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    Abstract: 16 

The majority of football players succumb to fatigue towards the end of the game. The 17 

study was designed to examine the influence of protein co-ingestion with CHO versus an 18 

isocaloric CHO supplement on subsequent running capacity towards the end of a 19 

simulated football match. Six male amateur football players participated in 3 trials 20 

applied in a randomized cross-over experimental design. A laboratory based football-21 

specific intermittent exercise was allocated for 75 minutes interspersed with 15 minutes 22 

recovery, immediately followed by run time to fatigue at 80% VO2peak. On each trial, 23 

participants randomly ingested a placebo, 6.9% carbohydrate (CHO) or 4.8% CHO plus 24 

2.1% protein (CHO-P) supplements matched for color and taste prior to exercise and 25 

during half-time. CHO-P resulted in longer run time to fatigue (23.02 ± 5.27 minutes) 26 

than CHO (16.49 ± 3.25 minutes) and Plc (11.00 ± 2.80 minutes) (P < 0.05). Blood 27 

glucose was higher in CHO-P at the point of fatigue (4.68 ± 0.64) compared to CHO and 28 

Plc (3.92 ± 0.29 and 3.66 ± 0.36, respectively; P < 0.05). RPE were lower in CHO-P trial 29 

at the onset of exercise and towards the end of intermittent exercise when compared to 30 

Plc and CHO (P < 0.05). Subsequent running capacity following limited recovery from 31 

intermittent exercise was enhanced when protein was added to a CHO supplement. This 32 

improvement may suggest an ergogenic benefit on endurance capacity during 33 

intermittent activity with protein co-ingestion.  34 

  35 

Keywords: amino acids, glycogen, nutrition, soccer, sports drinks, performance 36 

37 
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Introduction 38 

 39 

     It has been established that the majority of football players succumb to fatigue 40 

towards the latter stages of the game (Mohr et al., 2003, Bradley et al., 2009). 41 

Furthermore, It has been postulated that the depletion of glycogen stores is a critical 42 

factor in the onset of fatigue during the game (Reilly, 1997, Bangsbo et al., 2006). This 43 

was suggested to be in relation to the greater reliance on CHO metabolism during match 44 

play (Hawley et al., 2006). The ingestion of CHO was shown to influence football-45 

specific intermittent exercise in both field (Kirkendall et al., 1988, Currell et al., 2009), 46 

indoor (Balsom et al., 1999b, Welsh et al., 2002, Foskett et al., 2008) and laboratory 47 

based (Bangsbo et al., 1992b, Balsom et al., 1999a) investigations. Therefore, it is 48 

reasonable to suggest that rapid means of replenishing or sparing these endogenous CHO 49 

stores may have a positive influence on performance during the crucial periods of the 50 

game, as muscle glycogen depletion closely parallels perception of fatigue (Bergstrom et 51 

al., 1967) and consequently lead to the termination of exercise or significant reductions 52 

in exercise intensity (Ivy et al., 2003). This may present a means of gaining a 53 

competitive edge over rivals through attenuating the decrement in performance shown to 54 

be a feature towards the latter stages of the game (Reilly et al., 2008). In addition, the 55 

ingestion of CHO was shown to be causally related to rapid restoration of muscle 56 

glycogen stores, and a general positive correlation was observed between the amount of 57 

CHO ingestion and muscle glycogen resynthesis until it plateaus at CHO intake rates of 58 

~1.2 g.kg
-1

.h
-1 

(Burke et al., 2004, Jentjens and Jeukendrup, 2003). Indeed, CHO intake 59 

was suggested to be the primary nutrient during recovery (Burke et al., 2006). However, 60 

it was reported that football players are likely to consume inadequate amounts of CHO 61 
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(Maclaren, 2003); considerably below the recommended quantities for maximal 62 

glycogen resynthesis (Burke et al., 2006) and therefore would not be likely to achieve 63 

such intakes. This suggests sub optimal nutritional strategies for glycogen repletion for 64 

players prior to and during a competitive match. Moreover, low muscle glycogen levels 65 

before training is often associated with the players’ feeling of tiredness and the 66 

concomitant negative effects on the intensity of the training session (Bangsbo et al., 67 

