

Citation for published version:
Boenn, G, Brain, M, De Vos, M & ffitch, J 2011, Anton — A Rule-Based Composition System. in Proceedings of
ICMC 2011. ICMC, University of Huddersfield and ICMA, pp. 135-138, Proceedings of ICMC2011, 1/08/11.

Publication date:
2011

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161908641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/anton--a-rulebased-composition-system(1f062710-83de-4a70-aef6-1bfcea344a28).html

ANTON – A RULE-BASED COMPOSITION SYSTEM

Georg Boenn

Cardiff School of Creative & Cultural Industries
University of Glamorgan, UK

Martin Brain, Marina De Vos, John ffitch

Department of Computer Science
University of Bath, UK

jpff@cs.bath.ac.uk

ABSTRACT

We investigate the use of declarative logic programming
in the automated composition of music. We show that
it is possible to use Answer Set Programming (ASP) to
create ab initio short musical pieces that are both melodic
and harmonic and have an appropriate rhythmic structure
based on Farey series.

Our system, ANTON, named in honour of our favourite
composer of the second Viennese School, is presented as
both a design and as a practical working system, show-
ing that rule-based declarative systems can be used effec-
tively. We report on our experience in using ASP in this
system, and indicate a number of potentially exciting di-
rections in which this system could develop, both musi-
cally and computationally.

1. INTRODUCTION

It has been said that deciding what the next note should
be is the composer’s fundamental problem! Many meth-
ods have been used both formally and informally to gen-
erate notes, from traditional techniques like repetition of
all kinds, arpeggiation, inversion and the rest, to full al-
gorithmic composition. As a side effect of other research
in the use of logic in a range of problems, we started to
investigate rules in music. We report here on the second
version of our system that incorporates rules for melody,
harmony and rhythm. Earlier versions of the system have
been reported in the logic programming literature [6, 7, 8],
but here we report for the first time the incorporation of
rhythm for each part. We also introduce a methodology
for evaluation of the musical results.

2. PROCESS-CONTROLLED COMPOSITION

Automation of compositional processes is not new. Per-
haps the most frequently quoted is the Musical Dice Game
(Musikalisches Würfelspiel) [10] often credited to Mozart,
which was probably only one example of a game com-
monly played in Mozart’s day.

More recent examples of the automation of compo-
sitional processes include serial techniques, pastiche via
Markov chains [11] and use of chaotic processes [4]. This
area is often called algorithmic composition, but that name
is a little restrictive. In particular in this paper we describe

not an algorithm but a set of rules, and the algorithm of re-
alisation is not specified.

Our rule-based approach is closer to the constraint sys-
tem of Anders [2], or the Bach chorale harmonisations
of Ebcioğlu [12]. Moreover we are dedicated to writing
compact and simple rules, with no sequentialisation or in-
terpretation. Our work is based on the logic programming
paradigm called Answer Set Programming.

3. ANSWER SET PROGRAMMING

Our system uses a form of logic programming called An-
swer Set Programming (ASP) [3] and specifically the lan-
guage AnsProlog. Here we only present a short flavour
of the language AnsProlog, and the interested reader is
referred to [3] for a more in-depth coverage.

AnsProlog is a declarative knowledge representation
languages that allows the programmer to describe a prob-
lem and the requirements on the solutions in an intuitive
way, rather than describing the algorithm to find the solu-
tions to the problem.

The basic components of the language are atoms, el-
ements that can be assigned a truth value. An atom can
be negated using negation as failure in order to create the
literal not a. We say that not a is true if we cannot find
evidence supporting the truth of a; somebody is not guilty
unless evidence is available. If a is true then not a is false
and vice versa.

Atoms and literals are used to create rules of the gen-
eral form: a← B,not C.where a is an atom, B and C are
sets of atoms. Intuitively, this means if all elements of B
are known/true and no element of C is known/true, then
a must be known/true., We refer to a as the head and
B∪not C as the body of the rule. Rules with empty body
are are called facts; the head should always be true. A
AnsProlog program is a finite set of rules.

The semantics of AnsProlog are defined in terms of
answer sets – assignments of true and false to all atoms
in the program that satisfy the rules in a minimal and con-
sistent fashion. A program has zero or more answer sets,
each corresponding to a solution, or in this case, a dif-
ferent musical piece. We exploit this semantics to pro-
duce different musical pieces that do not break rules of
the style.

