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Abstract 

 

Modifications to the coolant and oil circuits of a modern production 2.4L diesel engine have been 

made in an attempt to promote oil warm up to reduce fuel consumption. The new system used oil to 

cool EGR gases and incorporates a number of coolant flow control valves to reduce heat loss during 

warm up. The engine was run over cold start NEDC cycles with various flow strategies as a 

screening exercise to understand the behaviour of the system. Fuel consumption benefits of up to 

4% were observed, but these were accompanied with 3% increases in NOx emissions. Detailed 

analysis of the coolant flows and temperatures showed that when throttling the flow, the mass of 

coolant in the degas bottle and radiator could be isolated from the system during warm up, 

essentially reducing the thermal inertia. Heat transfer directly to the oil from EGR gases rather than 

via the coolant allowed more heat to be put into the oil, with engine oil supply temperatures up to 

6
o
C hotter, however it was not possible to verify that the oil was hotter at the bearings, valve train 

and cylinder liner. The engine strategy was seen to react to the faster warm up and retard injection 

timing, reducing NOx but also compromising overall fuel consumption benefits. Further tests were 

conducted with varying injection timing to establish a NOx/fuel consumption trade off to 

demonstrate further benefits when the engine strategy is included in the operation of novel thermal 

management systems. 
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1 Introduction 

With the increased environmental, economic and legislative drivers requiring better fuel economy, 

interest in all engine subsystems are being investigated for improved performance. Engine thermal 

management systems (TMS) offer a relatively large potential for innovation with most systems 

using similar components over the past 20 years. Whilst research is ongoing in the area too often 

studies remain isolated in improving the efficiency of the sub system alone. However, to achieve 

the full benefits of this system, a global systems approach needs to be taken, looking at the 

interactions of the engine TMS with other subsystems [1]. 

 

Previous studies on engine TMS have targeted improving the efficiency of the system by 

decoupling the coolant flow rate from engine speed. This is usually achieved by replacing the 

mechanical pump and thermostat by an electric pump and control valve [2-4], but is often a costly 

alternative. In addition to matching the pumping power to the cooling requirements, these systems 

have subsequently allowed independent control over the cooling system other than simply 

controlling a top hose coolant temperature as with the traditional thermostat. Engine cooling can 

then be controlled using a target metal temperature rather than a target coolant temperature. This 

matches engine cooling to the thermal loading and avoids the constraints of a system designed to 

function under extreme conditions by allowing hotter coolant, and hence hotter oil, at lower loads to 

reduce frictional losses [5-7]. 

 

Current developments tend to concentrate on engine warm up cases and have given mixed results. 

Brace et al [8] throttled main coolant flows during a cold start drive cycle but whilst fully warmed 

up temperatures were influenced by this setup, engine warm up showed no improvement. In 

contrast, Choukroun and Chanfreau [9] did achieve faster warm up when completely stopping 

coolant flow. In both these cases the modifications to the production engine were relatively 
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inexpensive and offer a pragmatic approach to engine cooling control. Heat energy recovery has 

offered another potential for improved cold start, with the potential demonstrated by comparing 

cold start tests to a hot start test [10]. Andrews et al [11] achieved faster warm up by using a coolant 

to exhaust gas heat exchanger before the coolant to oil heat exchanger which yielded up to 8-10% 

fuel consumption benefits depending on the duration of the test. Hawley et al. [12] have 

investigated the effects of using heaters in the transmission oil for improved fuel consumption and 

demonstrated a 0.7 per cent improvement in fuel consumption using a 1080W heater, however the 

heaters were externally powered and the result did not take into account any adverse effects on fuel 

consumption from higher electrical demands. The authors concluded that such a system would only 

likely to be implemented by using waste heat from the exhaust flow, but that the costs in 

implementing such a system without affecting after-treatment devices would be significant. 

 

When considering previous studies from the literature, the methods for improving fuel consumption 

using the engine TMS have been to allow the engine oil to heat up faster to reduce frictional losses. 

This work bases itself on results from a production engine with concept cooling and lubrication 

circuits. After assessing the benefits of the new system from a fuel consumption perspective, a 

detailed analysis of the interactions with the engine control systems will be presented. 

2 Methodology and experimental setup 

The baseline engine was a production 2.4L, 4 cylinder common rail direct injection Diesel engine 

loaded using a transient AC dynamometer under the control of the CP Engineering Cadet 12 

software. The engine was run over the New European Drive Cycle (NEDC), simulating the loading 

of a small commercial vehicle. The engine hardware was EURO IV emissions standards 

specification for light duty commercial vehicles, however due to the specific constraints of the 

experimental installation, the EGR calibration used here was not representative of a production 
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engine and the NOx emissions exceeded this limit in this particular case (details of this calibration 

issue are provided in section 3.5, engine strategy analysis). All tests were conducted from a 25
o
C 

cold start condition following an overnight temperature soak period.  

 

Engine fuel consumption was estimated using a gravimetric fuel balance whilst exhaust gas 

concentrations of oxides of nitrogen (NOx), carbon monoxide (CO), carbon dioxide (CO2) and 

unburned hydrocarbon (THC) were estimated according to British standards [13]. 

