

∗ We can find a point u ∈ S satisfying: for any open ball 
∗ ∗ ∗ O(u ) centered at u , there exist two points α1, α2 ∈ O(u )\ 

h, such that #ZR(R1(α1)) � #ZR(R1(α2))= holds. 

Since sat(T1) = sat(T2) holds, for all u ∈ ZR(
�

f ∈B f �= 0), 

we have ZR(R1(u)) = ZR(R2(u)). When an open ball O at 
∗ u is sufficiently small, O ∩ ZR(

�
f ∈B\p f = 0) = ∅ holds. 

Therefore, ZR(R1(u)) = ZR(R2(u)) holds for any u ∈ O \ h. 

From the above arguments and Definition 2, we deduce that 
h is also an effective boundary of R2. This shows E(R1) ⊆ 
E(R2). Similarly E(R1) ⊇ E(R2) can be proved. 

Let R = [T, P>], Ri = [Ti, P>] (i = 1, 2) be three SF-
SASes with sat(T ) = sat(T1) ∩ sat(T2). One can prove that 
E(R) ⊆ E(R1) ∪ E(R2) holds. Moreover, one can prove that 
ebf(R1) ∩ ebf(R2) = ∅ implies E(R) = E(R1)∪E(R2). These 
results and their proofs will appear in an extended version 
of this article. 
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Table 1 The timing and number of components in the output of different algorithms 
RTD|re−relax RTD|re+relax RTD|inc−relax RTD|inc+relax 

sys 
RTD RR RTD RR RTD RR RTD RR 

8-3-config-Li 
dgp6 

Leykin-1 

Mehta0 
EdgeSquare 
Enneper 
IBVP 
MPV89 
SEIT 

Solotareff-4b 
Xia 

Lanconelli 
MacLane 
MontesS12 
MontesS14 
Pappus 
Wang168 

xia-issac07-1 

418.6 203 
65.17 20 

4.9 28 
14.9 69 
1294 21 
247.7 116 

6.1 18 
14.1 8 
2.7 6 
NA NA 

3223 3 
223.7 12 

1.1 7 
17.4 79 

197.8 163 
3.4 23 

750.5 409 
7.0 16 
2.7 13 

1727 45 
17.44 15 
20.1 18 
94.3	 20 
NA NA 
NA NA 
12.4	 13 
NA NA 
84.1	 6 
NA NA 

229.0	 3 
NA NA 
2.4 6 

240.5 28 
346.5 62 
14.1 13 
NA NA 
8.4 10 
NA NA 

410.6 203 
64.37 20 

4.9 28 
14.9 69 

713.6 15 
725.3 91 

5.4 13 
16.8 4 
2.4 5 

1411 1 
3222 3 
224.8 10 

1.1 7 
17.3 79 

197.4 163 
3.4 23 

748.2 409 
7.1 16 
4.4 11 

1688 45 30.5 47 129.5 47 30.4 47 129.1 47 
17.59 15 47.73 19 22.38 17 47.43 19 22.24 17 
20.8 18 6.5 19 13.9 19 6.5 19 14.0 19 
96.9 20 2.6 19 11.7 19 2.6 19 11.7 19 
NA NA 1558 20 NA NA 998.9 15 NA NA 
NA NA 116.8 43 NA NA 629.4 33 NA NA 
11.0 12 4.9 17 12.7 12 4.9 12 10.1 11 
NA NA 2.5 8 NA NA 7.6 4 NA NA 
53.1 5 2.1 7 73.4 6 2.1 6 53.4 5 
0.00 1 NA NA NA NA NA NA NA NA 

228.4 3 3424 3 230.0 3 3424 3 228.4 3 
NA NA 21.4 9 NA NA 20.5 8 NA NA 
2.4 6 1.0 7 2.2 6 1.0 7 2.2 6 

239.5 28 5.8 27 35.8 27 5.8 27 35.6 27 
344.7 62 49.9 85 413.9 61 49.7 85 433.8 61 
14.1 13 2.8 15 11.0 13 2.9 15 11.1 13 
NA NA 29.1 119 1127.6 119 29.0 119 1125 119 
8.4 10 3.4 11 5.6 10 3.5 11 5.6 10 
NA NA 2.2 12 NA NA 4.2 10 NA NA 

5. RELAXATION TECHNIQUES 
Given a pre-regular semi-algebraic system R = [B� , T, P>]=

as input, the algorithm GenerateRegularSas in [3] generates 
an FPS F ⊇ B of R and a regular semi-algebraic system 
[Q, T, P>] such that ZR(F � ) ∩ ZR(R) = ZR([Q, T, P>]). De­=

note by B ∗ the polynomial set oaf(B), which is proved to be 
an FPS of R by Theorem 4 in [3]. The notations R, B, T , 
P , F, B ∗ will be fixed in this section. 

