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Abstract

Recent work by Reiss and Ogden (2009) provides a theoretical basis for sometimes preferring restricted maxi-
mum likelihood (REML) to generalized cross validation (GCV) for smoothing parameter selection in semiparametric
regression. However, existing REML or marginal likelihood (ML) based methods for semiparametric GLMs use iter-
ative REML/ML estimation of the smoothing parameters of working linear approximations to the GLM. Such indirect
schemes need not converge, and fail to do so in a non-negligible proportion of practical analyses. By contrast, very
reliable prediction error criteria smoothing parameter selection methods are available, based on direct optimization
of GCV, or related criteria, for the GLM itself. Since such methods directly optimize properly defined functions
of the smoothing parameters, they have much more reliable convergence properties. This article develops the first
such method for REML or ML estimation of smoothing parameters. A Laplace approximation is used to obtain
an approximate REML or ML for any GLM, which is suitable for efficient direct optimization. This REML/ML
criterion requires that Newton-Raphson, rather then Fisher scoring, be used for GLM fitting, and a computationally
stable approach to this is proposed. The REML or ML criterion itself is optimized by a Newton method, with the
required derivatives obtained by a mixture of implicit differentiation and direct methods. The method will cope with
numerical rank deficiency in the fitted model, and in fact provides a slight improvement in numerical robustness on
the method of Wood (2008) for prediction error criteria based smoothness selection. Simulation results suggest that
the new REML and ML methods offers some improvement in mean square error performance relative to GCV/AIC
in most cases, without the small number of severe undersmoothing failures to which AIC and GCV are prone. This
is achieved at the same computational cost as GCV/AIC. The new approach also eliminates the convergence failures
of previous REML/ML based approaches for penalized GLMs, and usually has lower computational cost than these
alternatives. Example applications are presented in adaptive smoothing, scalar on function regression and generalized
additive model (GAM) selection.

Keywords: REML, Marginal Likelihood, GAMM, GAM, GCV, penalized GLM, penalized regression splines, stable
computation, adaptive smoothing, scalar on function regression, model selection.

1 Introduction
This paper is about reliable and efficient computation of likelihood based smoothing parameter estimates in penalized
generalized linear models (GLM). Consider a GLM in which n independent univariate response variables, yi, with
mean µi, depend on predictors via the model

g(µi) = X∗
i β

∗ +
∑

j

Lijfj , yi ∼ an exponential family distribution, (1)

where g is a known monotonic link function, the fj are smooth but unknown functions of any number of covariates,
the Lij are known linear functionals (usually dependent on covariates), and X∗

i is the ith row of the model matrix for
any strictly parametric model components, with corresponding coefficients β∗. Restriction to the exponential family
implies that var(yi) = φV (µi), for some known ‘variance function’, V , and known or unknown ‘scale parameter’,
φ. Typical Lijfj terms are fj(xi), fj(xi)zi or

∫
fj(x)ki(x)dx (where ki is known), corresponding to generalized

additive, varying coefficient and signal regression models, respectively. For more on such models see, for example,
Hastie and Tibshirani (1986, 1990); Ruppert, Wand and Carroll (2003); Wood (2006); Hastie and Tibshirani, (1993);
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Marx and Eilers (1999); Ramsay and Silverman (2005); Reiss and Ogden (2007); Wahba (1990); Eilers and Marx
(2002); Fahrmeir, Kneib and Lang (2004).

To estimate (1) in practice, the fj can be represented by intermediate rank spline type basis expansions (as origi-
nally proposed by Wahba, 1980, and Parker and Rice, 1985, for example), in which case the model becomes the GLM
(Nelder and Wedderburn, 1972)

g(µi) = Xiβ, yi ∼ an exponential family distribution, (2)

where β now includes β∗ and all the basis coefficients, and X is the corresponding n× q model matrix, with q usually
substantially less than n. If the spline bases dimensions are large enough to ensure reasonably low bias, then maximum
likelihood estimation of (2) will almost certainly lead to overfitting. To avoid this, the model should be estimated by
penalized likelihood maximization, where the penalties suppress overly wiggly components, fj . In particular, the
model is estimated by minimizing

D(β) +
∑

j

λjβ
TSjβ (3)

w.r.t. β, where D is the model deviance, defined as the saturated log likelihood minus the log likelihood, all multiplied
by 2φ (D is a useful GLM analogue of the residual sum of squares of a linear model, and working in terms of D will
allow the direct use of some results from Wood, 2008); the Sj are q × q positive semi-definite matrices and the λj

are positive smoothing parameters. Usually the βTSjβ measure the wiggliness of the fj . In fact there may be several
such penalties per fj , for example when using tensor product (e.g. Wood, 2006) or adaptive (e.g. Krivobokova et al.
2008) smoothing bases. The Sj may also be components of more general random effects precision matrices.

Given the λj , there is a unique minimizer of (3), β̂λ, which is straightforward to compute by a penalized version
of the iteratively re-weighted least squares method used for GLM estimation (PIRLS, see e.g. Wood, 2006, or section
3.2). To select values for the λj requires optimization of a separate criteria, V(λ), say, which must be chosen.

1.1 Smoothness selection: prediction error or likelihood?
The λi selection criteria that have been proposed fall in to two main classes. The first group try to minimize model
prediction error, by optimizing criteria such as Akaike’s information criterion (AIC), cross validation or generalized
cross validation (GCV) (see e.g. Wahba and Wold, 1975, Craven and Wahba, 1979). The second group treat the
smooth functions as random effects (Kimeldorf and Wahba, 1970), so that the λi are variance parameters which
can be estimated by maximum (marginal) likelihood (ML, Anderssen and Bloomfield, 1974) or restricted maximum
likelihood/generalized maximum likelihood (REML/GML, Wahba, 1985).

Asymptotically prediction error methods give better prediction error performance than likelihood based methods
(e.g. Wahba, 1985; Kauermann, 2005), but also have slower convergence of smoothing parameters to their optimal
values (Härdle, Hall and Marron, 1988). Reflecting this, published simulation studies (e.g. Wahba, 1985; Gu, 2002;
Ruppert, Wand and Carroll, 2003; Kohn, Ansley and Tharm, 1991), differ as to the relative performance of the two
classes, although there is agreement that prediction error criteria are prone to occasional severe undersmoothing. Reiss
and Ogden (2009) provide theoretical comparison of REML and GCV at finite sample sizes, showing that GCV is both
more likely to develop multiple minima, and gives more variable λj estimates. Figure 1 illustrates the basic issue. GCV
penalizes overfit only weakly, with a minimum that tends to be very shallow on the undersmoothing side, relative to
sampling variability. This can lead to overfit. By contrast, REML (and also ML) penalizes overfit more severely,
and therefor tends to have a much more pronounced optimum, relative to sampling variability. In principal, extreme
undersmoothing can also be avoided by use of modified prediction error criteria such as AICc (Hurvich, Simonoff and
Tsai, 1998), but in practice the use of low to intermediate rank bases for the fj already suppresses severe overfit, and
AICc then offers little additional benefit relative to GCV, as figure 1 also illustrates.

Greater resistance to overfit, less smoothing parameter variability and a reduced tendency to multiple minimia
suggest that REML or ML might be preferable to GCV for semiparametric GLM estimation. But these benefits must
be weighed against the fact that existing computational methods for REML/ML estimation of semiparametric GLMs
are substantially less reliable than their prediction error equivalents, as the remainder of this section explains.

There are two main classes of computational method for λj estimation: those based on single iterations and those
based on nested iterations. In the single iteration case, each PIRLS step, used to update β̂, is supplemented by a λ̂
update. The latter is based on improving a λ selection criteria Vβ̂(λ), which depends on the estimate of β̂ at the start
of the step. Vβ̂(λ) will be some sort of REML, GCV or similar criterion, but it is not a fixed function of λ, instead
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Figure 1: Example comparison of GCV, AICc and REML criteria (see section 1.1). The top left shows some x, y data
modelled as yi = f(xi) + εi, εi i.i.d. N(0, σ2) where smooth function f was represented using a rank 20 thin plate
regression spline (Wood, 2003). The other panels on the top row plot various smoothness selection criteria against log
smoothing parameters, for ten replicates of the data (each generated from the same ‘truth’). Notice how shallow the
GCV and AICc minima are relative to the sampling variability, resulting in rather variable optimal λ values (shown
as a rug plot), and a propensity to undersmooth. In contrast the REML optima are much better defined, relative to the
sampling variability, resulting in a smaller range of λ estimates. The bottom row is equivalent to the top row, but for
data with no signal, so that the appropriate smoothing parameter should tend to infinity. Notice GCV’s and AICc’s
occasional multiple minima and undersmoothing in this case, compared to the excellent behaviour of REML. Note
that while AICc and GCV are not identical (compare the rug plots) AICc provides only marginal improvement on
GCV. ML (not shown) has a similar shape to REML.

changing with β̂ from iterate to iterate. Consequently single iteration methods do not guarantee convergence to a fixed
λ̂, β̂λ̂ (see Gu, 2002, p.154; Wood, 2006, p. 180; Brezger, Kneib and Lang, 2007, Reference manual section 8.1.2).

In nested iteration, the smoothness selection criterion, V(λ), depends on β only via β̂λ. An outer iteration updates
λ̂ to optimize V(λ), with each iterative step requiring an inner PIRLS iteration to find the current β̂λ. Because
nested iteration optimizes a properly defined function of λ, it is possible to guarantee convergence to a fixed optimum,
provided that V is bounded below, and (3) has a well defined optimum (conditions which are rather mild, in practice).
The disadvantage of nested iteration is substantially increased computational complexity.

To date only single iteration methods have been proposed for REML/ML estimation of semiparametric GLMs
(e.g. Wood, 2004, using Breslow and Clayton, 1993, or Fahrmeir, Kneib and Lang, 2004, using Harville, 1977), and
in practice convergence problems are not unusual: examples are provided in Wood (2004, 2008), and in Appendix
A. Early prediction error based methods were also based on single iteration (e.g. Gu, 1992; Wood, 2004), and suf-
fered similar convergence problems, but these were overcome by Wood’s (2008) nested iteration method for GCV,
GACV (generalized approximate cross validation) and AIC smoothness selection. Wood (2008) can not be extended
to REML/ML while maintaining good numerical stability, so the purpose of this paper is to provide an efficient and
stable nested iteration method for REML/ML smoothness selection, thereby removing the major practical obstacle to
use of these criteria.