 

In addition to common engine instrumentation, 4 non-intrusive ultrasonic flow meters were 

installed in various legs of the coolant circuit to monitor all flows in the system. Coolant volume 

increases were kept to a minimum, avoiding large increases in thermal inertia. The majority of 

engine auxiliaries were fitted to the engine, though the cabin heater, usually an integral part of the 

TMS, had been removed. A number of major modifications to the cooling and lubrications circuits 

were made which are listed below; these modifications introduced a number of additional 

calibration variables which were then adjusted to assess potential benefits in fuel consumption. This 

publication reports on the initial findings from this work. 

2.1 Lubrication circuit setup 

The engine lubricant circuit had undergone the largest changes from the production engine with the 

inclusion of an external circuit designed to supply heat to the oil. A second EGR cooler, where 

gases were cooled by the oil, was run in parallel to the conventional coolant cooled EGR. Although 

physically laid out in parallel, for ease of controlling EGR rates only one of the two coolers was 

used at any one time. The flow of EGR gases was controlled using production EGR valves with one 

mapped to the engines conventional strategy and the other closed. The production engine 

incorporated a coolant to oil heat exchanger and the oil cooled EGR cooler was incorporated in 

series with this before being filtered and supplied to the oil gallery. A diagram of the modified oil 
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circuit is shown in figure 1. In its prototype form, the system would have significant impacts on 

production costs; however it is difficult to quantify the impact of a production system based on this 

proof-of-concept setup. However, as EGR is a well established system in Diesel engines, the cost 

are likely to be more realistic to a production setup than the exhaust waste heat recovery considered 

by Hawley et al. [12]. 

 

The conventional oil pump was replaced with a variable flow oil pump (VFOP) which was 

controlled to provide a target oil gallery pressure. To ensure sufficient oil supply to the engine with 

the external circuit, an additional 0.6L of oil was used compared to the standard engine fill (6.5L). 

 

2.2 Coolant circuit setup 

The engine coolant circuit was modified from the baseline at a number of points. The conventional 

thermostat had been replaced with a more advanced Pressure Regulated Thermostat (PRT). This 

component is still based on a wax element, however it is sensitive to both top hose and bottom hose 

coolant temperatures meaning that when a large cooling potential is available over the vehicle 

radiator the thermostat will have a tendency to stay closed even if top hose temperatures are hot [8].  

 

A diagram of the coolant circuit is shown in figure 2. To allow additional control over coolant flows, 

three throttle valves were installed in addition to the PRT: 

(a) Engine out coolant throttle 

(b) EGR cooler loop coolant throttle 

(c) Oil cooler control valve 

The valves have proven to be an inexpensive method for controlling coolant flows compared to the 

full electrical systems and are therefore more likely to be considered in a production setup. 
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The modifications to the oil and coolant circuits allowed control of the following parameters:  

 Control of engine out coolant flow 

 Control of coolant flow in EGR cooler circuit 

 Control of coolant flow to oil cooler 

 Control of oil pressure using VFOP 

 Use of coolant or oil cooled EGR 

 Change of other common calibration parameters, notably injection timing 

 

However, the additional freedom also means that these parameters would require optimisation to 

enable maximum benefits from the modified system and a series of screening tests were performed 

to investigate the effects of each of these. As with the oil circuit, the total coolant volume was 

increased in the prototype setup by approximately 2L over the standard 8L, however the majority of 

this increase is a result of the flowmeters rather than the additional hardware. 

 

2.3 Experimental operating points 

For each test setup detailed below, all of the hardware was fitted to the engine. As a result, the 

baseline setup considered here would probably yield worse cold start fuel consumption than the 

production baseline, but this would provide an appropriate comparison for subsequent setups. 

Whilst every effort has been made to reduce coolant and oil volumes, ultimately these were done 

within the constraints of the prototype setup. Of the many variations in control parameters that were 

tested, four setups will be presented in detail in this publication (see Table 1). Details of each 

experimental setup considered are listed in appendix 8.3 and the results will be used to later in this 

work for establishing correlations. 
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Engine out 

coolant throttle 

EGR cooler 

coolant flow 

Oil cooler 

coolant flow 

EGR cooler VFOP 

Uncontrolled Non Controlled Non Controlled Open Coolant Max Flow 

Baseline Non Controlled Non Controlled Open Coolant Controlled
*
 

Build 2 Mapped
#
 Non Controlled Open Oil Controlled

*
 

Build 3 Mapped
&
 Restricted Open Oil Controlled

*
 

*  Controlled oil flow is based on a target oil gallery pressure of 2bar 

# Build 2 mapped coolant flow inhibits coolant flow until a head metal temperature of 95
o
C is reached and subsequently 

opens as a function of head temperature and engine speed. 

&  Build 3 mapped coolant flow is similar to build 2, only throttle opening occurs at 105
o
C engine head temperature 

Table 1: Experimental setups for detailed analysis 

 

Engine out coolant throttle control was mapped according to required engine cooling power based 

on engine head metal temperature which is the base engine temperature measure for all ECU 

calibrations. Until a threshold temperature, the valve remained shut, keeping flow in the main 

coolant circuit to a minimum. 

 

EGR cooler coolant throttle was set to a constant opening based on a flow of coolant at idle. Whilst 

this is a very crude way of controlling flow it does allow easy and effective reduction of flow for 

this preliminary experimental investigation. 