2006). Thus, the required optimal adaptations to the training stimuli may also become 68 

compromised (Hawley et al. 2006). 69 

 70 

     From a performance perspective, the influence of protein co-ingestion with a 71 

CHO sports beverage on subsequent performance was investigated during short-term 72 

recovery (≤ 6 hours) following a prior exercise bout in both cycling (Williams et al., 73 

2003, Berardi et al., 2008, Ferguson-Stegall et al., 2011) and running (Betts et al., 2005, 74 

Betts et al., 2007) based modes of exercise. Significant improvements were observed by 75 

some (Berardi et al., 2008, Ferguson-Stegall et al., 2011), but not all (Toone and Betts, 76 

2010, Breen et al., 2010, van Essen and Gibala, 2006) time trial investigations. Time to 77 

exhaustion performance measures, however, seem to elicit more pronounced benefits in 78 

cycling (Ivy et al., 2003, Saunders et al., 2004, Saunders et al., 2007, McCleave et al., 79 

2011). A limited number of running-based investigations were instigated, not 80 

withstanding the fact that they augmented significant improvements when a CHO-P 81 

beverage was compared to CHO matched in their CHO content (Betts et al., 2007) or 82 

caloric equivalency (Niles et al., 2001). More recently, protein co-ingestion was 83 

indicated to maintain the efficacy of a CHO beverage, even when both CHO and caloric 84 

contents were reduced (Martinez-Lagunas et al., 2010, McCleave et al., 2011). Overall, 85 
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there is a clear evidence of an ergogenic benefit of CHO-P supplementation during 86 

exercise (Stearns et al., 2010) and following short-term recovery (Williams et al., 2003, 87 

Betts et al., 2007)  when time to exhaustion is the performance measure. It remains 88 

equivocal, however, whether this benefit is achieved by the protein fraction per se or the 89 

increased energy content in the CHO-P beverage when compared to CHO. Thus, the 90 

efficacy of CHO-P remains ambiguous (Martinez-Lagunas et al., 2010). In light of the 91 

uncertainty in the literature regarding the efficacy of CHO-P beverages and the absence 92 

of any data regarding CHO-P supplementation during football-specific intermittent 93 

exercise, the study was aimed to establish whether the exogenous CHO-P intake prior to 94 

exercise and during short-term recovery could induce an ergogenic benefit on 95 

subsequent run time to fatigue following a football-specific intermittent exercise when 96 

compared to an isocaloric CHO supplement. A secondary aim was to examine whether 97 

more glucose would be available at the point of fatigue with protein co-ingestion.  98 

Materials and Methods 99 

Subjects 100 

     6 male amateur football players (age 26 ± 2 years, BM 71 ± 5 kg, height 180 ± 7 101 

cm, VO2peak 51.4 ± 5 ml.kg.min
-1

) were randomly recruited from the University of 102 

Brighton to participate in the study. The subjects trained for a minimum of 2 103 

sessions/week of endurance exercise, and are regular participants in a minimum of one 104 

competitive or recreational match/week. All subjects received a participant information 105 

sheet indicating the testing procedure and risks associated. The subjects gave their 106 

informed written consent to the study that had been approved by the University of 107 
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Brighton Ethical Committee and completed medical questionnaires to ensure the absence 108 

of any risk factors related to the nature of study prior to participating. 109 

 110 

Experimental design 111 

 112 

     Each subject was required to attend Welkin laboratories (Chelsea school, 113 

Eastbourne) on four separate occasions separated by at least 6 days. The first visit 114 

included preliminary measurements for each subject. The subsequent 3 visits included 115 

the participants to undertake 3 experimental conditions; placebo (Plc), carbohydrate with 116 

added protein (CHO-P) and isocaloric carbohydrate (CHO) beverages ingested 15 117 

minutes prior to the exercise protocol and during the simulated half-time interval on the 118 

second, third and fourth visits in a randomized cross-over experimental design applied in 119 

a blind manner. Prior to the second visit, the subjects were asked to refrain from 120 

strenuous exercise, alcohol and caffeine consumption and to record their dietary intake 121 

in the previous 24 hours, which were duplicated on the preceding trials. A dietary and 122 

activity record was taken from each subject 24 hours prior to the pilot trial, and was 123 

adhered to on subsequent visits. This was aimed to minimize the variability in muscle 124 

glycogen concentrations and determine the energy intake of the subjects. The dietary 125 

record provided by each subject were analyzed with nutritional assessment software 126 