2 Approximate REML/ML for GLM smoothing parameter estimation
Since the work of Kimeldorf and Wahba (1970), Wahba (1983) and Silverman (1985), it has been recognized that the
penalized likelihood estimates, β̂, are also the posterior modes of the distribution of β|y, if β ∼ N(0,S−φ), where
S =

∑
i λiSi, and S− is an appropriate generalized inverse (see e.g. Wood, 2006). Once the elements of β are viewed

as random effects in this way, it is natural to try to estimate the λi, and possibly φ, by ML or REML (Wahba, 1985).
This preliminary section uses standard methods to obtain an approximate REML expression suitable for efficient

direct optimization to estimate the smoothing parameters of a semi-parametric GLM. Rather than follow Patterson and
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Thompson (1971) directly, Laird and Ware’s (1982) approach to REML is taken, in which fixed effects are viewed as
random effects with improper uniform priors, and integrated out. The key feature of the resulting expression is that it
is relatively efficient to compute with, and is suitable for optimizing as a properly defined function of the smoothing
parameters. That is, in contrast to previous single iteration approaches to this problem, there is no need to resort to
optimizing the REML score of a working model. Since a very similar approach obtains an approximate ML, this is
also derived. ML can be useful for comparing models with different smooth terms included, for example (REML can
not be used for such comparison because the alternative models will differ in fixed effect structure).

Consider a penalized GLM with log likelihood l(β) = log fy(y|β). Under the random effects formulation we
have an improper ‘prior’ density for β,

fβ(β) =
|S/φ|0.5

+√
2π

nb−Mp
exp{−βTSβ/(2φ)},

where |B|+ denotes the product of the non-zero eigenvalues of B. nb is the dimension of β and Mp is the dimen-
sion of the null space of S. To obtain the restricted likelihood for REML we need to integrate β out of f(y, β) =
fy(y|β)fβ(β) (for ML we would need to integrate out the part of β that is in the range space of S). In practice the
integral can be approximated as follows. Let H = −∂2l/∂β∂βT, and β̂ be the maximizer of f(y, β), that is the
penalized likelihood estimates. Then

f(y, β) ' exp
[
log{fy(y|β̂)}+ log{fβ(β̂)} − (β − β̂)T(H + S/φ)(β − β̂)/2

}

= fy(y|β̂)fβ(β̂) exp{−(β − β̂)T(H + S/φ)(β − β̂)/2}.

Integrating w.r.t. β, and denoting the likelihood by L, we get the Laplace approximate REML criterion

LR(λ, φ) = L(β̂)fβ(β̂)
√

2π
nb

|H + S/φ|0.5

(actually exact for Gaussian models with the identity link). i.e. defining lr = log Lr,

2lr = 2l(β̂) + log |S/φ|+ − β̂TSβ̂/φ− log |H + S/φ|+ Mp log(2π).

If the penalized GLM has its coefficients estimated by Newton based PIRLS, as suggested below, then H = XTWX/φ,
where W is a diagonal weight matrix. To get ML, rather than REML, we would need to re-parameterize to separate
the parameters into penalized and unpenalized. Then H would be the negative Hessian for the penalized parameters
only: further details are provided below in section 2.1.

For ease of computation it helps to separate out lr into φ dependent and φ independent components. To this end,
let ls(φ) denote the saturated log likelihood and define

Dp = D(β̂) + β̂TSβ̂

and (assuming Newton weights)
K = (log |XTWX + S| − log |S|+)/2.

We then have that
−lr =

Dp

2φ
− ls(φ) + K − Mp

2
log(2πφ). (4)

There are two approaches to the estimation of φ: (i) estimate φ as part of lr maximization, or (ii) use the Pearson
statistic over n − Mp as φ̂, and optimize the resulting criterion, taking account of the derivatives of φ̂ w.r.t. the
smoothing parameters. The only advantage of (ii) is that it may sometimes allow the resulting REML score to be used
as a heuristic method of smoothness selection with quasi-likelihood.

The simpler approach of using the expected Hessian in place of H was also investigated, but in simulations gave
worse performance than GCV when non-canonical links were used.
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2.1 ML details
For Laplace approximate ML, rather than REML, estimation, the only difference to the criterion is that we now need
H to be the negative Hessian w.r.t. the coefficients of any orthogonal basis for the range space of the penalty. The
easiest way to separate out the range space is to form the eigen-decomposition

∑
j Sj/‖Sj‖F = UΛUT, where the

scaling of each Sj by its Frobenious norm maintains good numerical conditioning. The first q −Mp columns of U
now form an orthogonal basis for the range space of S (see e.g. Wood, 2006, section 4.8.2 and 6.6.1). In consequence,
if we re-parameterize by setting β̄ = UTβ then the first q − Mp elements of β̄ will be penalized and should be
integrated out of the joint density of y and β̄, while the last Mp elements are unpenalized, and hence left alone. Let
U1 be the first q −Mp columns of U. Applying the re-parameterization we have X̄ = XU1 and S̄ = UT

1SU1, and
some work establishes that the negative (Laplace approximate) log marginal likelihood is

−l =
Dp

2φ
− ls(φ) + (log |X̄TWX̄ + S̄| − log |S|+)/2. (5)

2.2 Accuracy of the Laplace approximation
For fixed dimension of β, the true REML or ML integral divided by its Laplace approximation is 1 + O(n−1) (see
e.g. Davison, 2003, section 11.3.1). For consistency, it is usually necessary for the dimension of β to grow with n,
which reduces this rate somewhat. However, for spline type smoothers the dimension need only grow slowly with n
(e.g. Gu and Kim, 2002, show that the rate need only be O(n2/9) for cubic spline like smooths), so that convergence
is still rapid. Kauermann et al. (2009) show in detail that the Laplace approximation is well justified asymptotically
for ML in the penalized regression spline setting.

Rapid convergence does not in itself guarantee that the approximation is sufficiently accurate for any particular
finite sample. Fortunately a simple and computationally efficient accuracy check is readily implemented, since a rather
precise unbiased estimator of the REML score can be obtained by importance sampling with a ‘Laplace proposal’. In
particular, if R is a square factor such that RTR = (XTWX + S)−1φ̂, and zi are ns independent N(0, I) random
nb vectors, then

(2π)nb/2

ns|R|
ns∑

i=1

fy(y|β̂ + RTzi)fβ(β̂ + RTzi)e‖zi‖2/2

is an unbiased estimator of the exact REML score (see, for example, Monahan, 2001, section 10.4C). In the work re-
ported here ns in the range 1000 to 10000 was sufficient to ensure that the Monte-Carlo variability was at least an order
of magnitude smaller than the mean difference between the estimator and the deterministic Laplace approximation.
This estimator was used to estimate the Laplace approximation error, at the estimated smoothing parameters, for all
the examples presented subsequently in this paper. The worst error was for the binary simulations in section 4, where
the magnitude of the error was up to 0.3. The other examples had approximation errors an order of magnitude smaller.
Hence the error induced by the deterministic Laplace approximation is not significant relative to the sampling uncer-
tainty in the smoothing parameters, suggesting that the Laplace approximation is adequate for the examples presented
here.

Note that the Laplace approximation employed here does not suffer from the difficulties common to most PQL
(Breslow and Clayton, 1993) implementations when used with binary data. Most PQL implementations have to
estimate φ for the working model, even with binary data where this is not really satisfactory. In addition, PQL uses
the expected Hessian in place of the exact Hessian when non-canonical links are used, which also reduces accuracy.
That said, it should still expected that the accuracy of (4) and (5) will reduce for binary or Poisson data when the
expectation of the response variable is very low.

3 Optimizing the REML criterion

(4) and (5) depend on the smoothing parameter vector, λ, via the dependence of S, β̂ (and hence W) on λ. The
proposal here is to optimize (4) or (5) w.r.t. the ρi = log(λi), using Newton’s method, with the usual modifications
that (i) some step length control will be used and (ii) the Hessian will be perturbed to be positive definite, if it is
not (see Nocedal and Wright, 2006, for an up to date treatment and computational details). Each trial log smoothing
parameter vector, ρ, proposed as part of the Newton method iteration, will require a PIRLS iteration to evaluate the
corresponding β̂ (and hence W). So the whole optimization consists of two nested iterations: an outer to find ρ̂, and
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an inner to find the β̂ corresponding to any ρ. The outer iteration requires the gradient and Hessian of (4) or (5) w.r.t.
ρ, and this in turn requires first and second derivatives of β̂ w.r.t. ρ.

Irrespective of the details of the optimization method, the major difficulty in minimizing (4) or (5) is that if some
λj is large enough, then the ‘numerical footprint’ of the corresponding penalty term λjβ

TSjβ can extend well beyond
the penalty’s range space: i.e. numerically the penalty can have marked effects in the subspace of the model parameter
space for which, formally, βTSjβ = 0. For example if ‖λjSj‖ À ‖λkSk‖ then λjSj can have effects which are
‘numerically zero’ when judged relative to ‖λjSj‖ (and would be exactly zero in infinite precision arithmetic), but
which are larger than the strictly non-zero effects of λkSk. If left uncorrected, this problem leads to serious errors in
evaluation of β̂, |S|+ and |XTWX + S| and their derivatives w.r.t. ρ (see section 3.1). Because multiple penalties
often have overlapping range spaces (i.e. they penalize intersecting subspaces of the parameter space), no single re-
parameterization can solve this problem for all λ values, but an adaptive reparametrization approach does work, and is
outlined in section 3.1. Note that the Wood (2008) method, for dealing with numerical ill-conditioning for prediction
error criteria, is hopeless here. That method truncates the parameter space to deal with ill-conditioning induced by
changes in λ, but such an approach would lead to large erroneous and discontinuous changes in |S|+ and |XTWX+S|
as λ changes. We will of course still need to truncate the parameter space if some parameters would not be identifiable
whatever the value of λ, but such a λ independent truncation is not problematic.

A second question, when minimizing (4) or (5), is what optimization method to use to obtain the β̂λ corresponding
to any trial λ? If a PIRLS scheme is employed based on Newton (rather than Fisher) updates, then the Hessian required
in (4) or (5) is conveniently obtained as a by-product of fitting, which also means that the same method can be used
to stabilize both β̂ and REML/ML evaluation. Furthermore the required derivatives of β̂ w.r.t. ρ can be obtained
directly from the information available as part of the PIRLS, using implicit differentiation, without the need for further
iteration. Newton based PIRLS also leads to more rapid convergence with non-canonical links.

As a result of the preceding considerations, this paper proposes that the following steps should be taken for each
trial ρ proposed by the outer Newton iteration.

1. Reparameterize to avoid large norm λjSj terms having effects outside their range spaces, thereby ensuring
accurate computation with the current ρ. (Section 3.1.)

2. Estimate β̂ by Newton based PIRLS, setting to zero any elements of β̂ which would be unidentifiable irrespec-
tive of the value of ρ. (Sections 3.2 and 3.3.)