 

Coolant was always flowed to the oil cooler. A limited number of tests were conducted with the oil 

cooler bypassed, but yielded worse overall results. When analysing the coolant temperatures these 

were found to lead oil temperatures in all cases meaning that flowing coolant to the oil cooler would 

always be beneficial, as well as contributing to the heating of the oil cooler structure. 
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3 Results 

3.1 Fuel consumption analysis 

Fuel consumption for each of the four setups is shown in figure 3 along with expected 95% error 

bars based on previous knowledge of the engine/dynamometer facility. The first point to note is that 

changes in fuel consumption are small and of the order of 1%. The largest benefit was achieved by 

using the VFOP which yielded a 22g (2%) improvement. Heating the oil using EGR gases and 

throttling coolant flow during warm up yielded a further 20g (2%) improvement when considering 

the gravimetric measure. However, throttling the coolant flow further led to a slight increase in fuel 

consumption (approx 5g). 

 

Fuel consumption changes were as expected between the uncontrolled and baseline setups with the 

reduction of oil pumping power resulting in lower fuel consumption. Again, when progressing to 

build 2, the restriction of coolant flow and direct addition of heat to the engine oil would provide 

faster warm up and reduced frictional losses contributing to lower fuel consumption. Restricting 

flow further in the case of build 3 was expected to improve warm up further and yield further fuel 

consumption benefits however this was not the case.  

 

Figure 4 shows the bulk oil temperatures over the drive cycle for each of the engine setups. Apart 

from the uncontrolled setup, oil temperatures correlate well with fuel consumption values indicating 

the strong link with engine frictional losses and a dominance of hydrodynamic lubrication within 

the engine [1]. The uncontrolled case is slightly unusual as the bulk oil temperature is similar to that 

of build 3, however it is important to identify where the additional heat is generated. In the case of 

build 3, this was achieved by using the oil EGR cooler however in the uncontrolled case this is a 

result of higher oil pumping work due to the uncontrolled oil pressure. The higher oil temperature 
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would be expected to reduce frictional losses and improve fuel consumption; however this is offset 

by the higher pumping work which ultimately leads to higher net fuel consumption. 

 

Whilst fuel consumption is affected by engine friction and bulk lubricant temperatures, it is 

important to note that other factors have significant effects. An analysis of the coolant flow 

strategies will be presented as a way of demonstrating the control settings. The external oil circuit 

will then be considered showing the potential benefits from the novel design and finally engine 

NOx emissions will be analysed leading into engine control strategy. 

 

3.2 Coolant circuit analysis 

3.2.1 Flow analysis 

Coolant flows in the uncontrolled and baseline setups are similar as no control of the coolant 

throttles was implemented and as a result the results from the uncontrolled setup will be ignored at 

this stage. Comparisons of the coolant flow in each of the three remaining setups are shown in 

figure 5. For this analysis, the engine coolant circuit is split up into two loops: 

 The cooling loop which is the main external loop from the engine in which the PRT defines 

the proportion of coolant flowing to the radiator. This loop also includes the Degas bottle. 

 The heating loop, where coolant can be used to cool EGR gases, effectively heating the 

coolant, and to heat or cool oil in the oil cooler. 

 

The main engine out coolant throttle was not controlled in the baseline setup and, as can be seen in 

figure 5, the coolant flow rate at the “Engine Out” station varied between 10 and 100l/min. In builds 

2 and 3 the throttle is controlled depending on engine head temperature. When the engine is cold, 

the coolant throttle remains closed, reducing coolant flow in the cooling loop. Although the results 

from the flowmeters suggest flow is completely inhibited in this loop, analysis of coolant 
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temperatures in figure 6 show that there is some leakage as pump return temperatures increase 

throughout the test. This is not reflected in the engine out and top hose coolant flows because of the 

measuring range of these flow meters. The flow meters are based on electromagnetic flow 

measurement principle [14], based on a flow velocity measurement. Measurement accuracy is very 

good over most of the measuring range, however it increases exponentially for velocities below 

1m/s, And excessive for velocities below 0.1m/s. For the engine out and top hose flow meters this 

represents approximately 3L/min whereas for the degas flow this limit is 0.5L/min. It is only late on 

in the drive cycle, during the high power extra urban drive cycle (EUDC) that the throttle opens and 

allows significant flows of up to 25l/min to circulate. In cooling loop, the majority of the flow 

passes down the bypass loop as the engine is cold and the PRT will remain closed for the majority 

of the drive cycle. However, in the baseline setup a flow of up to 2l/min flows to the inlet of the 

radiator suggesting some leakage in the thermostat. However, when looking at the flow from the 

degas bottle, it would appear that this flow is mostly going to the degas tank. There is a small flow 

from the degas bottle in builds 2 and 3, but the top hose temperatures suggest this is not significant 

(figure 6). 