Note that if F = B, then we have ZR(R) = ZR([Q, T, P>]; 
otherwise, for each b ∈ F\B, we have to compute recursively 
a triangular decomposition of [T ∪{b}, { }, P>, B� ] to obtain =

a complete triangular decomposition of R. There are two 
directions to reduce the number of such recursive calls, which 
will help to produce output with less redundancy: 

(i) minimize the number of polynomials in F, where the 
effective boundary theory in Section 4 can help; 

(ii) relax some polynomials in F \ B such that there is 
no need to make recursive calls for those polynomials, 
which we will discuss in this section. 

The following notions of sign condition and relaxation appear 
in [1] in a more general setting. We adapt them to our 
study of regular semi-algebraic systems. Throughout this 
subsection, we consider a finite set F ⊂ Q[x] of coprime 
polynomials. 

Definition 4. We call any semi-algebraic system of the 
form 

� 
f σf 0,	 (1) 

f ∈F 

where σf is one of >,<,≥, ≤, a sign condition on F , or 
an F -sign condition. An F -sign condition is called strict if 
every σf involved belongs to {>,<}. An F -sign condition C 
is called realizable if C has at least one real solution. 

Definition 5 (Relaxation of sign condition). For 
an F -sign condition C given as in (1) and a subset E of F , 

the (partial) relaxation of C w.r.t. E, denoted by C�E , is 

defined by 


≤, if p ∈ E and σp is <, � 
p σ�p 0 where σ�p = 

 
≥, if p ∈ E and σp is >, 

p∈F 
otherwise.

σp, 

Let Q = ∨i
e 
=1Ci be a quantifier free formula, where each 

Ci is an F -sign condition. The relaxation of Q w.r.t. E, 
E 

denoted by Q�E , is defined as ∨i
e 
=1 C�i . If E contains only 

one polynomial h, then we also denote the relaxation by Q�h . 

Let us fix the following notations as well in the rest of this 
section. Let D ⊆ Q[u] such that B ⊆ D ⊆ F. Let Qi 

(i = 0, 1) be a quantifier free formula in disjunctive form such 
that each conjunction clause C of it is in the following form: 
C = ∧f ∈F f σf 0, where σf ∈ {>,<} if f ∈ D and σf ∈ 
{≥, ≤} if f ∈ F \D. Moreover, assume that for any u such 
that D(u) � 0, R(u) has (resp. has no) real solutions if and = 
only if Q1(u) (resp. Q0(u)) is true. Let h be a polynomial 
in D \ B. Denote by Dh the set D \ {h}. Denote by ∂i 

(i = 0, 1) the boundary of the set ZR(Qi). Denote by Gi 
h 

(i = Qi )∩ ZR(Qi). Let Si (i =0, 1) the set ZR(�	 0, 1) be the 
h 

semi-algebraic set such that ZR(� ) = Gi∪Si, where the Qi ·
symbol ∪· denotes disjoint union. 

The following Theorem states an criterion for relaxation. 

Theorem 5. The following two statements are equiva­
lent: 

h h 
(i) ZR(Q�1 ) ∩ ZR(Q�0 ) = ∅, 
(ii) for any u ∈ ZR(D�

h ), R(u) has real solutions if and =
h 

only if Q�1 (u) is true; R(u) has no real solutions if 
h 

and only if Q�0 (u) is true. 

Before providing the proof, we supply several lemmas on the 
properties of the objects we defined. 

Lemma 6. ZR(Q0) and ZR(Q1) are both open sets. 