When used as a programming language, AnsProlog
is enhanced to contain constraints (e.g. ← b,not c) and
choice rules (e.g. {a,b,c} ← b,not c). The former are

rules with an empty head, stating that an answer set can-
not meet the conditions given in the body. The latter is
a short hand notation for a conditional, non-deterministic
choice; if the conditions in the body are met then one of
the atoms in the head must be contained in an answer set.
These additions are syntactic sugar and can be removed
with linear, modular transformations (see [3]). Variables
and predicated rules are also used and are handled, at the
theoretical level and in most implementations, by instan-
tiation (referred to as grounding).

An ASP system is composed of two processes, remov-
ing the variables from the program by instantiation with a
grounder and computing answer sets of the propositional
program with an answer set solver. We use GRINGO [14]
and CLASP [13] for these.

4. ANTON

Our system implements the melody and counterpoint rules
described by [16]. We treat these two components simul-
taneously; that is we do not create a melody and then har-
monise it. It is also a composition system rather than im-
provisation, as it considers the whole piece out of time.
Other modes of operation are supported, including com-
puter aided composition and diagnosis of existing pieces.

The rules aim to compose in a sub-style of Renais-
sance Counterpoint, but there are also rules that govern
sequence and timing. The rules can be considered in three
areas; basic rules, style rules and rhythm rules.

4.1. Basic Rules

The basic rules define fundamental concepts of Western
diatonic music such as consonant intervals, time passing,
and valid note sequences, keys and modes. For example
in the rule section called notes we define consonance:

%% Consonant intervals are
%% unison (0), minor third (3),
%% major third (4), fourth (5),
%% perfect fifth (7) (mod 12)
consonantInterval(0).
consonantInterval(3).
consonantInterval(4).
consonantInterval(5).
consonantInterval(7).

and rules for melodic minor, where T is a time step and P
is a part; the rule can be read as it is an error for a part to
have move upwards to note 9 in the minor mode, i.e. the
minor sixth is only usable in a minor key when the melody
is descending.

error(P,T,"Invalid in a minor key") :-
chosenChromatic(P,T,9), upAt(P,T-1),
mode(minor), partTime(P,T-1).

We use the predicate error rather than an empty clause
so it can be instantiated to print a message when we are
running in diagnostic mode (see section 6). When we are

composing a constraint is used to prevent error occurring
in the solution.

These rules are held in a number of files and are in-
cluded via a PERL script to suit the requested style, in
particular the mode, number of parts, etc.

The rules in this section apply in a wide range of styles.

4.2. Style Rules

The second class of rules relate to the details of Renais-
sance Counterpoint. For example we have the rules A leap
of an octave is only allowed from the fundamental, and No
tri-tones, the later encodes as:

error(MP,T,"Tri-tone") :-
chosenNote(MP,T,N1),
chosenNote(MP,T+2,N1+6).

error(MP,T,"Tri-tone") :-
chosenNote(MP,T,N1),
chosenNote(MP,T+2,N1-6).

These are negative rules, which are in effect constraints.
In fact the rules are either definitional or constraints. For
example the style rule that parts should not cross can eas-
ily be encoded as it should not being the case that a part is
lower than the next part at any time. All the rules were de-
veloped from [16] in a very short time by a musician and
a computer scientist sitting together. Indeed it is our con-
tention that rule-based mechanisms are easy to develop.

4.3. Rhythm Rules

Our first version of ANTON created simple chorale-like
pieces which is a major restriction, and so we have de-
veloped a set of rules that encode some types of rhythm.
Much of this follows the use of Farey sequences as devel-
oped in [5], which can model a large variety of rhythmic
structures.

Allen [1] describes the 13 possible relations between
two temporal intervals. These have been used as the basis
of temporal interval logics and give a very expressive lan-
guage for talking about the relations (and thus harmonisa-
tion) between different parts. However directly expressing
these relations within AnsProlog is problematic. Part of
this difficulty due to current solvers requiring programs to
be instantiated before answer sets can be computed. The
13 different relations over a large domain would result in
an extremely large grounded program with which current
solvers cannot cope. For this reason we have used a sim-
plification of the Allen intervals, using a single predicate,
noteOverlap which is true if there is any instant when
both its arguments are extant. The noteOverlap predi-
cate combines nine (begins, contained, overlaps, ends and
their converses plus same) of the different Allen relations.
This is are sufficient for the style of music that we are
currently modelling; we will consider relaxing this in sec-
tion 7.