 

The coolant throttle in the heating loop remains open in the baseline and build 2 setups, but partially 

closed in build 3. In the first two cases coolant flows of the order of 10l/min are seen throughout the 

drive cycle, however the effect of closing the throttle reduces flow significantly to less than 3l/min 

over the test. This demonstrated good control of coolant flows using the current hardware. It is 

interesting to note that coolant flows in build 2 are larger than in the baseline condition. This will be 

due to the closing of the main engine out throttle meaning the coolant pressures will be higher, 

allowing more through the narrow passages of the heating loop. Coolant pressures were, however, 

not monitored in this study and so it is not possible to verify this at this stage. 
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3.2.2 Temperature and energy analysis  

Coolant temperatures were monitored and are compared for the three setups in figure 6. Using the 

combined temperature and flow data it was possible to establish the energy exchanges through the 

various components of the circuit as described in equations 1 and 2. 

dtTcmQ p    (1) 

 dtQQ   (2) 

 

Cumulative heat exchanges over the 4 urban cycles (first 780 seconds) are reported in figure 6 for: 

(a) Heat loss from combustion chamber 

(b) Heat lost to ambient air flow in the radiator 

(c) Heat flow to oil in the oil cooler 

(d) Heat picked up from cooling of EGR gasses in the EGR cooler 

 

This period corresponds to the warm-up period and has been considered representative for energy 

exchange analysis. The EUDC includes large energy flows that may mask warm up effects such as 

after the PRT opening and when heat flow reverses to cool oil in the oil cooler. In all cases, a 

negative energy value signifies that heat flow was opposed to the direction of the corresponding 

arrow. 

 

The temperature distribution in figure 6 shows that despite the flowmeters reading no flow in the 

engine out, there is clearly a degree of leakage causing a temperature rise in the pump return leg. 

However, the top hose temperature shows that in builds 2 and 3 the flow through the radiator and 

degas bottle is negligible. In the baseline test, the temperature rises with engine out temperature, 

however in the other two tests the temperature remains at around 25
o
C until the PRT opens. It is not 

obvious why the degas flow is inhibited following main engine out coolant throttle closing, 
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however one cause may be reduced coolant pressure due to the flow throttling. The effect of this 

will be to isolate the coolant in the degas bottle during warm-up, thus reducing overall thermal 

inertia. 

 

When considering the heat energy exchanges in figure 6, it can be seen that the heat loss from 

combustion reduces when the coolant flow is throttled. Coolant flow through the engine is high in 

baseline and build 2 but significantly throttled in build 3: As a result, the heat loss is over 600kJ less. 

Heat transfer in the engine will be reduced by lower coolant velocities but the faster warm-up rate is 

explained by lower thermal inertia. Figure 7 shows the main energy flows from the combustion 

chambers and shows that lower heat loss is not compensated by lower fuel usage or higher exhaust 

gas enthalpy, and would therefore be expected to remain within the engine structure. 

 

Using the oil to cool EGR gases removes the heat addition to the coolant over the EGR cooler and 

heat is effectively lost over this component. The knock on effect is that heat transferred to the oil in 

the oil cooler is reduced due to lower heating capacity of the coolant. The significantly lower flow 

rate in build 3 will further reduce the heating capacity in the oil cooler which is reflected in the 

lower energy exchange (see figure 6). The effectiveness of oil to cool EGR gases has not been 

quantified in this study, however the effect on NOx emission appears small showing that sufficient 

cooling is available during the warm up phase. 

3.3 Lubricant circuit analysis 

Analysis of the modified oil circuit is limited compared to that of the coolant circuit as flow rates in 

the system are not known. However, the analysis will be conducted by looking at the pressure drop 

and temperature rise over the external circuit (between stations 1 and 2 in figure 1). Figure 8 shows 

the pressure drop in the external oil circuit for the modified oil circuit over the NEDC drive cycle. 

Also shown for reference, is an example of the pressure drop for the same engine, without the 
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external oil circuit. It is clear that the pressure drop is about 0.5bar higher with the additional EGR 

cooler over the 4 urban drive cycles and almost 2bar during the 120kph cruise. In the prototype 

setup this rise in flow resistance is unavoidable and will increase fuel consumption due to higher 

pumping work; however optimisation of the layout in a production engine would be expected to 

reduce this effect significantly. 

 

Figure 9 shows the oil temperature rise over the external circuit for the baseline condition and 

builds 2 and 3. For reference, the temperature rise for the production system is also shown. The 

production system is the engine running without any of the additional hardware which avoids any 

heat losses to ambient that may occur in the external circuit. 

 

There is a clear difference between the baseline and the two subsequent builds which use the oil 

cooled EGR system with the oil hottest in the case of build 2 (non throttled coolant flow in the 

heating loop). In the baseline case, when heat flows from EGR gases to the coolant, and then from 

coolant to oil, the temperature rise of oil over the external circuit is about 2
o
C over the 2

nd
, 3

rd
 and 

4
th

 urban cycles. Over the 1
st
 urban drive cycle the oil temperature decreases by up to 2

o
C, probably 

as a result of heating the oil cooler and filter components. In contrast, when the oil EGR cooler is 

used and heat flows directly from the EGR gases to the oil, an increase in oil temperature of up to 

8
o
C is achieved for all of the urban cycles. This shows that the oil temperature can be increased 

with the modified setup and would be expected to yield better fuel consumption. Oil temperature 

rise is lower in build 3 than in build 2 (i.e. when coolant flow is throttled in heating loop).  

 

In all cases towards the end of the drive cycle the temperature gradient reverses and the oil is cooled 

in the external circuit. This is a result of oil temperatures overtaking coolant temperatures as the 
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coolant thermostat opens allowing flow through the radiator. If further oil heating is required then it 

important to further control coolant flows at this point to avoid adverse oil cooling.  