Proof.	 On one hand, ZR(D� ) = ZR(Q0)∪·ZR(Q1). On =

the other hand, there exists a finite set of connected open 
sets, O = {C1, . . . , Ce}, such that ZR(D�=) = ∪e

i=1Ci holds. 
By Lemma 1, for each Ci ∈ O, either Ci ⊆ ZR(Q0) or Ci ⊆ 
ZR(Q1) holds. Therefore, both ZR(Q0) and ZR(Q1) are a 
union of finitely many elements of O and thus are open. 

Lemma 7. For any u ∈ ZR(Q0) ∩ ZR(B=� ), R(u) has no 

real solutions; for any u ∈ ZR(Q1) ∩ ZR(B� ), R(u) has real =

solutions. 

Proof. Suppose u is in ZR(Q0) ∩ ZR(B�=). There ex­
ists a connected component C of ZR(Q0) and a connected 

′	 ′ component C of ZR(B�=) such that u ∈ C ∩ ZR(B�=) ⊆ C 
′ holds. Since C ⊆ ZR(Q0) ⊆ ZR(B=� ), we have C ⊆ C . Since 

′ the number of real solutions of R is constant above C (by 
Lemma 1) and R has no real solutions above C, we conclude 
that R(u) has no real solutions. The other part of the lemma 
can be proved similarly. 

h 
Note that Gi = Qi ZR(B=� ) ∩ ZR(Qi) (i =ZR(� ) ∩ ZR(Qi) ⊆ 
0, 1) holds. We have the following proposition as a direct 
consequence of Lemma 7. 

Proposition 1. For any u ∈ G0, R(u) has no real solu­
tions; for any u ∈ G1, R(u) has real solutions. 

Lemma 8. The following relations hold: (i) ∂0 ∪ ∂1 = 
ZR(

�
f ∈D f); (ii) ∂0 ∩ ∂1 ⊆ ZR(

�
f ∈B f). 

Proof. By Lemma 6, both ZR(Q0) and ZR(Q1) are open 
sets. We have ∂0 ∪ ∂1 = ∂(ZR(Q0)∪ZR(Q1)), since ZR(Q0)∩ 
ZR(Q1) = ∅ holds. Therefore, we have 

∂0 ∪ ∂1	 = ZR(Q0) ∪ ZR(Q1) \ (ZR(Q0) ∪ ZR(Q1)) 

= ZR(D=� ) \ (ZR(D=� )) 
= ZR(

�
f ∈D f). 

By Lemma 7, ZR(Q0) ∩ ZR(B�=) and ZR(Q1) ∩ ZR(B� ) has =

no intersection. Therefore ZR(Q0) ∩ ZR(Q1) ∩ ZR(B� ) = ∅.=

Then the conclusion follows by ∂i ⊆ ZR(Qi) (i = 0, 1). 

Lemma	 9. The following relations hold: (a) for (i = 0, 1), 
h h h 

ZR(Qi) ∩ ZR(D�
h ) ⊆ ZR(� ); (b) ZR(� ) ∪ ZR(� ) = = Qi Q0 Q1 

ZR(D�
h ).=

D 
Proof.	 Since ZR(Q�i ) is a closed set, we have ZR(Qi) ⊆ 

D 
ZR(� ). Therefore, we have Qi 

D h 
ZR(D

h ) ∩ ZR(Qi) ⊆ h ) ∩ ZR(� ) Qi� ZR(D� Qi = ZR(� ).=	 =

h 
By (a), we have ZR(D�

h	 ⊆ ∪i=0,1ZR(� ), =)∩ (∪i=0,1ZR(Qi)) Qi 
h h 

which implies that ZR(D
h ) ). And �=) ⊆ ZR(Q�0 ∪ ZR(Q�1 

h h 
ZR(Q�0 ) ∪ ZR(Q�1 ) ⊆ ZR(D�

h ) holds since all polynomials =

in Dh remain strict after relaxing h. 

Proposition 2. For i = 0, 1, we have Si ⊆ ZR(h = 
h 

0) ∩ ZR(Q�i ) holds. 

h	 h 
Proof. Recall that Gi = Qi ) ∩ ZR(Qi), Qi ) =ZR(� ZR(�

h 
Gi ∪· Si. Therefore, we have ZR(Qi) ⊆ Gi and Si = Qi )\ZR(�

h 
Gi ⊆ ZR(� ) \ ZR(Qi) = 0) hold. Hence, we de-Qi ⊆ ZR(h 

h 
duce that Si ⊆ ZR(h 0) ∩ ZR(� ) holds. = Qi 

Lemma	 10. Both S1 ⊆ G0 and S0 ⊆ G1 hold. 