(Microdiet version 2.6, Downlee Systems Ltd, UK). The subjects were instructed to 127 

abstain from vigorous exercise on the day preceding the trial and adhere to their normal 128 

training and nutritional schedules throughout the experiment. Water intake was 129 

permitted ad libitum during the second visit and was matched for the subsequent 130 
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experimental trials (460 ± 130 ml). All experimental beverages (Plc, CHO and CHO-P) 131 

were provided in a liquid form (515 ± 33 ml). Both CHO (1 g.kg
-1

 CHO) and CHO-P 132 

(0.7 g.kg
-1

 CHO + 0.3 g.kg
-1

 protein) supplements were given to provide 6.9% solutions 133 

wt/vol, with equivalent caloric contents (272 ± 19 kcal). This included 6.9% 134 

maltodextrin solution in the CHO trial, and 4.8% maltodextrin plus 2.1% whey protein 135 

mixture in the CHO-P trial. All test solutions were taste and color matched (apple and 136 

blackcurrant). The time taken by each subject to consume the different supplements was 137 

recorded. Furthermore, the rating of stomach discomfort following the allocated 2 138 

ingestion points were recorded using adapted Borg scales where the scaled ranged from 139 

“no discomfort” to “extreme discomfort”.  140 

 141 

Figure 1. Schematic representation of the experimental protocol.  *=Blood sample, † = 142 

Heart rate + RPE, U= Urine osmolality, ‡= Fluid provision, TC= Time to consume 143 

supplement (minutes), SDS= Stomach discomfort scale, TTE= Time to exhaustion. 144 

 145 

Preliminary measurements 146 

 147 

     A graded exercise test to volitional exhaustion on a motorized treadmill (Ergo 148 

ELG 70, Woodway, Germany) was allocated to determine the relative 80% VO2peak to 149 

measure exercise capacity following supplement ingestion during RTF. The test 150 

commenced with a standardized 10-minute warm-up (jogging at speed of 6 km.h
-1

) for 151 

each subject throughout the study. The expired gas samples were obtained via Douglas 152 

bag method at the final minute of each 3-minute stage. Heart rate (HR) and rating of 153 

perceived exertion (RPE) measurements were collected at similar collection times of the 154 
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expired gas of each stage. Increments of 1 km.h
-1

 were applied until running at a given 155 

speed cannot be maintained. A constant treadmill incline of 1% will be used to reflect 156 

the energetic cost of outdoor running at the speeds used in the protocol (Jones and 157 

Doust, 1996). The test was terminated when at least two of criteria of the British 158 

Association of Sport and Exercise (BASES) were observed to ensure the attainment of 159 

VO2peak (Bird and Davison, 1997). Following the incremental VO2peak test, 2 random 160 

subjects were recruited to participate in additional testing aimed to ensure the 161 

homogeneity of the 3 beverages (Plc, CHO and CHO-P) in color and taste. The subjects 162 

consumed 150 ml of each supplement in a random order and separated by 15 minutes 163 

between each feeding. Water was provided to the participants between feedings to 164 

cleanse their mouth prior to the provision of the subsequent bolus. The 2 participants 165 

were unable to distinguish any difference in neither color nor taste between the 3 166 

treatments.  At the end of their relative main trials, none of the participants in the study 167 

reported any difference in taste between the supplements provided throughout the study 168 

during an informal interview where all of which requested to know their relative random 169 

order of supplementation. Thus, the 2 random subjects chosen during the preliminary 170 

measurements were shown to reflect the group response. 171 

 172 

Experimental protocol 173 

Intermittent exercise protocol 174 

 175 

     The participants were tested between 08:30 and 11:30 following an overnight 176 

fast (≥10 hours) to account for the effects of circadian variation (Drust et al., 2005) and 177 

to ensure sufficient glycogen depletion before the commencement of the protocol. A 178 



 9 

laboratory based football-specific intermittent exercise was assigned for the study 179 