The rhythm is created via a tree, where each node is
a musical time interval and the children are equal spaced
subdivisions. The number of children is limited by the

Figure 1. Fragment by ANTON2.0

order of the Farey sequence, and each child can be subdi-
vided. While the code is written to allow any maximum
order, for reasons of efficiency, and providing sufficient
variety for our style of music, we restrict the order to be
less than or equal to 3. This provides us with as a suf-
ficiently rich subset of trees (and hence rhythms) for our
musical genre.

The rhythm tree for our style has three duration levels
(measure, metre and notes) with each its own set of rules,
allowing us to specify points of stress, chords and time
signatures. While for each part an individual note duration
layer is created, all parts will have the same structure for
the measure and metre layer. Without this constraint no
consistency in piece can be guaranteed.

In figure 1 we present a small fragment of an ANTON
piece, clearly showing the independence of the parts, and
including triplets from the Farey sequence maximum of
three.

4.4. Process Control

The complete system consists of three major phases; build-
ing the program, running the solver and interpreting the
results. First we use a Perl script to assemble the rules
required for a particular piece; for example suppose we
wish to create a 4 bar piece in E major with rhythm one
would use the Perl wrapper and write

$ programBuilder.pl --task=compose \
--mode=major --time=16 \
--rhythm > program

which builds the AnsProlog program, giving the length
and mode.

These rules are passed to the grounder and on to the
solver to create solution; that is pieces of music that sat-
isfy the rules provided.

$ gringo --compat < program \
| clasp > piece

The third stage is to interpret the results. At present
we provide three interpretations; a printed list of notes, a
Lilypond [15] score description, or a Csound [9] csd file
incorporating a simple orchestra.

$./parse.pl --output=csound \
< piece > piece.csd

$./parse.pl --output=lilypond \
< piece > piece.ly

5. EVALUATION OF ANTON

An important question that is hard to answer is whether
the notes created by ANTON are truly music. Clearly we
have listened to many outputs as part of the development,
and are satisfied with them. But in an attempt to give
more credence to our assertions we have started a program
of listening comparisons.1 We have collected a number
of ANTON pieces, together with transcriptions of histori-
cal composers and contemporary composers2, and pieces
written using random note selection.

A blind selection from these are then presented to a
number of individuals, both musically trained and not, for
rating.

At the time of writing we do not have sufficient trials
for any statistical significance, but we can report that so
far the results are as expected; ANTON does write music.
We intend to develop this evaluation strategy in the near
future.

6. OTHER CONSIDERATIONS

As described above this is a rule based composition sys-
tem. But ANTON is much more than that. If a complete
piece is presented to it it will indicate whether it conforms
to the rules, diagnostic mode. By defining the error predi-
cate to include messages as to which rule failed it is possi-
ble to see why the piece is not within the style. We envis-
age that this mode could be useful in testing student works
that are supposed to be in a particular style. We did indeed
use this mode while developing the rules.

There is also an intermediate state of use, when some
of the piece is specified, and the system will provide the
rest. In the simple case this becomes a harmoniser, such
as might be for Bach chorales, but it could be the end-
ing, or specific moments when certain notes or chords are
required. In the longer term this might be of use in film
music or similar commodity needs.

1But not currently completed
2Not necessarily of the same quality

It maybe possible to use an external program to im-
plement the Allen relations in support of the ASP system,
but this is a significant structural change.

There still remain a few areas that ANTON does not
currently address. This include rhythmic structure, such
as balancing, and the vexed problem of larger-scale de-
sign. We see the rôle of ANTON as more creating short
passages, and a different set of rules will be needed to as-
semble them into a longer piece.

At present we have only one set of style rules. We
have plans to explore other areas, and we are aware of an
attempt to create trance. We are also exploring methods
of varying the rule selection and presenting a more user-
oriented interface to the underlying logic.