Proof. By Lemma 8, we have ∂0 ∪ ∂1 = ZR(
�

f ∈D f = 

0). Since h ∈ D, we have ZR(h = 0) ⊆ ∂0 ∪ ∂1, which 
implies ZR(h = 0) can be rewriten as 

ZR(h = 0) ∩ ((∂0 \ ∂1)∪· (∂1 \ ∂0)∪· (∂0 ∩ ∂1)). 

By Lemma 8, we have ∂0 ∩ ∂1 ⊆ ZR(
�

f ∈B f = 0), which 

implies that ZR(D�
h ) ∩ ∂0 ∩ ∂1 = ∅. Let Sh be ZR(h = =

0) ∩ ZR(D�
h ). Then Sh can be rewriten as (ZR(h = 0) ∩=

ZR(D
h ·�=) ∩ (∂0 \ ∂1)) ∪ (ZR(h = 0) ∩ ZR(D�=

h ) ∩ (∂1 \ ∂0)). 

Intersecting both sides of relation (a) of Lemma 9 with ZR(Qi), 

we obtain ZR(D
h )∩ZR(Qi) ⊆ Gi, which implies that ZR(D

h )∩�=	 �=

∂i ⊆ Gi. Therefore, Sh ⊆ G0 ∪G1 holds. 

h	 h 
Since ZR(� ) ⊆ ZR(D

h ), we have = 0) ∩ ZR(� ) ⊆Qi � ZR(h= Qi 
h 

Sh. By Proposition 2, we have Si ⊆ ZR(h = 0) ∩ ZR(Q�i ). 
Therefore, Si ⊆ Sh holds. 

We then deduce the conclusion by combining the facts Si ∩ 
Gi = ∅, Si ⊆ Sh, and Sh ⊆ G0 ∪G1. 

h h 
Corollary 2. We have ZR(Q�1 ) ∩ ZR(Q�0 ) = S0∪· S1. 

h h 
Proof. We can rewrite ZR(Q�1 ) ∩ ZR(Q�0 ) as the dis­

joint union (S1 ∩ G0)∪· (S0 ∩ G1)∪· (S1 ∩ S0)∪· (G0 ∩ G1). By 
Proposition 1, G0 ∩ G1 = ∅. Together with Lemma 10, we 

h h 
have ZR(Q�1 ) ∩ ZR(Q�0 ) = S0∪· S1. 

Next, we complete the proof for Theorem 5. 

h h 
Proof. By Lemma 9, ZR(Q�0 ) ∪ ZR(Q�1 ) = ZR(D�

h ). =

(i) ⇒ (ii). By Corollary 2, we have S0 = S1 = ∅ and 
h 

Qi ) = Gi (i = 0, 1). Then the conclusion follows from 
Proposition 1. 
ZR(�

(ii) ⇒ (i). We prove by contradiction. Assume (i) does not 
h 

ZR(D
hhold. There exists u ∈ �=), such that both Q�0 (u) and 

h 
Q�1 (u) are true. This is a contradiction to (ii). 

We have the following remarks on relaxation once (i) of The­
orem 5 is checked to be true. 



h 
• One can verify that, � (i 0, 1) and Dh have the Qi = 

same configuration as that we assumed on Qi (i = 0, 1) 
h 

and D. So ZR(Q�1 ) is still open by Lemma 6. 
• If [Q1, T, P>] is a regular semi-algebraic system, then 

h 
so is [Q�1 , T, P>]. 

6. INCREMENTAL DECOMPOSITION 
In this section, we present algorithms to compute a full tri­
angular decomposition of a semi-algebraic system in an in­
cremental manner, which serves as a counterpart of the re­
cursive algorithm in our previous paper [3]. Given a semi-
algebraic system S := [F,N≥, P>,H � ], the incremental de­=

composition is realized by passing the empty regular chain 
∅ and S to Algorithm 1, whose incrementality is mainly due 
to its subroutine Triangularize, which computes a Lazard tri­
angular decomposition by solving equations one by one [11]. 