 

3.4 NOx analysis 

Whilst running an engine hotter can reduce fuel consumption through lower friction, it must not 

impact heavily on emissions which remain a key factor in engine development. Increasing engine 

temperatures can be beneficial to some emissions such as CO, THC (see table 2) and smoke which 

are the result of incomplete combustion; however oxides of nitrogen (NOx) emissions increase at 

higher temperatures. Figure 10 shows the total NOx emissions over an NEDC cycle for the four 

engine builds and again 95% error bars are based on previous facility knowledge. 

Test Hydrocarbons CO 

Baseline 4.7g 23g 

Build 2 6.8% 7.6% 

Build 3 6.2% 7.4% 

Table 2: Hydrocarbons and CO emissions from baseline test and percentage improvement in 

subsequent builds 

The engine hardware and control strategy were specified to EURO IV emissions regulations, 

however these results exceed those specified limits. As will be discussed in section 3.5, this was due 

to the lack of road data feedback on the dynamometer setup causing some ECU hardware protection 

strategies to be implemented, reducing the EGR rate to below the production engine levels. When 

considering the physical mechanisms, it is not surprising that a rise in NOx emissions occurs 

between the baseline setup and build 2. Hotter engine temperatures would increase the reactions 

described by the Zeldovich model [15] causing the rise of around 0.2g (≈3%). The result from build 

3 is more unexpected as the engine runs hotter (see coolant temperatures, figure 6) and a further 

increase in NOx emissions would be expected. Whilst further investigation into this aspect is 
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necessary, the result does follow a similar trend to the fuel consumption results shown in figure 3. 

The higher NOx in the uncontrolled condition will probably be the result of the higher fuel 

consumption which increases in-cylinder temperatures. 

 

To better understand the NOx results it is necessary to look at the detailed NOx formation 

throughout the NEDC cycle. Figure 11 shows the cumulative NOx and the difference in cumulative 

NOx relative to the baseline setup. Firstly it is obvious that the final NOx result is heavily dependant 

on the final two points on the drive cycle: approximately 75% of NOx are formed during the 100kph 

and 120kph cruises and the associated transients. The particularity of these last high power points of 

the cycle is also apparent when considering the difference graphs: for builds 2 and 3, less NOx are 

produced over the first part of the drive cycle, however over the last two stages significantly more 

NOx is produced giving a net increase in the case of build 2 and similar overall NOx in build 3. 

 

An insight into the causes of lower NOx as a result of faster warm up is given by looking at the 

engine control variables. As explained previously, a hotter engine would be expected to cause an 

increase in NOx, however this is only the case for the very final part of the NEDC drive cycle. 

3.5 Engine strategy 

The two main engine calibration parameters that affect NOx emissions and fuel consumption are 

injection timing and EGR rates. Each of these will be considered along with engine head metal 

temperature which is a key input to the engine control system. This section will assess the impact of 

coolant throttling on the ECU behaviour. 

 

The engine control of injection timing and EGR rates is dependant on a large number of factors, but 

amongst the most significant are accelerator pedal position, relating the torque demand from the 

driver and the engine head temperature. Figure 12 shows the engine cylinder head temperature over 
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the NEDC for the baseline and build 2 setups. To improve clarity, temperatures during transient 

events have been removed. As expected, the temperature in build 2 is higher than in the baseline 

which corresponds to the same increases seen in the oil and coolant analysis. 

 

Figure 13 shows the injection timing for baseline and build 2 setups. Also included is the 

cumulative injection timing which has little physical meaning, but is more appropriate for showing 

differences between the two tests due to the transient nature of engine behaviour. Injection timing is 

expressed as degrees before top dead centre (
o
BTDC), meaning a lower negative value indicates a 

more retarded condition. It can be seen that injection timing is more advanced at the beginning of 

the drive cycle; this allows for longer ignition delay and less favourable combustion conditions 

when the engine is cold. As the engine warms up, injection is gradually retarded to control engine 

NOx emissions.  

 

Figure 14 (a) shows the EGR rate for the baseline setup and the difference plots for builds 2 and 3 

and the baseline EGR. The EGR measurements are based on the ratio of CO2 in the inlet to the 

exhaust manifolds and estimated based on two independent CO2 measurements. Although care has 

been taken to correctly time align these measurements, small differences during transient events 

mean a reliable measure is not possible at this stage, and a moving average filter has been applied. 

Initial observations show the EGR rate appears 4% and 7% higher for the majority of the urban 

cycles in builds 2 and 3 respectively. However, closer observation in figure 14 (b) shows that this is 

only the case during idle phases and EGR tends to be much closer to the baseline during 

accelerations and cruises. During the EUDC phase, EGR rates become almost equal in all tests with 

small differences occurring over the transient events. It is not obvious as to the cause of these 

effects as a faster warm up would be expected to cause a drop in EGR as the engine control system 
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attempts to maintain a desired intake mass airflow. This would suggest that the effects here on EGR 

are minimal.  