(Clarke et al., 2008). This protocol was suggested to simulate the work rate and 180 

physiological demands of competitive football (Drust et al., 2000). The duration of 181 

cycle, speeds and duration of each activity pattern and the proportion of time and 182 

corresponding speed were described elsewhere (Clarke et al., 2008). The experimental 183 

design comprised of 5 x 15-minute identical intermittent activity cycles, immediately 184 

followed by run time to fatigue (RTF) at 80% VO2peak. This mode of exercise was 185 

chosen as a measure of performance in the protocol because it was reported that time to 186 

exhaustion was directly proportional with elevated muscle glycogen availability 187 

(Kirkendall, 1993). The allocated intensity of RTF was chosen because it was shown to 188 

be sustained only when sufficient muscle glycogen is available (Coggan and Coyle, 189 

1988). In addition, there is evidence that the reliability of and exercise capacity test is 190 

compromised at intensities above 80% VO2max (Krebs and Powers, 1989). The overall 191 

duration of the 5 cycles was 75 minutes of intermittent exercise interposed with a 15-192 

minute recovery period. The subjects were instructed to run until the point of volitional 193 

exhaustion and could not maintain their relative running speeds. The participants were 194 

unaware of their performance in any trial. 195 

 196 

Table 1. Nutritional information and volume of fluids provided for the different 197 

experimental supplements (mean ± SD). 198 

 199 

Physiological measurements 200 

 201 

     Pre-trial urine samples were obtained to assess the hydration status of the 202 

subjects by using a cryoscopic osmometer (Osmocheck, Vitech Scientific Ltd, Japan). 203 
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Adequate hydration was assumed for osmolality values below 900 mOsmol.kg-1 204 

(Shirreffs and Maughan, 1998). During the football-specific protocol, HR measurements 205 

were monitored via short-range radio telemetry (Polar Sports Tester, Polar Electro, 206 

Kempele, Finland) during the 2 static pauses in each exercise block. Thereafter, HR was 207 

obtained at 1-minute intervals during RTF until volitional exhaustion. RPE were also 208 

collected at the same designated points as HR measurements during the intermittent 209 

protocol and RTF using Borg’s 6-20 scale (Borg, 1970). Ambient temperature and 210 

humidity were recorded at 45-minute intervals throughout the trials using a hygrometer 211 

(BAR688HGA, Oregon Scientific, UK) and were not different between trials: 20.6 ± 212 

0.06 C°; 42 ± 0.76% respectively.  213 

 214 

Sampling and analysis 215 

 216 

     All the equipment were calibrated prior to testing. Expired gas samples were 217 

collected via Douglas bag method and were analyzed by paramagnetic and Infrared 218 

Analyzers, respectively (Servomex, Crowborough, UK). The total volume of expired gas 219 

within the Douglas bags was measured by a dry gas meter (Cubix U6, Sensus, Raleigh, 220 

USA) and the temperatures of expired gases was determined with a digital thermometer. 221 

Blood samples were collected from each participant at rest, during the second static 222 

pause of each block, the simulated half-time interval and upon cessation of RTF to 223 

analyze blood glucose and lactate concentrations. These were obtained via fingertip 224 

capillary method through a 3 mm puncture (Accu-check Softclix Pro, Roche dignostics 225 

GmbH, Germany) and were dispensed into microvettes (~25 µl; CB300, Sarstedt, 226 
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Germany) containing lithium heparin that acts as an anticoagulant and subsequently 227 

were placed for analysis (YSI 2300 STAT plus, YSI Limited, UK). 228 

 229 

Statistical analysis 230 

 231 

     Statistical procedures were conducted using IBM SPSS statistics version 18.0 (SPSS 232 

Inc., Chicago, IL). A two-way ANOVA with repeated measures (beverage x time) was 233 

employed to identify the significant effects on the physiological parameters (heart rate, 234 

blood glucose and blood lactate) at designated points throughout the study. The 235 

difference in RTF times, distance covered during RTF, the time consumed to ingest the 236 

supplements and the stomach discomfort ratings were analyzed via one-way ANOVA 237 

with repeated measures between the three different treatment conditions. Mauchly’s test 238 

was used for sphericity; where asphericity was assumed, the Greenhouse-Geisser 239 

correction was used for epsilon < 0.75; if not, the Huynh-Feldt was adopted for less 240 

severe asphericity. Where significant F values were found a Bonferroni post hoc test was 241 

used to determine the location of the variance (Atkinson, 2002). Significance was set at 242 