3. Obtain first and second derivatives of β̂ w.r.t. ρ, using implicit differentiation and the quantities calculated as
part of step 2. (Section 3.4.)

4. Using the results from parts 2 and 3, evaluate the REML/ML criterion and derivatives w.r.t. ρ. (Section 3.5.)

After these four steps, all the ingredients are in place to propose a new ρ using a further step of Newton’s method.

3.1 Re-parameterization, log |S|+ and
√

S

log |S|+ (where S =
∑

j λjSj) is the most numerically troublesome term in the REML/ML objective. Both λi → 0
and λi → ∞ can cause numerical problems when evaluating the determinant. The problem is most easily seen by
considering the simple example of evaluating |λ1S1 +λ2S2| when the q× q positive semi-definite matrices Sj are not
full rank, but λ1S1 + λ2S2 is. In what follows let ‖ · ‖ denote the matrix 2-norm (although the 1, ∞ or Frobenious
norms would serve as well), and let x̂ denote the computed version of any quantity x. Consider a similarity transform
based on the eigen decomposition S1 = UΛUT, with computed version S1 = ÛΛ̂ÛT. Let Λ+ denote the vector
of strictly positive eigenvalues, and Λ0 the vector of zero eigenvalues, and note that Λ̂0 will have elements of typical
magnitude ‖S1‖εm where εm is the computational machine precision (see e.g. Watkins, 1991, Section 5.5 or Golub
and van Loan, 1996, Chapter 8).

By standard properties of similarity transforms we have

|λ1S1 + λ2S2| = |λ1Λ + λ2UTS2U|. (6)

Suppose that Sj has rank rj and rank deficiency dj = q−rj . As λ1/λ2 →∞ it is routine that the r1 largest eigenvalues
of λ1S1 + λ2S2 → λ1Λ+, so that |λ1S1 + λ2S2| → λr1

1

∏
i Λ+

i α, where the factor α depends on λ2S2. However as

λ1/λ2 →∞ all the computed eigenvalues of λ1S1 + λ2S2 → λ1Λ̂, so that ̂|λ1S1 + λ2S2| → λr1
1

∏
i Λ̂+

i λd1
1

∏
i Λ̂0

i .
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Hence the computed determinant is seriously in error because the factor λd1
1

∏
i Λ̂0

i is essentially arbitrary, and is
unrelated to the correct factor α. (Notice that the problem vanishes for a full rank S1.)

The difficulty arises because the computed version of the matrix λ1Λ+λ2UTS2U is perturbed by the completely
arbitrary error terms in λ1Λ̂0. In general the effect of a perturbation on the determinant of a positive definite A, with
eigenvalues ΛA, depends on the size of the perturbation relative to min(ΛA). This is easily seen by considering a
simple additive perturbation εI (where ε is the perturbation size). Then |A + εI|/|A| = ∏

i(Λ
A
i + ε)/ΛA

i , where the
largest contribution to the right hand side is from the term {min(ΛA)+ ε}/min(ΛA). Hence we can expect problems
when the perturbations, λ1Λ̂0, become non-negligible relative to the smallest eigenvalue of λ1S1 + λ2S2, which is
bounded below by the smallest positive eigenvalue of λ2S2 as λ1/λ2 →∞.

In short, we can expect this ‘numerical zero leakage’ issue to spoil determinant calculations whenever the ratio of
the largest strictly positive eigenvalue of λ1S1 (which sets the scale of the arbitrary perturbation, λ1Λ̂0) to the smallest
strictly positive eigenvalue of λ2S2 is too great. However, the example also suggests a simple way of suppressing the
problem. Re-parameterize using the computed eigenbasis of the dominant term S1, so that S1 becomes Λ̂ and S2

becomes ÛTS2Û. In the transformed space it is easy to ensure that the dominant term (now Λ̂) only acts within its
range space, by setting Λ̂0 = 0 (if the rank of S1 is known then identifying which eigenvalues should be zero is trivial,
if not, see step 3 in Appendix B).

Having re-parameterized and truncated in this way, stable evaluation of |λ1Λ + λ2UTS2U| is straightforward.
Only the first r1 columns of λ1Λ̂ + λ2ÛTS2Û, now depend on λ1S1. Forming a pivoted QR decomposition
λ1Λ̂+λ2ÛTS2Û = Q̂R̂ maintains this column separation in R̂ (the decomposition acts on columns, without mixing
between columns), with the result that ̂|λ1S1 + λ2S2| = |λ1Λ̂ + λ2ÛTS2Û| =

∏
i R̂ii can be accurately computed.

Furthermore, pivoting ensures that R̂−1 is computable, which is necessary for derivative calculations. See Golub and
van Loan (1996) for full discussion of QR decomposition with pivoting.

The stable computation of β̂, discussed in section 3.3, will also require that a square root of S can be formed
that maintains the required ‘column separation’ of the dominant terms in S (that is, we must not end up with large
magnitude elements in some column j > r1, just because λ1‖S1‖ is large). This is quite straightforward under the
reparameterization just discussed. For example, let Ŝ′ = λ1Λ̂+λ2ÛTS2Û (with Λ̂’s ‘machine zeros’ set to true zeros)

and P̂ be the diagonal matrix such that P̂ii =
√
|Ŝ′ii|. Forming the Choleski decomposition L̂L̂T = P̂−1Ŝ′P̂−1, then

Ê = L̂TP̂ is a matrix square root such that ÊT̂E = Ŝ′. Furthermore, λ1S1 only affects the size of the elements in
Ê’s first r1 columns (this is easily seen, since, from the definition of Ê, the squared Euclidian norm of its jth column
is given by Ŝ′jj , which does not depend on λ1S1 if j > r1). The preconditioning (or ‘scaling’) matrix, P̂−1, ensures
that the Choleski factor can be computed in finite precision, however divergent the sizes of the components of S (see
e.g. Watkins, 1991, Section 2.9). From now on no further purpose is served by distinguishing between ‘true’ and
computed quantities, so hats will be omitted.

Of course S =
∑

λiSi generally contains more than two terms and is not full rank, but appendix B generalizes the
similarity transform based reparameterization, along with the (generalized) determinant and square root calculations,
to any number of components of a rank deficient S. It also provides the expressions for the derivatives of log |S|+
w.r.t. ρ. The operations count for appendix B is O(q3).

The stable matrix square root, E, produced by the Appendix B method, is only useful if the rest of the model fitting
adopts the Appendix B re-parameterization. That is, the transformed Si, S and E, computed by Appendix B, must
be used in place of the original untransformed versions, along with a transformed version of the model matrix. To
compute the latter, let Qs be the orthogonal matrix describing the similarity transform applied by Appendix B. i.e. if
S is the transformed total penalty matrix, then formally, QsSQT

s is the untransformed original. Then the transformed
model matrix should be XQs (obtained at O(nq2) cost). In what follows it is assumed that this re-parameterization is
always adopted, being re-computed for each new ρ value. So the model matrix and penalty matrices are taken to be
the transformed versions, from now on. Note that if the coefficient estimates in this parameterization are β̂, then the
estimates in the original parameterization are Qsβ̂.

Finally, note that re-parameterization is preferable to simply limiting the working λ range. To keep the non zero
eigenvalues of all λiSi within limits that guarantee computational stability, usually entails unacceptably restrictive
limits on the λi. i.e. limits restrictive enough to ensure numerical stability have statistically noticeable effects.
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3.2 Estimating the regression coefficients given smoothing parameters
Minimizing (3) by Newton’s method or Fisher scoring both result in a penalized iteratively re-weighted least squares
method, as follows. Pseudodata and weights are defined first:

zi = ηi + (yi − µi)g′i/αi and wi =
ωiαi

Vig′2i

where ηi = g(µi) = Xiβ, Vi = V (µi),

αi =

{
1 + (yi − µi)

(
V ′i
Vi

+ g′′i
g′i

)
for Newton′s method

1 for Fisher scoring

and x′ denotes dx/dµi, whatever x. These quantities are always evaluated at the current µi estimates. The ωi are any
prior weights, and are usually 1. If a canonical link function is used then αi = 1 ∀ i and Newton’s method and Fisher
scoring coincide.

Estimation of the coefficients, β, is performed by the modified PIRLS scheme of iterating the following two steps
to convergence (µ estimates are initialized using the previous β̂λ, or directly from y).

1. Given the current estimate of µ (and hence η), evaluate z and w.

2. Solve the weighted penalized least squares problem of minimizing

n∑

i=1

wi(zi −Xiβ)2 +
∑

j

λjβ
TSjβ (7)

w.r.t. β, to obtain the updated estimate of β and hence µ (and η). See section 3.3.

At convergence of the Newton type iteration the Hessian of the deviance w.r.t. β is given by 2XTWX, where
W = diag(wi). Under Fisher scoring 2XTWX is the expected Hessian. See e.g. Green and Silverman (1994) or
Wood (2006) for further information on (Fisher based) penalized iteratively reweighted least squares.

Several points should be noted. (i) Step halving will be needed in the event that the penalized deviance increases
at any iteration, but the Newton method should never require it at the end of the iteration. (ii) The Newton scheme
tends to converge faster than Fisher scoring in non-canonical link situations, an effect which can be particularly marked
when using Tweedie (1984) distributions. (iii) With non-canonical links, the wi need not all be positive for the Newton
scheme, and in practice negative weights are encountered for perfectly reasonable models: the next section deals with
this. Negative wi provide the second reason that the Wood (2008) method can not be extended to REML.

3.3 Stable least squares with negative weights
This section develops a method for stable computation of weighted least squares problems when some weights are
negative, as required by the Newton based PIRLS described in section 3.2. The method also deals with identifiability
problems that do not depend on the magnitude of λ.

The obvious approach to solving (7) in the presence of negative weights would be to directly solve

(XTWX + S)β̂ = XTWz (8)

for β̂, where W = diag(wi), z is the vector of zi from section 3.2 and S =
∑

j λjSj . However, it is well known that
direct formation of XTWX results in a system with a condition number that is the square of what is necessary (see
e.g. Golub and van Loan, 1996, sections 5.3.2 and 5.3.8). Given that penalized GLMs are frequently complex models
in which concurvity effects can easily lead to quite high condition numbers, this approach is not sensible.

When weights are non negative, stable solution of (8) is based on orthogonal decomposition of
√

WX (e.g.
Wood, 2004), but this does not work if some weights are negative. This section proposes a stable solution method, by
starting with a ‘nearby’ penalized least squares problem, for which all the weights are non-negative, applying a stable
orthogonal decomposition approach to this, but at the same time developing the correction terms necessary to end up
with the solution to (8) itself.
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To make progress then, let W− denote the diagonal matrix such that W−
ii = 0 if wi ≥ 0 and −wi otherwise. Also

let W̄ be a diagonal matrix with W̄ii = |wi|. In this case

XTWX = XTW̄X− 2XTW−X.