 

Over the first 800s of the drive cycle, the net effect on NOx emissions in builds 2 and 3 will be the 

combination of a hotter engine, retarded injection and EGR changes. The warmer engine would be 

expected to increase NOx emissions whilst the retarded injection timing would decrease emissions 

[16]. The effects of EGR may only be significant when the engine is under load (not idling or 

decelerating), at which points EGR rates are similar in the baseline and modified setups (figure 14 

(b)). Referring back to the NOx results in figure 11, the effect of injection timing would appear 

larger as there is an overall reduction in NOx. This suggests an over-compensation by the engine 

ECU due to the increase in temperature which will be compromising the potential benefits in fuel 

consumption. This is caused by the engine temperature being estimated based on a single 

temperature measurement in the cylinder head that is not representative during engine warm up. 

 

When engine cylinder head temperature is above 80
o
C (after 600s), the injection timing is similar in 

both tests (the cumulative graphs stop diverging). This shows that above a certain engine 

temperature, injection timing becomes essentially independent of temperature. Unlike injection 

timing, EGR rates were similar over the majority of the drive cycle (figure 14), however small 

differences during the last parts of the EUDC will have a large effect on overall NOx due to the 

importance of NOx contribution of this phase. 

 

It is important to note the very low EGR rates over final acceleration and the 120kph cruise (figure 

14(c)). This would not be standard operation on the production engine, but is a consequence of ECU 

hardware protection strategies activating due to a lack of road data feedback on the dynamometer 

setup. The degraded EGR calibration in this prototype setup, combined with the high rate of NOx 
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production over this part of the drive cycle explains why the EURO IV emissions limits were not 

respected for NOx emissions. An increase in EGR rate would increase overall fuel consumption and 

reduce overall NOx, creating as shift of the NOx fuel consumption trade off. 

4 Discussion 

The points noted above have been observed by considering only 4 different setups, however results 

from a larger series of setups will now be considered (detailed in appendix 8.3). It was seen that 

during the urban phase of the NEDC, lower NOx occurred when the engine was hotter because of 

retarded injection. For each test, total NOx emissions over the urban stage of the drive cycle have 

been plotted against cumulative engine temperature and cumulative injection timing (figure 15). 

Whilst these cumulative values have little physical meaning, they do give an estimate of 

temperature and timing over the period as a whole. In the case of cumulative temperature, a higher 

value signified that the engine has operated hotter on average. In the case of cumulative injection 

timing, a higher number indicates that the engine has run with more advanced timing.  

 

As was expected from the previous results, hotter engine yields lower NOx over the urban phase of 

the drive cycle due to retarded injection. Figure 16 shows the close correlation of engine 

temperature and injection timing over this first stage of the drive cycle and confirms the strong 

dependence on engine temperature within the engine ECU strategy. It would be expected that a 

hotter engine would cause an increase in NOx emissions, but the retarded timing offsets this and 

causes the net decrease [16]. 

 

In contrast to results over the first stage, over the last 150 seconds (100kph and 120kph cruises), no 

strong correlations were seen based on engine temperature, injection timing or EGR alone (R
2
 

values less than 0.3). To understand these effects a linear response model was generated based on 
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these three inputs and a snapshot is shown in figure 17 for injection timing and temperature at the 

mean EGR condition. Although neither injection timing nor EGR were directly perturbed, the effect 

of engine temperature on engine strategy caused variations. A response model was necessary due to 

the cluster of tests for which injection is slightly retarded (cumulative injection timing -

170
o
BTDC.s) which shows that injection timing has an impact on NOx emissions in this region. The 

model also showed that engine temperature has a strong effect on NOx emissions under these 

conditions. The effect of EGR has not been shown as this effect was small compared to other 

factors. This was thought to be due to small excitations rather than small effects as over the 150 

seconds, EGR rate varied by less than 1% and, as shown in figure 14 (c) was not used over the final 

50 seconds. 

 

Maintaining the main engine out coolant throttle closed over the warm up period effectively 

removed the volume of coolant in the radiator and degas bottle from participating in the warm up, 

effectively reducing the thermal inertia. In addition, the reduced heat transfer to the coolant suggests 

more heat remains in the structure, however due to the lack of instrumentation on the current engine 

this could not be verified experimentally and will be the topic of ongoing research. It is important to 

note that it is the combination of the reduced thermal inertia of the coolant and the reduced heat 

transfer that allow the engine to warm up faster. Lower heat transfer to a similar mass of coolant 

would simply allow the structure to run at a higher temperature compared to the coolant, but the 

coolant warm up rate would be slowed down. Reducing the coolant inertia allows it to warm up 

faster, whilst also allowing the structure to run with a higher temperature differential. Isolating parts 

of the coolant circuit (radiator and degas bottle) does mean care needs to be taken when this cold 

volume is bled back into the system to avoid oscillatory behaviour and a rapid drop in all 

temperatures.  
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The design was capable of adding heat to the oil as higher temperature differences were observed 

over the external circuit. However, it is unclear whether this increased temperature translates in to 

hotter oil at key locations in the engine. To reduce viscous losses, it is necessary to have hotter oil 

in all bearings (main, connecting rod, camshaft…), valve assembly and piston rings. It will be 

important to investigate how well the oil retains the additional heat supplied to it or whether this is 

lost very quickly to the cold structure. The concept considered in this design does not increase the 

amount of heat going to the system as a whole, but attempted to redistribute the energy flow to 

promote flow to the oil by bypassing the coolant. In the production setup, heat flows from the EGR 

gasses to the coolant, and subsequently to the oil in the oil cooler, however in the modified setup 

heat can flow directly to the oil. Further research and measures are necessary to assess the linkage 

of oil and structure temperature as the additional heat put into the oil may simply end up in the 

structure rather than reducing engine friction 

 

The setups with faster warm up resulted in benefits in both fuel consumption and NOx as a result of 

higher engine head temperatures and retarded injection. This reduction in NOx can be viewed as 

compromising the overall potential for reduced fuel consumption and as a result advancing the 

timing under these conditions could increase the fuel consumption benefits. The following section 

aims to investigate this potential. 