P < 0.05 and all results were reported as the mean ± standard deviation (SD) of the 243 

mean. Despite the achievement of significance with only 6 participants during the time 244 

to exhaustion and in the absence of any comparable data regarding CHO vs. CHO-P for 245 

intermittent running based studies, a post hoc power analysis was applied to explore the 246 

adequacy of the sample size. From this it was determined that the applied sample of 6 247 

provided ~60% power to detect the observed difference between CHO and CHO-P of 248 

6.53 minutes with a pooled SD of 4.46 minutes using a 2-tailed t-test with a Bonferroni 249 
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correction at α level 0.05 (i.e. future similar investigations would require a sample size 250 

of ~8 participants to achieve 80% power to detect such a difference statistically). 251 

 252 

Results 253 

 254 

     The one-way ANOVA showed significant effects on the distances covered 255 

during RTF between the different drinks F(2,10) = 22.47 (P < 0.01) effect size= 0.82. The 256 

mean distance covered during the 5 blocks of intermittent exercise protocol was 11.1 ± 257 

0.01 km. The distance covered by the participants during the subsequent RTF was 2.28 ± 258 

0.7; 3.40 ± 0.8; 4.70 ± 1.2 km in Plc, CHO and CHO-P treatments, respectively. The 259 

covered distance during RTF was significantly greater (P < 0.05) in the CHO-P 260 

treatment when compared to CHO and Plc. Moreover, The distance during the CHO 261 

treatment was significantly greater (P < 0.05) than Plc.  262 

 263 

Table 2. Heart rate and blood lactate responses to the intermittent football-specific 264 

exercise and RTF (mean ± SD). 265 

 266 

     Significant differences were found in mean time to fatigue between the 267 

experimental trials F(2,10) = 22.71 (P < 0.01) effect size= 0.82. The participants were able 268 

to run longer when CHO-P was ingested (23.02 ± 5.27 minutes) as opposed to CHO 269 

(16.49 ± 3.25 minutes) and Plc (11.00 ± 2.80 minutes) treatments. Thus, a 49% 270 

improvement in time to exhaustion was observed when CHO was compared to a 271 

placebo. In the CHO-P trial, 39% and 107% improvements were observed when 272 

compared with CHO and Plc, respectively. The Bonferroni post hoc test revealed that 273 
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times to exhaustion were significantly greater (P < 0.05) in CHO-P and CHO trials when 274 

compared to a placebo. Significantly greater times to exhaustion (P < 0.05) were also 275 

observed in the CHO-P treatment versus CHO. 276 

  277 

     The mean HR during the intermittent exercise blocks and RTF during the 3 278 

experimental conditions were 157 ± 6 and 175 ± 1 bpm, respectively. The two-way 279 

ANOVA showed no significant effects of type of drink consumed on HR F(1.001, 5.007) = 280 

0.002 (P > 0.05). The ANOVA revealed a significant main effect of time on HR F(7,35) = 281 

828.42 (P < 0.01). However, no interaction between time and trial were identified 282 

F(14,70)= 0.486 (P > 0.05). 283 

 284 

Figure 2. Mean run time to fatigue following the ingestion of Plc, CHO and CHO-P 285 

beverages before exercise and during half time. *= Significantly greater than placebo (P 286 

< 0.05), † = Significantly greater than CHO (P < 0.05). 287 

 288 

     Ratings of perceived exertion were shown to be significantly different between 289 

the different beverages F(2,10) = 12.34 (P < 0.05). The time of exercise showed a 290 

significant effect on RPE (F(4,20) = 38.74; P < 0.01). The repeated measure ANOVA 291 

indicated an interaction between time and trial on RPE (F(8,40) = 3.49; P < 0.05).  292 

Significantly lower ratings of perceived exertion were observed in the CHO-P trial at the 293 

first block of exercise following the first feeding when compared to CHO and Plc trials 294 