So XTWX has been split into a component that is straightforward to compute with stably, and a ‘correction’ term.
Starting with the straightforward term, perform a QR decomposition

√
W̄X = QR (9)

(either without pivoting, or reversing the pivoting of R after the decomposition). At this stage it is necessary to test
for any inherent lack of identifiability in the problem (that is lack of identifiability which is λ independent). Section
3.3.1 describes how to do this. For the moment suppose that the inherent rank of the problem is r, and we have a list of
any unidentifiable parameters. Then drop the columns of R and X and the rows and columns of the Si corresponding
to any unidentifiable parameters.

R is now a square root of XTW̄X, but we really need a square root of XTW̄X + S, in order to move towards
solution of (8). To this end, let E be a matrix such that ETE = S, computed as described in Appendix B and
section 3.1. Drop the columns of E corresponding to any unidentifiable parameters, and form a further pivoted QR
decomposition ( R

E

)
= QR. (10)

R is the required square root of XTW̄X + S. Now define n× r matrix Q1 = QQ[1 : q, ], where q is the number of
columns of X and Q[1 : q, ] denotes the first q rows of Q. Hence

√
W̄X = Q1R. (11)

For what follows, the pivoting used in the QR step (10) will have to be applied to the rows and columns of Sj and the
columns of X.

Now we need to correct the matrix square root R to obtain what is actually needed to solve (8):

XTWX + S = RTR− 2XTW−X

= RT(I− 2R−TXTW−XR−1)R
= RT(I− 2R−TRTQT

1 I−Q1RR−1)R
= RT(I− 2QT

1 I−Q1)R,

where I− denotes the diagonal matrix such that I−ii = 0 if wi > 0 and 1 otherwise, while W− = I−W̄. The matrix
I − 2QT

1 I−Q1 is not necessarily positive semi definite, and so requires careful handling. Forming the singular value
decomposition

I−Q1 = UDVT (12)

(of course, in practice the zero rows of I−Q1 can be dropped before decomposition) then we obtain

XTWX + S = RT(I− 2VD2VT)R = RTV(I− 2D2)VTR (13)

(and additionally XTWX = RTR− 2RTVD2VTR). Now define

P = R−1V(I− 2D2)−1/2 and K = Q1V(I− 2D2)−1/2. (14)

If z̄ is the vector such that z̄i = zi if wi ≥ 0 and −zi otherwise, then substituting from (14), (13) and (11) into (8) and
solving gives

β̂ = PKT
√

W̄z̄.

The key point about this calculation is that its condition number will be dominated by that of R, the matrix which must
be inverted in the definition of P. This is approximately the square root of the condition number for using XTWX+S
directly, since the term to be inverted in this latter case would be dominated by RTR (See Golub and van Loan, 1996,
sections 2.7.2 and 3.5.4 if this is unclear). The key computational steps involved in finding β̂ are (9), (10), (12) and
(14), plus the rank identification of section 3.3.1.
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Given (13), it is now possible to compute one of the REML log determinant components using

|XTWX + S| = |R|2|I− 2D2|,
and it is also worth noting, from (13) and (14), that (XTWX + S)−1 = PPT (strictly some sort of pseudoinverse if
there is rank deficiency).

There is an important additional detail. At the penalized MLE, XTWX + S will be positive semi-definite, so that
di ≤ 1/

√
2 (reparameterize so that R is the identity to see this), but en route to the optimum there is no guarantee that

the penalized likelihood is positive semi-definite. So, if di > 1/
√

2, for any i, then a Fisher step should be substituted.
That is set αi = 1, so that wi ≥ 0 ∀i. Then

P = R−1 and K = Q1

and the expression for β̂, above, simplifies to β̂ = PKT
√

Wz, while |XTWX + S| = |R|2.
At the end of model fitting, β̂ will need to have the pivoting applied at (10) reversed, and the elements of β̂ that

were dropped by the truncation step after (9) will have to be re-inserted as zeroes. Note that the leading order cost of
the method described here is the O(nq2) of the first QR decomposition. LAPACK can be used for all decompositions
(Anderson et al. 1999).

3.3.1 λ independent rank deficiency

As mentioned above, it is necessary to deal with any rank deficiency of the weighted penalized least squares problem
that is ‘structural’ to the problem, rather than being the numerical consequence of some smoothing parameter tending
to 0 or ∞. That is we need to find which, if any, parameters, β, would be unidentifiable, even if the penalties and
models matrix were all evenly scaled relative to each other.

To achieve this, first find, Ē, a matrix such that

ĒTĒ =
∑

i

Si/‖Si‖F .

The scaling of each component of S by its Frobenius norm, is simply to achieve even scaling of the components. The
required square root can be obtained by symmetric eigen or pivoted Choleski decomposition. Now, using the factor
R, from (9), and scaling it by its Frobenius norm, form a pivoted QR decomposition

( R/‖R‖F

Ē/‖Ē‖F

)
= Q̄R̄

and determine the rank, r, of the problem from the pivoted triangular factor R̄ (see Cline et al., 1979 and Golub and
van Loan, 1996). The pivoting and rank determination indicates which parameters are unidentifiable (e.g. Golub and
van Loan, 1996, section 5.5).

3.4 The derivatives of β̂ with respect to the log smoothing parameters

The preceding Newton based computation of the coefficients, β̂, leads to some moderately simple expressions for the
derivatives of β̂ with respect to ρj = log(λj), which will be needed subsequently. Specifically

dβ̂

dρj
= −eρjPPTSjβ̂

and
d2β̂

dρjdρk
= δk

j

dβ̂

dρk
−PPT

{
XTf jk + eρjSj

dβ̂

dρk
+ eρkSk

dβ̂

dρj

}

where δk
j = 1 if j = k and 0 otherwise, while

f jk
i =

1
2

dηi

dρj

dηi

dρk

dwi

dηi
and

dη

dρj
= X

dβ̂

dρj
.

Appendix C provides the derivation of these results, while Appendix D gives the expression for dwi/dηi. The leading
order cost of these calculations is O(M2nq) where M is the number of smoothing parameters.
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3.5 The rest of the REML objective and its derivatives

Given dβ̂/dρj and d2β̂/dρjdρk then the corresponding derivatives of µ and η follow immediately. The derivatives
of D w.r.t. ρ are then routine to calculate (see Wood, 2008 for full details). The remaining quantities in the REML (or
ML) calculation are |XTWX + S|, β̂TSβ̂ and the log saturated likelihood. These are covered here.

3.5.1 The derivatives of log |XTWX + S|
Computation of log |XTWX + S| itself was covered in section 3.3. It will be stable provided computations are
conducted in the transformed space. The derivatives are also needed. Defining (with reference to Appendix D)

Tj = diag
(

1
|wi|

∂wi

∂ρj

)
and Tjk = diag

(
1
|wi|

∂2wi

∂ρj∂ρk

)
,

then some calculations using (16) and (17) from Appendix B show that

∂ log |XTWX + S|
∂ρk

= tr
(
KTTkK

)
+ eρktr

(
PTSkP

)

and

∂2 log |XTWX + S|
∂ρk∂ρj

= tr
(
KTTkjK

)
+ δj

keρktr
(
PTSkP

)− tr
(
KTTkKKTTjK

)

− eρj tr
(
KTTkKPTSjP

)− eρktr
(
KTTjKPTSkP

)− eρk+ρj tr
(
PTSkPPTSjP

)
.

Although K, P and the T matrices all differ from those in Wood (2008), it is none the less possible to employ the tricks
laid out in Appendix C of Wood (2008) to efficiently evaluate the various traces in these expressions. The equivalent
term for ML is slightly more involved and Appendix E provides details. Note that this step dominates the method’s
computational cost. The cost of second derivatives is O(Mnq2/2), while the cost of first derivatives is O(nq2) (the
same as estimating β). For large M , these costs suggest that quasi-Newton, which only requires first derivatives, will
sometimes be more efficient than full Newton for optimization w.r.t. ρ, although the fact that quasi-Newton converges
more slowly than Newton complicates the comparison.

3.5.2 The derivatives of β̂TSβ̂

To complete the derivatives of Dp requires the derivatives of β̂TSβ̂. These are readily seen to be

∂β̂TSβ̂

∂ρk
= 2

∂β̂T

∂ρk
Sβ̂ + eρk β̂TSkβ̂

and
∂2β̂TSβ̂

∂ρk∂ρj
= 2

∂2β̂T

∂ρk∂ρj
Sβ̂ + 2

∂β̂T

∂ρk
Sjβ̂eρj + 2

∂β̂T

∂ρj
Skβ̂eρk + 2

∂β̂T

∂ρk
S

∂β̂

∂ρj
+ δk

j eρk β̂TSkβ̂,

which have O(M2q2) computational cost.

3.5.3 Scale parameter related derivatives

For known scale parameter cases, all the derivatives required for direct Newton optimization of the REML or ML
criteria have now been obtained. However when φ is unknown some further work is still needed (the dependence on
φ has none of the exploitable linearity of the dependence on λi, which is why it must be treated separately).

If φ = eρφ is estimated by direct REML then we need only:

− ∂lr
∂ρφ

= −Dp

2φ
− l′s(φ)φ− Mp

2
, − ∂2lr

∂ρ2
φ

=
Dp

2φ
− l′′s (φ)φ2 − l′s(φ)φ, − ∂2lr

∂ρφ∂ρk
= − 1

2φ

∂Dp

∂ρk

and the derivatives of lr w.r.t. ρ. (These derivatives also serve to emphasize that direct estimation only works with full
likelihood, not quasi-likelihood.)
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If φ̂ is the Pearson statistic over n−Mp, where Mp is the penalty null space dimension (number of fixed effects),
then an alternative version of the REML score and its derivatives is as follows:

−l̂r =
Dp

2φ̂
− ls(φ̂) + K − Mp

2
log(2πφ̂), − ∂l̂r

∂ρk
=

∂Dp

∂ρk

1

2φ̂
−

(
Dp

2φ̂2
+ l′s(φ̂) +

Mp

2φ̂

)
∂φ̂

∂ρk
+

∂K

∂ρk
,

and

− ∂2 l̂r
∂ρk∂ρj

=
∂2Dp

∂ρk∂ρj

1

2φ̂
−

(
∂Dp

∂ρk

∂φ̂

∂ρj
+

∂Dp

∂ρj

∂φ̂

∂ρk

)
1

2φ̂2
+

(
Dp

φ̂3
− l′′s (φ̂) +

Mp

2φ̂2

)
∂φ̂

∂ρk

∂φ̂

∂ρj

−
(

Dp

2φ2
+ l′s(φ̂) +

Mp

2φ̂

)
∂2φ̂

∂ρk∂ρj
+

∂2K

∂ρk∂ρj
.