5 Further Testing 

To assess the potential improvement in fuel consumption under iso-NOx conditions, a series of tests 

were produced in the Build 3 condition, but with varying injection timing over the 4 urban cycles. 

Three separate tests were conducted where injection timing was advanced by 5
o
, 3

o
 and 1

o
 BTDC, 

but timing was restored to the default value for the EUDC to limit the impact on NOx emissions. 

The effects of faster warm up over the final stage of the EUDC was seen to dramatically increase 
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NOx emissions meaning that to maintain iso-NOx a retarded injection strategy would need to be 

employed. This would deteriorate fuel consumption and as a result it was deemed that operating at 

the higher temperatures in this region would need to be reviewed. The experimental conditions used 

here increased both warm up rate and final coolant operating temperature by throttling flow and 

increasing valve opening thresholds. By reducing the main valve threshold the hot operating 

temperature would not be changed significantly to the production vehicle, without reducing the 

faster warm up rate. The following analysis will therefore concentrate on the 4 ECE cycle, 

corresponding roughly to the warm up period of the engine. It is also arguable that this would be 

more representative real life driving conditions [17] as this would represent a journey from cold 

start of around 4km and 13 minutes. 

 

Figure 18 shows the injection timing for the baseline test, and the offset of injection timing of the 

three advanced tests. The figure shows that a constant offset is maintained despite the transient 

nature of the drive. EGR rates have also been compared for each of the drive cycles and similar 

offsets to those shown in figure 14 were observed between the baseline and each of the advanced 

timing tests run under build 3 conditions. Differences in EGR rates between the build 3 tests run at 

different timings were insignificant. 

 

The impact of offset injection timing on NOx emissions is shown in figure 19. These are compared 

to the baseline condition: as was observed previously in figure 11, the effect of faster warm up 

results in lower NOx as a result of retarded injection. Advancing the timing at these conditions 

raises the NOx emissions closer to the baseline at 1
o
 advanced, and ultimately increases NOx for 3

o
 

and 5
o
 advance.  
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The results over the 4 urban cycles are presented in the form of a NOx/Fuel consumption trade off 

in figure 20. This allows an estimate of the potential fuel consumption benefit at iso-NOx to be 

made and highlights the need to include the engine strategy in any modifications to the engine 

cooling circuit.  

 

The shape of the trade off curve is somewhat unexpected as it is concave with respect to the origin 

of the trade off graph. It would be expected that the shape be convex, as often seen with EGR or 

injection timing swings. However, the curve shown in figure 19 represents only a small section of 

the overall trade off curve that would be achieved if timing were varied over a wider range. In this 

small section of the curve it is reasonable to assume that a linear fit to the data would be a good 

approximation of the relationship. In fact, when fitting a curve to the data, only a linear fit has any 

validity, with any higher order fits subject to overfitting, suggesting that the concave shape of the 

curve is a function of experimental scatter in the data. 

6 Conclusions 

A novel design of engine cooling and oil circuits has been implemented on a production diesel 

engine. Small benefits in fuel consumption and NOx emissions were achieved of about 40g (4%) 

but the magnitude of these results highlight the need for repeat testing and good control of 

experimental conditions to increase confidence in the results. However, when the engine is 

operating hot and at higher loads, it is important to maintain NOx emissions under control which 

limits the possibility of operating at higher temperatures. EGR was not used to its full potential in 

this study, but it will be interesting in subsequent experimental work to incorporate this and analyse 

any interactions with the thermal management system on a NOx control basis. 
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The changes to the cooling circuit and flow strategy were seen to impact the engine control strategy 

through modified warm up profiles. The work has also highlighted that during warm up higher 

engine head temperature will not necessarily increase NOx and it is important to take into account 

the temperature distribution rather than a single point measurement. This highlighted the need for a 

global systems approach to be adopted to take full advantage of the benefits from the modified 

setup. In addition, increased instrumentation is required to better understand energy flows within 

the engine fluids and structure 
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8 Appendix 

8.1 Abbreviations 

BTDC: Before Top Dead Centre 

CO: Carbon Monoxide 

CO2: Carbon Dioxide 

ECU: Engine Control Unit 

EGR: Exhaust Gas Recirculation 

EUDC: Extra Urban Drive Cycle 

NEDC: New European Drive Cycle 
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NOx: Oxides of Nitrogen 

PRT: Pressure Regulated Thermostat 

THC: Total Unburned Hydrocarbons 

TMS: Thermal Management System 

VFOP: Variable Flow Oil Pump 

8.2 Notation 

Adj R
2
: Adjusted Coefficient of Determination 

Cp: Coolant Specific Heat Capacity 

m : Coolant Mass Flow Rate 

PRESS R
2
: Predicted Residual Sum of squares R

2
 

Q: Heat 

Q : Rate of heat transfer 

R
2
: Coefficient of Determination 

T: Temperature 

t: time 
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8.3 Detailed list of all experimental setups 