(P < 0.05). RPE was also shown to be significantly lower during the fourth block of 295 

exercise following the second feeding when compared to the CHO trial  (P < 0.05). The 296 

final intermittent exercise block revealed lower RPE when CHO-P was ingested versus 297 

CHO and Plc treatments (P < 0.05). 298 
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 299 

     Pre-trial blood glucose concentrations were similar for all three trials. There was 300 

a significant effect of trial on blood glucose levels F(2,10) = 86.84 (P < 0.01). A 301 

significant effect of time was observed on blood glucose levels F(7,35)  = 20.82 (P < 0.01). 302 

The repeated measures ANOVA also identified a significant interaction between time 303 

and trial F(14,70) = 13.12  (P < 0.01). Blood glucose concentrations were significantly 304 

higher at 15 minutes in the CHO trial when compared to Plc (P < 0.05). At the end of 305 

half-time and following the second bolus, blood glucose concentrations increased 306 

markedly (P < 0.01) in CHO and CHO-P treatments compared with Plc treatment. The 307 

increase at the end of half-time in the CHO trial was also significantly greater than 308 

CHO-P (P < 0.05). During the subsequent 2 intermittent exercise blocks, no significant 309 

differences in glucose concentrations were observed. By the end of time to exhaustion, 310 

19% and 28% greater blood glucose was available in CHO-P trial when compared to 311 

CHO and Plc (P < 0.05).  312 

 313 

Table 3. Time to consume supplements and ratings of stomach discomfort with the 314 

different experimental supplements ingested before exercise and during half-time (mean 315 

± SD). *= Significantly greater than placebo (P < 0.05). 316 

 317 

     A significant effect of exercise time was shown on blood lactate concentrations 318 

F(7,35) = 29.10 (P < 0.01). No significant differences were identified by the two-way 319 

ANOVA between trials F(2,10) = 0.071  (P > 0.05). The interaction between the type of 320 

drink consumed and time did not show any significant effects F(14,70) = 0.471 (P > 0.05). 321 

Pre-trial blood lactate concentrations were similar between trials. A marked increase was 322 

shown in the first exercise block in all trials, reaching the highest point during the 323 
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protocol. Thereafter, blood lactate underwent a gradual decline during the first-half until 324 

reaching near resting levels during half-time. During the second-half and RTF, blood 325 

lactate increased higher than half-time values. However, values did not reach peak levels 326 

observed at the beginning of exercise.     327 

 328 

Discussion 329 

 330 

     The primary purpose of this investigation was to determine whether a CHO-P 331 

beverage induced an enhanced subsequent running capacity versus an isocaloric CHO 332 

beverage ingested before exercise and during half-time. The current study revealed that 333 

subsequent running capacity following football-specific intermitted exercise can be 334 

restored more completely when a mixture of CHO and whey protein is ingested 335 

compared with CHO fraction alone matched in caloric equivalency. A secondary aim of 336 

the study was to determine whether there was more glucose available at the point of 337 

fatigue in the CHO-P trial when compared with CHO. As hypothesized, greater RTF and 338 

blood glucose at the point of fatigue were observed in CHO-P as opposed to CHO (P < 339 

0.05). 340 

Figure 3. Mean blood glucose concentrations following the ingestion of the 3 341 

experimental beverages before exercise and during half-time. *= Significantly greater 342 

than placebo (P< 0.05), † = Significantly greater than CHO (P < 0.05), ‡= Significantly 343 

greater than CHO-P (P < 0.05). 344 

 345 

      The culmination of the results from numerous studies indicate that protein co-346 

ingestion with CHO increases the efficiency of muscle glycogen storage when 347 
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supplementation feedings are greater than 1 hour intervals, or when the amount of CHO 348 

is below the threshold of maximal glycogen resynthesis (Zawadzki et al., 1992, Ivy et 349 

al., 2002, Williams et al., 2003, Berardi et al., 2006). Post-exercise CHO-P ingestion was 350 

reported to be twice as fast during the initial 40 minutes of recovery than following 351 

isocarbohydrate or isocaloric CHO ingestion, and therefore demonstrates a distinct 352 

advantage in rapid glycogen restoration during limited recovery periods (Ivy et al., 353 