These require the derivatives of φ̂, which are easily obtained from the known derivatives of β̂ w.r.t. the smoothing
parameters, combined with the derivatives of the Pearson statistic, given in Appendix F.

The ML derivative expressions are identical to those given in this subsection, if one sets Mp = 0 (for ML, the
fixed effects are not integrated out, and in consequence the direct dependence on the number of fixed effects goes.)
Whichever version of REML or ML is used, derivatives of the saturated log likelihood w.r.t. φ are required: Appendix
G gives some common examples.

3.6 Other smoothness selection criteria
While it was not possible to adapt the Wood (2008) method to reliably optimize REML/ML, the method proposed
here can readily optimize prediction error criteria of the sort discussed in Wood (2008). In fact the new method has the
advantage of eliminating a potential difficulty with the Wood (2008) method, namely that when using a non-canonical
link in the presence of outliers, the Fisher based PIRLS could (rarely) require step length reduction at convergence,
which could cause the subsequent derivative iterations to fail.

Prediction error criteria are based on the the deviance, Pearson statistic and effective degrees of freedom of the
model, formally defined as tr (F) where F = (XTWX + S)−1XTWX. Clearly the methods described so far deal
with the deviance and Pearson statistic, but the derivatives of tr (F) require some more work. The results of this are
provided in Appendix H. Note that there are good reasons for preferring W to be based on the Fisher weights in the
computation of F. Doing so guarantees that both XTWX + S and XTWX are positive definite, which ensures that
the effective degrees of freedom are well defined. There are also robustness-to-outlier arguments (e.g. Demidenko,
2004) for using the Fisher weights for constructing variance estimates, despite the general superiority of observed
information over expected information for this purpose (Efron and Hinkley, 1978).

4 Some simulation comparisons
The REML and ML based methods, proposed here, were compared to GCV (AIC for known scale parameters) and
PQL (based on the version implemented in R function glmmPQL, Venables and Ripley, 2002), as means for selecting
smoothing parameters. For each replicate, 400 data, yi, were simulated (independently) from an exponential family
distribution, with mean µi where

g(µi)/k = f1(x1i) + f2(x2i) + f3(x3i).

g is a known link function and the xji are i.i.d. uniform on (0, 1). k is used to control the signal to noise ratio. The fj

are plotted at the lower right of figure 2. Five distribution-link combinations were used, with 200 replicates performed
for each: normal-identity, gamma-log, Tweedie-log (variance power 1.5), binary-logit and Poisson-log. For each case
k was set to achieve a squared correlation coefficient between µi and yi of about 0.5. A generalized additive model
with the correct link-error structure was fitted to each replicate, but with the linear predictor given by a sum of smooth
functions of the 3 actual predictors plus a smooth function of a nuisance predictor, which was i.i.d. uniform, but did
not influence the true µi. The 4 component smooth models were represented by rank 10 thin plate regression splines
(Wood, 2003), except for the 3rd component, for which a rank of 30 was used. Smoothing parameters were chosen by
each of REML, ML, PQL and GCV (or AIC when the scale parameter was known), for each replicate.
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Figure 2: Mean Square Error comparisons between REML and other methods for 5 distributions. Data were simulated
using an additive linear predictor, made up from the 3 functions shown in the lower right panel. The linear predictor
was scaled so that there was about 50% unexplained variance in each replicate dataset. Generalized additive models
were fitted to each replicate dataset, using the correct distribution and link, with smoothing parameters chosen by
REML, ML, GCV (AIC for known φ) or PQL. Boxplots show the distributions, over 200 replicates, of differences in
mean square error between each alternative method and REML. MSE is measured on the scale of the linear predictor,
for all distributions except binary, where it is on the probability scale. Prior to plotting, the MSE are divided by the
MSE for REML estimation, averaged over the the case being plotted. In all cases a Wilcoxon signed rank test indicates
that REML has lower MSE than the competing method (p value < 10−3 except for the PQL-ML comparison for the
Tweedie, where p=0.04). The Tweedie variance power was 1.5. The log link was used for all cases except normal
(identity) and binary (logit). PQL failed in 16, 10, 22 and 7 replicates, for gamma, Tweedie, binary and Poisson data
respectively. The other methods converged successfully for every replicate. PQL was between 10 and 20 times slower
than the alternatives. See section 4.
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Figure 3: As figure 2, but using data for which only 5% of the variance in the response was noise. In this case ML
gave the best MSE performance, so has replaced REML as the reference method. All differences are significant at
p < 0.00004 except the PQL-ML comparisons for Gamma, Tweedie and Poisson for which the p-values are 0.01, 0.01
and 0.0006. See section 4.
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Model performance was judged by calculating the mean square error in reconstructing the true linear predictor, at
the observed covariate values. In the case of binary data, this measure is rather unstable for fitted probabilities in the
vicinity of 0 or 1, so the probability scale was used in place of the linear predictor scale.

The results are summarized in Figure 2. In all cases REML gave better reconstructions, with Wilcoxon signed rank
tests usually strongly suggesting that the median difference was not zero, and REML giving the lower MSE error on
average. The most dramatic difference is between REML and PQL for binary data, where PQL has a substantial tail
of poor fits, reflecting the well known fact that PQL is poor for binary data. Notice also the skew in the GCV-REML
comparisons: this seems to result from a smallish proportion of GCV/AIC based replicates substantially over-fitting.

GCV/AIC, REML and ML fits did not fail for these examples, while PQL had a 4-10% failure rate. Mean time
per replicate for GCV/AIC, REML and ML was about 0.7 seconds on a 1.33GHz Intel U7700 running linux (mid-
range laptop). PQL was between 10 and 20 times slower. All computations were performed with R 2.9.2 (R core
development team, 2008) and R package mgcv version 1.6-1 (which includes a Tweedie family based on Dunn and
Smith, 2005).

The experiment was repeated at lower noise levels. First for noise levels such that the r2 between µi and yi was
about 0.7 and then for still lower noise levels so that the r2 was about 0.95. Figure 3 shows the results for the lowest
noise level. In this case ML gives the best MSE performance, although REML is not much worse and still better
than the prediction error criteria. The intermediate noise level results are not shown, but show ML and REML to be
almost indistinguishable, and both better than prediction error criteria. It seems likely that the superiority of ML over
REML in the lowest noise case relates to Wahba’s (1985) demonstration that REML undersmooths, asymptotically:
ML will of course smooth more, but is still consistent (Kauermann et al. 2009). Similarly the failure of prediction
error methods to show any appreciable catch up as noise levels were reduced, despite their asymptotic superiority in
MSE terms, presumably relates to the excruciatingly slow convergence rates for prediction criteria based estimates,
obtained in Härdle, Hall and Marron (1988).

The two problematic examples from the introduction to Wood (2008, see figures 1 and 2) were also repeated with
the methods developed here: convergence was unproblematic and reasonable fits were obtained. See appendix A for
some further comparisons with another alternative method.

The simulation evidence supports the implication of Reiss and Ogden’s (2009) work, that REML (and hence the
structurally very similar ML) may have practical advantages over GCV/AIC for smoothing parameter selection, and
reinforces the message from Wood (2008), that direct nested optimization is quicker and more reliable than selecting
smoothing parameters based on approximate working models.

5 Examples
This section presents 3 example applications which, as special cases of penalized GLMs, are straightforward given the
general method proposed in this paper.

5.1 Simple P-spline adaptive smoothing
An important feature of the proposed method is that it is stable even when different penalties act on intersecting sets
of parameters. Tensor product smooths used for smooth interaction terms are an obvious important case where this
occurs (see e.g. Wood, 2006 section 4.1.8), but adaptive smoothing provides a less well known example, as illustrated
in this section, using adaptive P-splines.

The ‘P-splines’ of Eilers and Marx (1996) combine B-spline basis functions and discrete penalties on the basis
coefficients, to obtain flexible spline like smoothers. For example, if we let bj(x) denote B-spline basis functions,
with evenly spaced knots, then an unknown function f can be represented (approximately) as

f(x) =
K∑

i=1

βibi(x)

and the wiggliness of this function can be measured using the discrete penalty

Pordinary =
K−1∑

i=2

(βi−1 − 2βi + βi+1)2,
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Figure 4: Two attempts to smooth the motorcycle crash data. The top panel represents the smooth as a rank 40
penalized thin plate regression spline, while the lower panel uses a simple adaptive smoother of the type discussed in
Section 5.1. All smoothing parameters were chosen by REML. Notice that the adaptive smoother uses fewer effective
degrees of freedom and produces a fit which appears to show better local adaptation to the data.

or higher or lower order alternatives. The penalty can be used as a smoothing penalty in fitting. One of the reasons
that P-splines have proved so popular, is the ease with which they can be modified to perform non-standard smoothing
tasks, at relatively little loss of performance relative to more computationally complex smoothers. Adaptive smoothing
illustrates this.

An adaptive penalty is easily constructed by allowing the terms in the penalty to have different weights, depending
on on i, and hence on x. For example:

P =
K−1∑

i=2

ci(βi−1 − 2βi + βi+1)2.

Now defining di = βi−1 − 2βi + βi+1, and D to be the matrix of coefficients such that d = Dβ, we have P =
βTDTdiag(c)Dβ. The elements, ci, are unknown, but we could use a B-spline basis to model the ci as a smooth
function of i or x so that c = Cλ, where λ is a vector of unknown (positive) coefficients. In this case

P =
∑

j

λjβ
TDTdiag(C·,j)Dβ

where C·,j is column j of C. i.e. the adaptive penalty has become a sum of penalties multiplied by smoothing
parameters (λj). The same construction can be used for smooths of several covariates, using tensor products of P-
splines. See Krivobokova et al. (2008) for a more sophisticated P-spline based approach to this problem.

The obvious advantage of the approach given here is that it allows adaptive smoothers to be used as components of
penalized GLMs in the same way as any other smooth. As an example consider smoothing the well known motorcycle
crash data used in Silverman (1985). The response, ai, is acceleration of the head of a test dummy in a simulated
motorcycle crash, and it depends on time, ti. A simple model is

ai = f(ti) + εi

where the εi are i.i.d. N(0, σ2) (although a better model would have σ2 depending on time as well). Given that the
data show a low acceleration phase followed by rapid changes in acceleration followed by smooth return to zero, it
is possible to make the case that the degree of penalization of f should depend on t. A model was therefore fitted
in which f was represented using a rank 40 cubic B-spline basis (even knot spacing), penalized using the adaptive
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penalty given above, λ having dimension 5 (although the results are rather insensitive to the exact choice here). The
smoothing parameters, λ, were chosen by REML.