External algorithms. We recall the specifications of the al­
gorithms BorderPolynomialSet and GenerateRegularSas, (see 
[3]), Triangularize, Intersect, RegularOnly (see [11]). Border-
PolynomialSet computes the border polynomial set of a regu­
lar system, whereas GenerateRegularSas decomposes the zero 
set of a pre-regular semi-algebraic system as a union of zero 
sets of regular semi-algebraic systems. Let p be a polyno­
mial, F be a polynomial list, and T be a regular chain. 
The algorithm Triangularize(F, T,mode = Lazard) computes 
regular chains Ti, i = 1, . . . , e, such that V (F ) ∩ W (T ) ⊆ 

∪e
i=1W (Ti) ⊆ V (F )∩W (T ). The algorithm Intersect(p, T ) is 

equivalent to Triangularize({p}, T, mode = Lazard). The al­
gorithm RegularOnly(T, F ) computes regular chains Ti, i = 
1, . . . , e, s.t. W (T ) \ V (

�
h∈F h) = i=1W (Ti) \ V (

�
h∈F h)∪e 

and every polynomial in F is regular modulo sat(Ti). 

The proof of the termination and correctness of the algo­
rithms rely on standard arguments used in the proof of al­
gorithm PCTD in paper [4]. Limited to space, we will not 
expand the proof here. 

Algorithm 1: RealTriangularize(T, F,N≥, P>,H � )=

Input: a regular chain T and a semi-algebraic system 
S = [F,N≥, P>,H �=] 

Output: a set of regular semi-algebraic systems Ri, 
i = 1 · · · e, such that WR(T ) ∩ ZR(S) = ∪i

e 
=1ZR(Ri). 

T := Triangularize(F, T,mode = Lazard); 
for C ∈ T do 

output RealTriangularize(C,N≥, P>, H � ∪ init(T ) �= ); =

7. SET THEORETICAL OPERATIONS 
In paper [3], we proved that every semi-algebraic set can be 
represented by the union of zero sets of finitely many regular 
semi-algebraic systems. It is natural to ask how to perform 
set theoretical operations, such as union, intersection, com­
plement and difference of semi-algebraic sets based on such 
a representation. 

Note that each (regular) semi-algebraic system can also be 
seen as a quantifier free formula. So one can implement the 
set operations naively based on the algorithm RealTriangu­
larize and logic operations. However, an obvious drawback of 

such an implementation is that it totally neglects the struc­
ture of a regular semi-algebraic system. 

Indeed, if the structure of the computed object can be ex­
ploited, it is possible to obtain more efficient algorithms. 
One good example of this is the Difference algorithm, which 
computes the difference of zero sets of two regular systems, 
presented in [6]. This algorithm exploits the structure of a 
regular chain and outperforms the naive implementation by 
several orders of magnitude. 

Apart from the algebraic computations, the idea behind the 
Difference algorithm of paper [6] is to compute the difference 
(A1 ∩A2) \ (B1 ∩B2) in the following way: 

(A1 ∩B1) ∩ (A2 \B2)




(A1 \ B1) ∩ A2. 

Observe that if A1 ∩B1 = ∅, then the difference is (A1 ∩A2). 
Moreover, computing ∩s

i=1Ai \ ∩t
i=1Bi (s, t ≥ 2) can be 

reduced to the above base case. 

In this section, we present algorithms (Algorithm 4 and 5) 
which take advantage of the algorithm Difference (also an 
algorithm Intersection derived from it) and the idea presented 
above for computing the intersection and difference of semi-
algebraic sets represented by regular semi-algebraic systems. 

Algorithm 2: RealTriangularize(T, N≥, P>,H � )=

Input: a regular chain T and a semi-algebraic system 
S = [∅, N≥, P>,H �=] 

Output: a set of regular semi-algebraic systems Ri, 
i = 1, . . . , e, such that WR(T ) ∩ ZR(S) = ∪e

i=1ZR(Ri). 
H := init(T ) ∪H ; 
T := {[T, ∅]}; T ′ := ∅; 
for p ∈ N do 

′ ′ for [T , N ] ∈ T do

T ′ := T ′ ∪ {[C,N ′ ] | C ∈ Intersect(p, T ′ )};

T ′ := T ′ ∪ {[T ′ , N ′ ∪ {p}]}


T := T ′ ; T ′ := ∅; 