2002). It would be pertinent to suggest that higher rates of glycogen synthesis may have 354 

occurred more rapidly with a CHO-P supplement. Specifically, a preferential fiber type 355 

glycogen resynthesis may have occurred in the exercising muscle. It was shown by 356 

means of intermittent shuttle running that the amount of glycogen utilized was greater in 357 

fast-twitch (FT) than slow-twitch (ST) muscle fibers, indicating a greater reliance on FT 358 

fibers during intermittent activity (Nicholas et al., 1999). Indeed, this was shown during 359 

a football game, where 71% of FT fibers were completely or almost empty of glycogen 360 

compared with 54% in ST fibers (Krustrup et al., 2006). Interestingly, glycogen 361 

depletion in FT fibers to a critical level where maximal glycolytic rate cannot be 362 

maintained (Bangsbo et al., 1992a) was shown to determine the point of fatigue during a 363 

simulation of football (Nicholas et al., 1999) and actual match play (Krustrup et al., 364 

2006). Thus, the observed elevated blood glucose concentration late in exercise in CHO-365 

P trial may have contributed to enhanced glycogen synthesis during the low-intensity 366 

periods (standing, walking and jogging), as has been reported with CHO ingestion 367 

versus a placebo (Yaspelkis et al., 1993), and could provided tentative explanations for 368 

the observed ergogenic benefit with CHO-P supplementation. 369 

 370 



 17 

It has been suggested that CHO ingestion attenuates fatigue during steady state 371 

moderate intensity exercise by preventing hypoglycemia and maintaining CHO 372 

oxidation (Coyle et al., 1986). In concurrence, it was shown that CHO provision before 373 

exercise and during half-time of a simulated football match elicited significantly greater 374 

(P < 0.05) CHO oxidation at 45 minutes and towards the end of the game (Clarke et al., 375 

2008). Moreover, it was demonstrated that whole-body CHO oxidation during 376 

subsequent performance and following recovery was significantly greater (P < 0.01) in 377 

the CHO-P treatment than with CHO (48.4 ± 2.2 and 41.7 ± 2.6 mg.kg
-1

.min
-1

, 378 

respectively); even when CHO oxidation and storage were similar during recovery 379 

between both trials (Betts et al., 2008). Blood glucose oxidation was suggested to be 380 

dictated primarily by its availability in circulation (Weltan et al., 1998). Therefore, given 381 

that higher blood glucose levels were observed in CHO-P trial in the present study, it is 382 

likely that performance enhancements in CHO-P could be attributed to an increase in 383 

extramuscular CHO oxidation with protein co-ingestion, as recently observed (Betts et 384 

al., 2008). In the current study, improvements in performance were apparent with protein 385 

added to a CHO supplement at an exercise intensity of 80% VO2peak. Indeed, this comes 386 

in agreement with another study (Martinez-Lagunas et al., 2010) and suggests that the 387 

maintenance of euglycemia observed in the current study is, at least in part, related to the 388 

enhanced endurance capacity towards the latter stages of exercise. However, it is 389 

noteworthy that blood glucose cannot fully reinforce the CHO requirements for exercise 390 

intensities over 75% VO2max (Coyle et al., 1986) Thus, enhancements in exercise 391 

capacity my occur independent of changes in whole-body oxidation and thus may 392 

become dissociated with prevention of hypoglycemia (Claassen et al., 2005). 393 
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Figure 4. Mean RPE during the intermittent exercise blocks when placebo, CHO and 394 

CHO-P were ingested. *= Significantly lower than placebo (P < 0.05) † = Significantly 395 

lower than CHO (P < 0.05). 396 

 397 

     With regards to the current investigation, it cannot be ruled out that an enhanced 398 

central drive to exercise was induced as a result of protein co-ingestion. Thereby, fatigue 399 

during RTF may have coincided with an increase perception of fatigue originating from 400 

the central nervous system. It was indicated that the free fatty acid concentration rise 401 

progressively during a football match and a more pronounced increase is evident during 402 

the second half (Krustrup et al., 2006). Furthermore, during prolonged exercise, fatty 403 

acid mobilization exceeds that of muscle uptake and consequently elevate blood fatty 404 