The results are shown in Figure 4, which also includes a fit in which a single penalty rank 40 thin plate regression
spline is used to represent f(t). The single penalty case has to use the same degree of penalization for all t, with the
result that the curve at low and high times appears under-penalized and too bumpy, presumably to accomodate the
high degree of variability at intermediate times. The adaptive fit took 1.3 seconds, compared to 0.15 seconds for the
single penalty fit (see section 4, for computer details).

5.2 Generalized regression of scalars on functions
The fact that the method described in this paper has been developed for the rather general model (1) means that it can
be used for models that superficially appear to be rather different to a GAM. To illustrate this, this section revisits an
example from Reiss and Ogden (2009), but makes use of the new method to employ a more general model than theirs,
based on non-Gaussian errors with multiple penalties.

Consider a response, yi, dependent on predictor function, zi(x), where x may be univariate or multivariate. In this
case an appropriate model might be

g(µi) = α +
∫

f(x)zi(x)dx, (15)

with yi an observation from some exponential family distribution, with mean µi. f(x) is an unknown ‘coefficient’
function, and must be estimated. It is straightforward to extend the model by adding other smooth terms to the linear
predictor (right hand side). In practice the integral will be approximated by quadrature, with the midpoint rule being
adequate in most cases. Suppose that the domain of zi(x) is finite and let xj denote points at which zi has been
observed (with even spacing h). The model becomes

g(µi) = α + h
∑

j

f(xj)zi(xj).

Any penalized regression spline basis can be used for f , and model estimation proceeds as for any other penalized
GLM. For more detail on such models see Marx and Eilers (1999); Escabias, Aguilera and Valderrama (2004); Ramsay
and Silverman (2005) or Reiss and Ogden (2007) (also Wahba, 1990).

As an example, consider trying to predict the octane rating of gasoline/petrol from its near infra red spectrum. For
internal combustion engines in which a fuel air mixture is compressed within the cylinders prior to combustion, it is
important that the fuel air mixture does not spontaneously ignite due to compressive heating. Such early combustion
results in ‘knocking’ and poor engine performance. The octane rating of fuel measures its resistance to knocking.
It is a somewhat indirect measure: the lowest compression ratio at which the fuel causes knocking is recorded. The
octane rating is the percentage of iso-octane in the mixture of n-heptane and iso-octane with the same lowest knocking
compression as the fuel sample. Measuring of octane rating requires special variable compression test engines, and it
would be rather simpler to measure the octane from spectral measurements on a fuel sample, if this were possible.

The upper left panel of figure 5 shows Near Infra Red (NIR) spectra for 60 gasoline samples (from Kalivas, 1997
as provided by Wehrens and Mevik, 2007). The Octane rating of each sample has also been measured. Model (15) is a
possibility for such data (where yi is octane rating, zi(x) is the ith spectrum and x is wavelength). The octane rating is
positive and continuous (at least in theory), and there is some indication of increasing variance with mean (see figure
5c), so a gamma distribution with log link is an appropriate initial model. The spectra themselves are rather spiky,
with some smooth regions interspersed with regions of very rapid variation. It seems sensible to allow the coefficient
function, f(x), the possibility of behaving in a similar way, so representing f using the same sort of adaptive smooth
used in the previous section is appropriate. Estimation of this model is then just a case of estimating a GLM subject
to multiple penalization. The remaining panels of figure 5 show the results of this fitting, with REML smoothness
selection.

Notice that the coefficient function appears to be contrasting the two peak regions with the trough between them,
with the extreme ends of the spectra apparently adding little. The model explains around 98% of the deviance in
octane rating, and the residual plots look plausible (including QQ-plot of deviance residuals, not shown).

5.3 GAM term selection and null space penalties
Smoothing parameter selection does most of the work in selecting between models of differing complexity, but does
not usually remove a term from the model altogether. If the smoothing parameter for a term tends to infinity, this
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Figure 5: a) Near Infra Red (NIR) spectra for 60 samples of gasoline. The y axis is the log of the inverse of reflectance,
which is measured every 2 nanometres. These spectra ought to be able to predict the octane rating of the samples. The
spectra actually reach 1.2 at the right hand end, but since this region turns out to have little predictive power, the y axis
has been truncated, in order to show more detail at lower wavelengths. b) The estimated coefficient function for the
octane — NIR model given in section 5.2 (with factor h absorbed): the inner product of this with the spectrum for a
sample gives the predicted octane rating. c) The observed octane ratings against the fitted. d) The deviance residuals
for the model, against fitted octane rating. See section 5.2.

usually causes the term to tend towards some simple, but non-zero, function of its covariate. For example, as its
smoothing parameter tends to infinity, a cubic regression spline term will tend to a straight line. It seems logical to
decide on whether or not terms should be included in the model using the same criterion used for smoothness selection,
but how should this be achieved in practice? Tutz and Binder (2006) proposed one solution to the model selection
problem, by using a boosting approach to perform fitting, smoothness selection and term selection simultaneously.
They also provide evidence that in very data poor settings, with many spurious covariates, this approach can be much
better than the alternatives. This section proposes a possible alternative to boosting, in which each smooth term is
given an extra penalty, which will shrink to zero functions that are in the null space of the usual penalty.

For example, consider a smooth with K coefficients, β, and penalty matrix S, with null space dimension Ms,
so that the wiggliness penalty is βTSβ. Now consider the eigen-decomposition S = UΛUT. The first K − Ms

eigenvalues Λi will be positive, and the last Ms will be zero. Writing Λ+ for the (K −Ms) × (K −Ms) diagonal
matrix containing only the positive eigenvalues, and U+ for the K× (K−Ms) matrix of corresponding eigenvectors,
then S = U+Λ+UT

+. Now let U− be the K ×Ms matrix of the eigenvectors corresponding to zero eigenvalues. U+

forms a basis for the space of coefficients corresponding to the ‘wiggly’ component of the smooth, while U− is a basis
for the components of zero wiggliness — the null space of the penalty. The two bases are orthogonal. So, if we want
to produce a penalty which penalizes only the null space of the penalty, we could use βTSNβ where SN = U−UT

−.
If a smooth term is already subject to multiple penalties (e.g. a tensor product smooth or an adaptive smooth), the
same basic construction holds, but the null space is obtained from the eigen decomposition of the sum of the original
penalty matrices. Notice that this construction is general and completely automatic.

This sort of construction could be used with any smoothing parameter selection method, not just RE/ML, but it is
less appealing if used with a method which is prone to undersmoothing, as GCV seems to be.

As a small example, Poisson data were simulated assuming a log link and a linear predictor made up of the sum
of the 3 functions shown at the lower right of Figure 2, applied to 3 sets of 200 i.i.d. U(0, 1) covariates. 6 more i.i.d.
U(0, 1) nuisance covariates were simulated. A GAM was fitted to the simulated data, assuming a Poisson distribution
and log link, and with a linear predictor consisting of a sum of 9 smooth functions of the 9 covariates. Each smooth
function was represented using a rank 10 cubic regression spline (actually P-splines for GAMboost). The model
was fitted using 4 different methods: the GAM boosting method of Tutz and Binder, using version 1.1 of R package
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Figure 6: Model selection example from section 5.3. Models were fitted to Poisson data simulated from a linear
predictor made up of the 3 terms shown in the lower right panel of Figure 2. The linear predictors of the fitted
models also included smooth functions of 6 additional nuisance predictors. 4 alternative fitting methods were used for
each replicate simulation. a) - c) show typical estimates of the terms that actually made up the true linear predictor
(using REML, with selection penalties). Partial Pearson residuals are shown for each smooth estimate. d) shows the
distribution, over 200 replicates, of the mean square error of the models fitted by each of the methods. ‘GAMBoost’ is
fitted using Tutz and Binder’s (2006) boosting method, ‘GCVselect’ is for models with selection penalties under GCV
smoothness selection, ‘REML’ is REML smoothness selection without selection penalties, while ‘REMLselect’ is for
REML smoothness selection, with selection penalties.
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GAMBoost (with penalty set to 500 to ensure that each fit used well over the 50 boosting steps suggested as the
minimum by Tutz and Binder); GCV smoothness selection, with the null space penalties suggested here, REML with
no null space penalties and REML with null space penalties. 200 replicates of this experiment were run, and the mean
square error in the linear predictor at the covariate values was recorded for each method for each replicate.

Figure 6 shows the results. REML with null space penalties achieves lower MSE than REML without null space
penalties, and substantially better performance than GCV with null space penalties or GAM boosting. The success
of the methods in identifying which components should be in the model at all was also recorded. For GAMBoost
the methods given in the GAMBoost package were employed, while for the null space penalties, terms with effective
degrees of freedom greater than 0.2 were deemed to have been selected. On this basis the false negative rates (rates
at which influential covariates were not selected) were .6% for boosting and .16% for the other methods. The false
positive rates (rates at which spurious terms were selected) were 67%, 71% and 62% for boosting, GCV and REML,
respectively. REML with null space penalties took just under 6 seconds per fit, on average, while boosting took
about 2.5 minutes per fit. Note that the example here has relatively high information content, relative to the scenarios
investigated by Binder and Tutz: with less information boosting is still appealing.

6 Discussion
The method proposed in this paper offers a general computationally efficient way of estimating the smoothing param-
eters of models of the form (1), when the fj are represented using penalized regression splines and the coefficients,
β, are estimated by optimizing (3). With this method, REML/ML based estimation of semi parametric GLMs can
rival the estimation of ordinary parametric GLMs for routine computational reliability. Previously such efficiency and
reliability were only available for prediction error criteria, such as GCV. This means that the advantages of REML/ML
estimation outlined in section 1.1 need no longer be balanced against the more reliable fitting methods available for
GCV/AIC. The cost of this enhancement is that the proposed method has a somewhat more complex mathematical
structure than the previous prediction error based methods (e.g. Wood, 2008), but since the method is freely available
in R package mgcv (from version 1.5) this is not an obstacle to its use.

Given that RE/ML estimation requires that we view model (1) as a generalized linear mixed model, then an obvious
question is why it should be treated as a special case for estimation purposes, rather than estimated by general GLMM
software? The answer lies in the special nature of the λi. The fact that they enter the penalty/precision matrix linearly,
facilitates both the evaluation of derivatives to computational accuracy, and the ability to stabilize the computations
via the method of Appendix B. In addition the λi are unusual precision parameters in that their ‘true’ value is often
infinite. The latter behaviour can cause problems for general purpose methods, which can not exploit the advantages
of the linear structure. Conversely, the method proposed here can be used to fit any GLMM where the precision matrix
is a linear combination of known matrices, but since it is not designed to exploit the the sparse structure that many
random effects have, it may not be the most efficient method for so doing.