7. CONCLUSIONS

We have presented a rule-based system that can use recent
advances in logic programming to create a constructive,
diagnostic or flexible system for music in one particular
style. The framework is adaptable to other musical styles
with some additional sets of rules. The music it produces
in compositional mode is generally pleasant and accept-
able, according to very preliminary listener tests, and on
occasions produces fine moments.

There are many ways the system could be developed.
For example we might throw light on the compositional
process by learning aspects of the rules, finding which are
inconsistent or redundant, or determining the importance
of rules. We could investigate whether there are ‘unspo-
ken’ rules, and experiment to find unacknowledged rules
of composition. One particularly interesting possibility is
using the system to generate a large set of pieces, acquir-
ing human evaluations of the ‘quality’ of each and then
using techniques such as inductive logic programming to
infer rules for composing ‘good’ pieces.

Real composers sometimes break the rules. This could
be simulated by one of a number of extensions to answer
set semantics (preferences, consistency restoring rules, de-
fensible rules, etc.). However, how to systematise the
knowledge of when it is acceptable to break the rules and
in which contexts it is ‘better’ to break them is an open
problem.

We present ANTON as a tool for better understanding
of the compositional process.

8. REFERENCES

[1] J. F. Allen, “Maintaining Knowledge about Tempo-
ral Intervals,” CACM, vol. 26, pp. 198–3, 1983.

[2] T. Anders, “Composing Music by Composing Rules:
Design and Usage of a Generic Music Constraint
System,” Ph.D. dissertation, Queen’s University,
Belfast, Department of Music, 2007.

[3] C. Baral, Knowledge Representation, Reasoning and
Declarative Problem Solving, 1st ed. Cambridge
University Press, 2003.

[4] R. Bidlack, “Chaotic Systems as Simple (but Com-
plex) Compositional Algorithms,” Computer Music
Journal, vol. 16, no. 3, pp. 33–47, Fall 1992.

[5] G. Boenn, “Automated Analysis and Transcription
of Rhythm Data and their Use for Composition,”
Ph.D. dissertation, University of Bath, 2011.

[6] G. Boenn, M. Brain, M. De Vos, and J. ffitch,
“Automatic Composition of Melodic and Harmonic
Music by Answer Set Programming,” in Interna-
tional Conference on Logic Programming, ICLP08,
ser. Lecture Notes in Computer Science, vol. 4386.
Springer Berlin / Heidelberg, 2008, pp. 160–174.

[7] ——, “ANTON: Composing Logic and Logic Com-
posing,” in Logic Programming and Nonmonotonic
Reasoning, 10th International Conference, E. Er-
dem, F. Lin, and T. Schaub, Eds., Potsdam, Ger-
many, September 2009, pp. 542–547.

[8] ——, “Automatic Music Composition using An-
swer Set Programming,” The Theory and Practise
of Logic Programming, 2010.

[9] R. Boulanger, Ed., The Csound Book: Tutorials in
Software Synthesis and Sound Design. MIT Press,
2000.

[10] J. Chuang, “Mozart’s Musikalisches Würfelspiel,”
http://sunsite.univie.ac.at/Mozart/dice/, 1995.

[11] D. Cope, “A Musical Learning Algorithm,” Com-
puter Music Journal, vol. 28, no. 3, pp. 12–27, Fall
2006.

[12] K. Ebcioğlu, “An Expert System for Harmonization
of Chorales in the Style of J.S. Bach,” Ph.D. disser-
tation, State University of New York, Buffalo, De-
partment of Computer Science, 1986.

[13] M. Gebser, B. Kaufmann, A. Neumann, and
T. Schaub, “Conflict-Driven Answer Set Solving,”
in Proceeding of IJCAI07, 2007, pp. 386–392.

[14] M. Gebser, T. Schaub, and S. Thiele, “GrinGo: A
New Grounder for Answer Set Programming,” in
Proceedings of the Ninth International Conference
on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’07), ser. Lecture Notes in Artificial In-
telligence, C. Baral, G. Brewka, and J. S. Schlipf,
Eds., vol. 4483. Springer-Verlag, 2007, pp. 266–
271.

[15] H.-W. Nienhuys and J. Nieuwenhuizen, “Lilypond, a
system for automated music engraving,” in Proceed-
ings of the XIV Colloquium on Musical Informatics
(XIV CIM 2003), Firenze, Italy, May 2003.

[16] M. Thakar, Counterpoint. New Haven, 1990.