T := {[T ′ , N ′ ∪ P,H ] | [T ′ , N ′ ] ∈ T}; 
while T � ∅ do = 

′ ′ ′ ′ let [T , P , H ] ∈ T; T := T \ {[T , P , H ]}; 
′ ′ for C ∈ RegularOnly(T , P ∪H) do 

′ BP := BorderPolynomialSet(C, P ∪H); 
′ (DP,R) = GenerateRegularSas(BP,C, P ); 

if R � ∅ then output R;= 
′ for f ∈ DP \ (P ∪H) do 

′ T := T ∪ {[D, P ,H ] | D ∈ Intersect(f, C)}; 

Algorithm 3: RealTriangularize(T,Q)


Input: T , a regular chain; Q, a quantifier free formula

Output: a set of regular semi-algebraic systems Ri,

i = 1, . . . , e, such that WR(T ) ∩ ZR(Q) = ∪e

i=1ZR(Ri).

for each conjunctive formula F ∧N≥ ∧ P> ∧H � do
= 

output RealTriangularize(T, F,N≥, P>,H � ); =

8. EXPERIMENTATION 
In this section, we report on the experimental results of the 
techniques presented in this paper. The systems were tested 



Algorithm 4: DifferenceRsas(R,R ′ ) 

Input: two regular semi-algebraic systems R = [Q, T, P>] 
[Q ′ ′ ′ and R ′ = , T , P >] 

Output: a set of regular semi-algebraic systems Ri, 
i = 1, . . . , e, such that ZR(R) \ ZR(R ′ ) = ∪i

e 
=1ZR(Ri). 

begin 

Q := Q ∧ P>; 
Q ′ ′ := Q ′ ∧ P>;

T := Difference(T, T ′ );

T ′ := Intersection(T, T ′ );

if T ′ = ∅ then return R;

for [T ∗ ,H ∗ ] ∈ T ′ do


Q ∗ = Q \Q ′ ∧H �
∗ ;=

output RealTriangularize(T ∗ , Q ∗ ) 

for [T ∗ ,H ∗ ] ∈ T do

Q ∗ = Q ∧H �

∗ ;
=

output RealTriangularize(T ∗ , Q∗ ) 

Algorithm 5: IntersectionRsas(R,R ′ ) 

Input: two regular semi-algebraic systems R = [Q, T, P>] 
[Q ′ ′ ′ and R ′ = , T , P >] 

Output: a set of regular semi-algebraic systems Ri, 
i = 1, . . . , e, such that ZR(R) ∩ ZR(R ′ ) = ∪e

i=1ZR(Ri). 
Q ∗ ′ := Q ∧ P> ∧Q ′ ∧ P>; 
for [T ∗ ,H ∗ ] ∈ Intersection(T, T ′ ) do 

∗ output RealTriangularize(T , Q ∗ ∧H �
∗ 
=) 

on a machine with Intel Core 2 Quad CPU (2.40GHz) and 
3.0Gb total memory. The time-out is set as 3600 seconds. 
The memory usage is limited to 60% of total memory. NA 

means the computation does not finish in the resource (time 
or memory) limit. 

In Table 1, RTD denotes RealTriangularize. The subscripts 
re and inc denote respectively the recursive and incremen­
tal implementation of RealTriangularize. The suffixes +relax 

and −relax denote respectively applying and not applying 
relaxation techniques. The name RR, short name for Re­
moveRedundantComponents, is an algorithm, implemented 
based on the algorithm DifferenceRsas, to remove the redun­
dant components in the output of RTD. For each algorithm, 
the left column records the time (in seconds) while the right 
one records the number of components in the output. 

Table 1 illustrates the effectiveness of the techniques pre­
sented in this paper. For system 8-3-config-Li, RTD|inc 

greatly outperforms RTD|re. Moreover, RR helps reduce 
the number of the output components of RTD|re from 203 
to 45. For system Metha0, with the relaxation technique, 
both timing and the number of components in the output 
are reduced. For system SEIT, with the help of relaxation, 
RTD|re can now solve it within half an hour. 

To conclude, the algorithms of [3] can, in practice, be of­
ten substantially improved by better analysis of the border 
polynomials, by relaxation (where allowed) and by the in­
cremental approach. The experimentation shows that the 
latter can sometimes result in a speed-up by more than 10. 
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