A limitation of the method presented here is that it is designed to be efficient when the fj are represented using
penalized regression splines as described in Wahba (1980), Parker and Rice (1985), Eilers and Marx (1996), Marx and
Eilers (1998), Ruppert, Wand and Carroll (2003), Wood (2003) etc. These ‘intermediate rank’ smoothers have become
very popular over the last decade, as researchers realized that many of the advantages of splines could be obtained
without the computational expense of full splines: an opinion which turns out to be well founded theoretically (see
Gu and Kim, 2002; Hall and Opsomer, 2005; Kauermann, Krivobokova and Fahrmeir, 2009). But despite its wide
applicability, the penalized regression spline approach has limitations. The most obvious is that relatively low rank
smooths are unsuitable for modelling short range autocorrelation (particularly spatial). Where this deficiency matters,
Rue et al. (2008) offer an attractive alternative approach, by directly estimating additive smooth components of the
linear predictor, with very sparse Sj matrices directly penalizing these components. The required sparsity can be
obtained by modelling the smooth components as Markov Random Fields of some sort. Provided that the number
of smoothing parameters is quite low, then the methods offer very efficient computation for this problem class, as
well as better inferences about the smoothing parameters themselves. When the model includes large numbers of
random effects, but not all components have the sparsity required by Rue et al., or when the number of smoothing
parameters/ variance parameters is moderate to large, then the simulation based Bayesian approach of Fahrmeir, Lang
and co-workers (e.g. Lang and Brezger, 2004, Brezger and Lang, 2006, Fahrmeir and Lang, 2001) is likely to be more
efficient than the method proposed here, albeit applicable to a more restricted range of penalized GLMs, because of
restrictions on the Sj required to maintain computational efficiency.

20



An interesting area for further work would be to establish relative convergence rates for the f̂j under REML, ML
and GCV smoothness selection. It is not hard to arrange for f̂j to be consistent under either approach, at least when
spline like bases are used for the fj in (1). Without penalization, all that we require is that the basis dimensions grows
with sample size, n, fast enough that the spline approximation error declines at a faster rate than the sampling variance
of f̂j , but slow enough that dim(β)/n → 0 (so that the observed likelihood converges to its expectation). This is not
difficult to achieve, given the good approximation theoretic properties of splines. If smoothing parameters are chosen
to be small enough, then penalization will reduce the MSE at any n, so consistency can be maintained under penalized
estimation. In fact, asymptotically, GCV minimizes MSE (or a generalized equivalent), so the f̂j will be consistent
under GCV estimation. Since REML smooths less than GCV, asymptotically (Wahba, 1985), then the same must hold
for REML. However, establishing the relative convergence rates actually achieved under the two alternatives appears
to be more involved.
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Appendix A: Convergence failures of previous REML schemes
Wood (2008) provides a number of examples of convergence failure for the PQL approach, in which smoothing
parameters are estimated iteratively by RE/ML estimation of working linear mixed models. The alternative scheme
proposed in the literature is implemented by Brezger, Kneib and Lang (2007) in the BayesX package. Like PQL, this
scheme need not converge (as Brezger et al. explicitly point out), but Brezger et al. employ an ingenious heuristic
stabilization trick which seems to lead to superior performance to PQL in this regard. However it is not hard to
find realistic examples that still give convergence problems. For example the following code was used in R 2.7.1 to
generate data with a relatively benign co-linearity problem and a mild mean variance relationship problem:

set.seed(1);n<-1000;alpha <- .75
x0 <- runif(n);x1 <- x0 * alpha + (1-alpha)*runif(n)
x2 <- runif(n);x3 <- x2 * alpha + (1-alpha)*runif(n)
x4 <- runif(n);x5 <- runif(n)
f0 <- function(x) 2 * sin(pi * x)
f1 <- function(x) exp(2 * x)
f2 <- function(x) 0.2*xˆ11*(10 *(1 - x))ˆ6 + 10*(10*x)ˆ3*(1 - x)ˆ10
f <- f0(x0) + f1(x1) + f2(x2)
y <- rgamma(f,exp(f/4),scale=1.2)

Fitting the model

log{E(yi)} = f1(x1i) + f2(x2i) + f3(x3i) + f4(x4i) + f5(x5i) + f6(x6i)

yi ∼ Gamma, in BayesX 1.5.0, representing each f by a (default) rank 20 P-spline, resulted in convergence failure,
with the estimates zig-zagging without ever converging. 9 subsequent replicates of this experiment yielded 2 more
convergence failures of the same sort, 3 catastrophic divergences, and 4 problem free convergences (although one of
these took more than 200 iterations). Fitting the same model to these data sets using the methods proposed in this
paper gave no problems and sensible function reconstructions in each case.
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Appendix B: |∑i λiSi|+
As discussed in section 3.1, a stable method for calculating log |∑i λiSi|+ and its derivatives w.r.t. ρi = log λi, is
required, when the λi may be wildly different in magnitude. This appendix provides such a method by extending the
simple approach described in section 3.1.

Here it is assumed that q × q matrix S =
∑

i λiSi is formally of full rank. When this is not the case then the
following initial transformation will be required. First form the symmetric eigen-decomposition:

ŨΛ̃ŨT =
∑

i

Si/||Si||F ,

where ‖ · ‖F is the Frobenius norm. Now let U+ denote the columns of Ũ corresponding to positive eigenvalues.
The transformation S̃i = UT

+SiU+ is then applied and the methods of this appendix are utilized on the transformed
matrices. It is easy to show that |S|+ = |∑i λiS̃i|, and that

∑
i λiS̃i has full rank. For the rest of this appendix it is

assumed that this transformation has been applied if necessary, and the tildes are dropped.

Initialization: Set K = 0, Q = q and S̄i = Si ∀ i. Set γ = {1 . . .M}, where M is the number of Si matrices.

Similarity transformation: The following steps are iterated until the termination criteria is met (at step 4).

1. Set Ωi = ‖S̄i‖F λi ∀ i ∈ γ.

2. Create α = {i : Ωi ≥ εmax(Ωi), i ∈ γ} and γ′ = {i : Ωi < ε max(Ωi), i ∈ γ} where ε is e.g. the cube root of
the machine precision. So α indexes the dominant terms out of those remaining.

3. Find the eigenvalues of
∑

i∈α S̄i/‖S̄i‖F and use these to determine the formal rank, r, of any summation of the
form

∑
i∈α λiS̄i where the λi are positive. Rank is determined by counting the number of eigenvalues that are

larger than ε times the dominant eigenvalue. ε is typically the machine precision raised to a power in [0.7,0.9].

4. If r = Q then terminate. The current S is the one to use for determinant calculation.

5. Find the eigen decomposition UDUT =
∑

i∈α λiS̄i, where the eigen-values are arranged in descending order
on the leading diagonal of D. Let Ur be the first r columns of U and Un the remaining columns.

6. Write S in partitioned form

S =
(

AK×K BK×Q

BT
Q×K CQ×Q

)

where the subscripts in the above denote dimensions (rows × columns). Then set B′ = BU and

C′ =
(

Dr + UT
r Sγ′Ur UT

r Sγ′Un

UT
nSγ′Ur UT

nSγ′Un

)

where Sγ′ =
∑

i∈γ′ λiS̄i. Then

S′ =
(

IK 0
0 UT

)
S

(
IK 0
0 U

)
=

(
A B′

B′T C′

)

and |S| = |S′|. The key point here is that the effect of the terms indexed by α has been concentrated into an
r × r block, with rows and columns to the lower right of that block uncontaminated by ‘large machine zeroes’
from the terms indexed by α.

7. Define

Tα =
(

IK 0 0
0 Ur 0

)
and Tγ′ =

(
IK 0
0 U

)
.

and transform
Si ← TT

αSiTα ∀ i ∈ α

and
Si ← TT

γ′SiTγ′ ∀ i ∈ γ′.

These transformations facilitate derivative calculations using the transformed S.
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8. Transform S̄i ← UT
nS̄iUn ∀ i ∈ γ′.

9. Set K ← K + r, Q ← Q− r, S ← S′ and γ ← γ′. Return to step 1.

Note that the orthogonal matrix which similarity transforms the original S to the final transformed version can be
accumulated as the algorithm progresses, to produce the Qs of section 3.1.

The effect of the preceding iteration is to concentrate the dominant terms in S into the smallest possible block
of leftmost columns, with these terms having no effect beyond those columns. Next the most dominant terms in the
remainder are concentrated in the smallest possible number of immediately succeeding columns, again with no effect
to the right of these columns. This pattern is repeated. Since QR decomposition operates on columns of S, without
mixing columns, it can now be used to stably evaluate the determinant of the transformed S. Alternative methods of
determinant calculation (e.g. Choleski or symmetric eigen) would require an additional pre-conditioning step.

It is straightforward to obtain a stable matrix square root of the transformed S, which maintains the column
separation evident in S itself. Defining diagonal matrix Pii = |Sii|1/2, form the Choleski factor of the diagonally
preconditioned version of S. i.e.

LLT = P−1SP−1.

Then E = LTP, is a matrix square root, such that ETE = S. Pre-conditioning is essential in order to ensure
that the square root is computable without ever requiring numerical truncation, since the latter would cause spurious
discontinuous changes in the numerical value of |XTWX + S|, which depends on E.

Finally, note that, based on the general results,

∂ log |F|
∂xj

= tr
(
F−1 ∂F

∂xj

)
(16)

and
∂2 log |F|
∂xi∂xj

= tr
(
F−1 ∂2F

∂xi∂xj

)
− tr

(
F−1 ∂F

∂xi
F−1 ∂F

∂xj

)
(17)

(see Harville, 1997), the expressions for the derivatives are as follows (all r.h.s. terms transformed versions):

∂ log |S|
∂ρj

= λjtr
(
S−1Sj

)

and
∂2 log |S|
∂ρi∂ρj

= δi
jλitr

(
S−1Si

)− λiλjtr
(
S−1SiS−1Sj

)
.

Appendix C: The derivatives of β̂ using implicit differentiation

When full Newton is used in place of Fisher scoring to obtain β̂, then there is no computational advantage in iterating
for the derivatives of β̂ w.r.t. ρ (as in Wood, 2008), rather than exploiting the implicit function theorem to get them
directly by implicit differentiation. This is because Newton based PIRLS requires exactly the same quantities as
implicit differentiation. This appendix provides the details.