acid concentration (Newsholme and Blomstrand, 2006), and may influence the onset of 405 

fatigue during  prolonged endurance exercise (Fernstrom and Fernstrom, 2006). It was 406 

postulated that the ingestion of branched-chain amino acids (BCAA) with CHO could 407 

mediate significant improvements in performance via interactions that attenuate the 408 

development of central fatigue (Meeusen et al., 2006). While there is some evidence in 409 

support of improved performance (Mittleman et al., 1998), this is not universal (Davis et 410 

al., 1999). However, the ingestion of BCAA was shown to influence ratings of perceived 411 

exertion (Blomstrand, 2001). This comes in concurrence with the current study where 412 

mean RPE in the CHO-P trial were lower throughout the protocol than both Plc and 413 

CHO treatments. This provides further support of an improvement in the central drive 414 

for exercise may be an explanation for the enhanced endurance capacity observed in the 415 

CHO-P treatment, as previously speculated (Betts et al., 2007). 416 

 417 
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It is acknowledged that the inclusion of a number of metabolic data in the current 418 

investigation would allow for a more informative discussion regarding the potential 419 

ergogenic mechanism(s) related to protein co-ingestion. Nonetheless, a myriad of studies 420 

were aimed to investigate the mechanistic effects of CHO-P and CHO supplementation 421 

on human metabolism (Cermak et al., 2009, Howarth et al., 2009, Betts et al., 2008, Ivy 422 

et al., 2003, Saunders et al., 2004). However, these investigations failed to measure the 423 

effects on subsequent endurance capacity where few studies were instigated (Betts et al., 424 

2007, Thomas et al., 2009) and none of which measured endurance performance during 425 

intermittent exercise. Therefore, in the current study, the primary aim was to determine 426 

whether CHO-P supplementation may elicit an ergogenic benefit on subsequent running 427 

capacity following short-term recovery. Correspondingly, the approach adopted in the 428 

current study was aimed to maintain the ecological validity of the experimental design 429 

that could allow for comparisons between investigations of subsequent endurance 430 

capacity with the majority of the available literature. 431 

 432 

The findings in the current study suggest important implications in sports that 433 

encompass multiple training sessions and/or competitive situations with limited recovery 434 

such as football (Burke et al., 2004). This could mediate practical nutritional 435 

interventions in team sports, given that the quantities in the CHO supplements ingested 436 

(≥1.2 g.kg
-1

.h
-1

) in many of the studies (van Loon et al., 2000, Jentjens et al., 2001) were 437 

shown to exceed that of voluntary intakes consumed by athletes (Noakes, 1993) and thus 438 

would limit in situ application. Furthermore, the levels of fluid (>1 L.h
-1

) and nutrient 439 

intake similar to the aforementioned studies were shown to evoke severe gastrointestinal 440 

discomfort in vitro (Betts et al., 2007). Thus, it would be reasonable to suggest that a 441 
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mixed nutrient diet would avoid such complications and would be advantageous, given 442 

they elicited similar recovery rates with isocaloric CHO (Berardi et al., 2006) and was 443 

shown to equal (Betts et al., 2005) or improve (Niles et al., 2001) endurance capacity.  444 

 445 

   In conclusion, the current investigation exhibited an improvement of running 446 

capacity following short-term recovery from intermittent football-specific exercise when 447 

~2% wt/vol of protein was added to a CHO supplement (~6-8% wt/vol). This comes in 448 

agreement with some of the available literature that has investigated protein co-ingestion 449 

during endurance exercise (Ivy et al., 2003, Saunders et al., 2007) and subsequent 450 

endurance capacity following short-term recovery (Betts et al., 2007, Williams et al., 451 

2003, Thomas et al., 2009). The precise mechanism behind the ergogenic benefit on 452 

endurance capacity with CHO-P ingestion remains unclear and may be related to an 453 

enhanced central drive to exercise induced by the improved extramuscular glucose 454 

oxidation late in exercise. A novel finding from the current investigation is that 455 

performance towards the final stages of the simulated game was enhanced following 75 456 

minutes of intermittent exercise when CHO-P was ingested prior to exercise and during 457 

half-time when compared to an isocaloric CHO beverage. 458 

459 
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