 

Designation 

Engine out coolant 

throttle (opening 

temperature
#
) 

EGR cooler coolant 

flow (%max flow  

at idle
&

) 

Oil cooler 

coolant flow 

EGR 

cooler 

VFOP 

Uncontrolled Non Controlled Non Controlled Open Coolant Max Flow 

Baseline Non Controlled Non Controlled Open Coolant Controlled
*
 

Build 2 Mapped (95
o
C) Non Controlled Open Oil Controlled

*
 

Build 3 Mapped
 
(105

o
C) Restricted (8%) Open Oil Controlled

*
 

N/A Mapped (90
o
C) Max Open Coolant Controlled

* 

N/A Mapped (90
o
C) Restricted (50%) Open Coolant Controlled

* 

N/A Mapped (90
o
C) Max Bypassed Oil Controlled

* 

N/A Mapped (90
o
C) Restricted (17%) Open Oil Controlled

* 

N/A Mapped (90
o
C) Restricted (17%) Bypassed Oil Controlled

* 

N/A Mapped (90
o
C) Max Open Oil Controlled

* 

N/A Non-Controlled Max Open Oil Controlled
* 

N/A Mapped (108
o
C) Max Open Oil Controlled

*
 

N/A Mapped (105
o
C) Max Open Oil Controlled

* 

N/A Mapped (100
o
C) Max Open Oil Controlled

* 

*  Controlled oil flow is based on a target oil gallery pressure of 2bar 

# Opening temperature represents the cylinder head metal temperature (standard ECU engine temperature measure) 

below which engine out coolant throttle remains closed. Above this temperature the throttle will gradually open. 

&  EGR cooler coolant throttle was set to restrict flow in the heating loop. The opening was set according the measured 

flow at idle, which was measured as a percentage of the flow when the valve was fully open. 

Table 3: List of all experimental setups considered and used for producing NOx response model. 
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Figure 1: Modified oil circuit 

 

 

Figure 2: Modified coolant circuit 
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Figure 3: NEDC fuel consumption results from different engine calibration settings 

 

 

 

 

Figure 4: Bulk oil temperatures over NEDC drive cycle 
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Figure 5: Coolant flow rates for baseline, build 2 and 3 at various points around the system 
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Figure 6: Cumulative energy exchanges at the end of 4
th

 UDC cycle (after 780sec) and coolant 

temperatures for baseline, build 2 and 3 (all temperatures in 
o
C) 
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(a) Heat Loss from 

Combustion: 

    Baseline:  1490kJ 

    Build 2:    1480kJ 

    Build 3:    860kJ 

(b) Radiator 

Losses: 

Baseline: 220kJ 

Build 2:  0kJ 

Build 3:  0kJ 

(c) Heat to Oil: 

Baseline:  870kJ 

Build 2:    700kJ 

Build 3:    430kJ 

(d) Heat from 

EGR Gases: 

Baseline: 495kJ 

Build 2:  -140kJ 

Build 3:  -130kJ 



 Page 32 of 39 

   
Baseline Build 2 Build 3 

Figure 7: Mean energy flows from combustion chambers for baseline, build 2 and build 3 at end of 

4th UDC (after 780 seconds) 

 

 

Figure 8: Oil pressure drop in external circuit with and without oil EGR cooler fitted over points 1 

and 2 in oil circuit diagram 
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Figure 9: Oil temperature difference over external oil circuit for baseline, build 2, build 3 and 

production engine (without oil EGR cooler hardware) over points 1 and 2 in oil circuit diagram 

 

 

Figure 10: NEDC NOx emissions results from different engine calibration settings  
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Figure 11: Cumulative NOx and Difference to Baseline for each test over NEDC 

 

 

 

 

 

 

Figure 12: Engine cylinder head temperature over NEDC for baseline and build 2 (transient events 

have been removed for clarity) 
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Figure 13: Injection timing comparison for baseline and build 2. Lower values indicated retarded 

condition (transient events have been removed for clarity) 
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 (a)  

(b)  

(c)  

 

Figure 14: (a) Filtered EGR rate over NEDC cycle for baseline, and difference to baseline for 

builds 2 and 3; (b) Raw EGR rate over 2
nd

 UDC for baseline and difference to baseline for builds 2 

and 3; (c) Raw EGR rate over last part of EUDC for baseline and build 2. EGR rate based on ratio 

of inlet and exhaust CO2 measurement. 
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Figure 15: Urban cycle NOx correlations to engine temperature and injection timing 

 

 

 

Figure 16: Correlation between injection timing and engine temperature confirming the strong link 

within the engine ECU 
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Figure 17: Response model for NOx over 100kph and 120kph cruises of NEDC with respect to 

injection timing and engine head temperature at mean EGR condition. Adjusted R
2
 and PRESS R

2
 

are measures that avoid over fitting the model to the data. 

 

 

Figure 18: Start of injection (SOI) for baseline test and modified injection timings over urban 

section of drive cycle 
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Figure 19: Cumulative NOx emissions over 4 urban cycles and difference to baseline test for each 

injection timing setting of Build 3 

 

 

Figure 20: NOx/Fuel consumption trade off over urban cycles for varying injection timing under 

build 3 conditions 