Define
Dp = D(β) +

∑
m

eρmβTSmβ,

and note that in this appendix some care must be taken to distinguish total derivatives of Dp, which encompass
all variability with respect to a variable, as opposed to partial derivatives of the expression for Dp which ignore
dependence of β̂ on ρ.

The partial derivatives of Dp

∂D

∂βr
= −2

∑

i

ωi
(y − µi)

V (µi)g′(µi)
Xir and

dµi

dβr
=

Xir

g′(µi)
,
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from which it follows (after some calculation) that

∂2D

∂βr∂βm
=

∑

i

2wiXimXir

where wi is the Newton version. Consequently

∂3D

∂βr∂βm∂βl
=

∑

i

dwi

dηi
XimXirXil.

Note that the partials of D w.r.t. ρ are zero.
Turning to P =

∑
m eρmβTSmβ (so Dp = D + P ) we have

∇βP = 2
∑
m

eρmSmβ and ∇2
βP = 2

∑
m

eρmSm.

Furthermore
∂∇βP

∂ρj
= 2eρjSjβ and

∂2∇βP

∂ρj∂ρk
= 2δk

j eρjSjβ, while
∂∇2

βP

∂ρj
= 2eρjSj .

The derivatives of β̂ w.r.t. ρ

β̂ is the solution to
dDp

dβr
= 0.

Since the above equation always holds at β̂, we have

d2Dp

dβrdρj
=

∑
m

∂2Dp

∂βr∂βm

dβm

dρj
+

∂2Dp

∂βr∂ρj
= 0,

at β̂. i.e.
dβ̂

dρj
= −

[
∂2Dp

∂β∂βT

]−1
∂∇βDp

∂ρj
.

Differentiating again we get

d3Dp

dβrdρjdρk
=

∑

l

∑
m

∂3Dp

∂βr∂βm∂βl

dβm

dρj

dβl

dρk
+

∑
m

∂3Dp

∂βr∂βm∂ρk

dβ̂

dρj
+

∑
m

∂2Dp

∂βr∂βm

d2βm

dρjdρk

+
∑
m

∂3Dp

∂βr∂βm∂ρj

dβ̂

dρk
+

∂3Dp

∂βr∂ρj∂ρk
= 0

Now
dη

dρj
= X

dβ

dρj
,

so using the expression for the third partial of D/Dp w.r.t. ρ, and re-arranging we get

d2β̂

dρjdρk
= −

[
∂2Dp

∂β∂βT

]−1
{

∂2∇βDp

∂ρj∂ρk
+ XTf jk + 2eρjSj

dβ̂

dρk
+ 2eρkSk

dβ̂

dρj

}

= δk
j

dβ̂

dρk
−

[
∂2Dp

∂β∂βT

]−1
{

XTf jk + 2eρjSj
dβ̂

dρk
+ 2eρkSk

dβ̂

dρj

}

where
f jk

i =
dηi

dρj

dηi

dρk

dwi

dηi
.

Note that the required inverse is PPT/2 (with derivatives of dropped parameters set to zero by this choice).
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Appendix D: Derivatives of w

In this appendix primes denote differentiation w.r.t. µi. First the derivatives of αi are useful

α′i = −
(

V ′
i

Vi
+

g′′i
g′i

)
+ (yi − µi)

(
V ′′

i

Vi
− V ′2

i

V 2
i

+
g′′′i

g′i
− g′′2i

g′2i

)

and

α′′i = −2
(

V ′′
i

Vi
− V ′2

i

V 2
i

+
g′′′i

g′i
− g′′2i

g′2i

)
+ (yi − µi)

(
V ′′′

i

Vi
− 3V ′

i V ′′
i

V 2
i

+
2V ′3

i

V 3
i

+
g′′′′i

g′i
− 3g′′′i g′′i

g′2i
+

2g′′3i

g′3i

)
.

The key derivatives of wi are then

dwi

dηi
=

wi

g′i

(
α′i
αi
− V ′

i

Vi
− 2

g′′i
g′i

)

and
d2wi

dη2
i

=
1
wi

(
dwi

dηi

)2

− dwi

dηi

g′′i
g′2i

+
wi

g′2i

(
α′′i
αi

− α′2i
α2

i

− V ′′
i

Vi
+

V ′2
i

V 2
i

− 2
g′′′

g′i
+ 2

g′′2i

g′2i

)
.

The derivatives of η w.r.t. ρ are obtained from the derivatives of β̂ w.r.t ρ, so the derivatives of wi w.r.t. ρ follow
easily. Note that setting αi ≡ 1, and its derivatives to zero, recovers Fisher scoring.

Appendix E: The ML determinant term and derivatives
ML requires computation of log |X̄TWX̄ + S̄| and its derivatives (see section 2.1). This requires further work. First
note that explicit formation and decomposition of

√
W̄XU1 would be wasteful. All that is needed is the (pivoted) QR

decomposition
RU1 = Q̄R̄

where R is from section 3.3. R (and Q1) should not be truncated here, even if there is rank deficiency: instead R̄ and
Q̄ should be. It is then easy to show that

X̄TWX̄ + S̄ = R̄T(I− 2Q̄TQT
1 I−Q1Q̄)R̄.

Forming the SVD
I−Q1Q̄ = ŪD̄V̄T,

define

P̄ =
(

R̄−1V̄(I− 2D̄2)−1/2

0

)
and K̄ = Q1Q̄V̄(I− 2D̄2)−1/2.

Then |X̄TWX̄ + S̄| = |R̄|2|I − 2D̄2| and the expressions for the derivatives of log |X̄TWX̄ + S̄| are as in section
3.5.1, but with P̄ and K̄ in place of P and K and the Sk replaced by S̄k = UT

1SkU1 (pivoted in the same way as the
R̄).

Appendix F:The Pearson Statistic
The derivatives of the Pearson statistic with respect to the coefficients are required. Wood (2008) provided these in a
form which only holds under Fisher scoring. Here is the general form.

P =
∑

i

Pi where Pi =
ωi(yi − µi)2

Vi
.

So we need
dPi

dβj
=

dPi

dηi
Xij and

d2Pi

dβjdβk
=

d2Pi

dη2
i

XijXik.
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The requisite derivatives are
dPi

dηi
= − 1

g′i

{
2ωi(yi − µi)

Vi
+ Pi

V ′
i

Vi

}

and

d2Pi

dη2
i

=
g′′i
g′3i

{
2ωi(yi − µi)

Vi
+ Pi

V ′
i

Vi

}
+

1
g′2i

{
2ωi

Vi
+

2ωi(yi − µi)
Vi

V ′
i

Vi
− g′i

dPi

dηi

V ′
i

Vi
− Pi

(
V ′′

i

Vi
− V ′2

i

V 2
i

)}
.

Appendix G: Derivatives of the saturated log-likelihood
When the scale parameter is fixed and known, as in the binomial and Poisson cases, then ls is irrelevant and its
derivative w.r.t. φ is zero. Otherwise ls and derivatives are needed. Here are three common examples.

Gaussian

ls = − log(φ)/2− log(2π)/2, l′s = −1/(2φ) and l′′s = 1/(2φ2).

Inverse Gaussian

ls = − log(φ)/2− log(2πy3)/2, l′s = −1/(2φ) and l′′s = 1/(2φ2).

Gamma

ls = − log Γ(1/φ)− log(φ)/φ− 1/φ− log(y). Writing log Γ to mean the log gamma function (to be differentiated as
a whole): l′s = log Γ′(1/φ)/φ2 + log(φ)/φ2 and l′′s = − log Γ′′(1/φ)/φ4 − 2 log Γ′(1/φ)/φ3 + {1 − 2 log(φ)}/φ3.
The lgamma, digamma and trigamma functions in R evaluate log Γ, log Γ′ and log Γ′′ respectively.

Appendix H: Derivatives of tr (F)

Prediction error criteria, such as GCV, involve the effective degrees of freedom of a model defined as tr (F) where

F = (XTWX + S)−1XTWX.

To optimize such criteria using the method developed here requires differentiation of tr (F) w.r.t. the log smoothing
parameters. Define G = XTWX + S. Note that G−1XT

√
W̄ = PKT,

√
W̄XG−1XT

√
W̄ = KKT and G−1 =

PPT. Also define Tj and Tjk as in section 3.5.1 (and not as in Wood, 2008), and diagonal matrix I+ where I+
ii = −1

if wi < 0 and I+
ii = 1 otherwise. Now F = PKTI+

√
W̄X and

∂F
∂ρj

= −G−1

(
XT ∂W

∂ρj
X + eρjSj

)
G−1XTWX + G−1XT ∂W

∂ρj
X,

so that
∂tr (F)

∂ρj
= −tr

(
KKTTjKKTI+

)
− eρj tr

(
KPTSjPKTI+

)
+ tr

(
KKTTj

)
.

Second derivatives are more tedious

∂2F
∂ρj∂ρk

=
[
G−1

(
XT ∂W

∂ρj
X + eρjSj

)
G−1

(
XT ∂W

∂ρk
X + eρkSk

)
G−1

]‡
XTWX

−G−1

(
XT ∂2W

∂ρj∂ρk
X + δk

j eρjSj

)
G−1XTWX−G−1

(
XT ∂W

∂ρj
X + eρjSj

)
G−1XT ∂W

∂ρk
X

−G−1

(
XT ∂W

∂ρk
X + eρkSk

)
G−1XT ∂W

∂ρj
X + G−1XT ∂2W

∂ρj∂ρk
X,

26



where [A]‡ = A + AT. It follows that

∂2tr (F)
∂ρj∂ρk

= 2tr
(
KKTTkKKTTjKKTI+

)
+ 2eρj tr

(
KKTTkKPTSjPKTI+

)

+ 2eρktr
(
KPTSkPKTTjKKTI+

)
+ 2eρk+ρj tr

(
KPTSkPPTSjPKTI+

)

− tr
(
KKTTjkKKTI+

)
− δk

j eρj tr
(
KPTSjPKTI+

)
− 2tr

(
KKTTkKKTTj

)

− eρj tr
(
KPTSjPKTTk

)
− eρktr

(
KPTSkPKTTj

)
+ tr

(
KKTTjk

)
.

Although K, P and the T matrices are all different to those in Wood (2008), and the I+ matrices did not feature there
at all, it is still possible to use the tricks listed in Appendix C of Wood (2008) to evaluate these terms efficiently, with
only minor adjustment.

Note that there is a strong argument for employing Fisher scoring based weights in place of Newton based weights
in the definition of F. This requires redefining W, Tk and Tjk and setting I+ to I, but otherwise the computations
are identical. This change removes the possibility of XTWX having negative eigenvalues, which can occasionally
lead to non-sensical computed effective degrees of freedom.
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