Citation for published version:
Sunderland, PT, Dhami, A, Mahon, MF, Jones, LA, Tully, SR, Lloyd, MD, Thompson, AS, Javaid, H, Martin, NMB \& Threadgill, MD 2011, 'Synthesis of 4-alkyl-, 4-aryl- and 4-arylamino-5-aminoisoquinolin-1-ones and identification of a new PARP-2 selective inhibitor', Organic and Biomolecular Chemistry, vol. 9, no. 3, pp. 881891. https://doi.org/10.1039/c0ob00665c

DOI:
10.1039/c0ob00665c

Publication date:
2011

Link to publication

Sunderland, P. T., Dhami, A., Mahon, M. F., Jones, L. A., Tully, S. R., Lloyd, M. D., Thompson, A. S., Javaid, H., Martin, N. M. B. and Threadgill, M. D., 2011. Synthesis of 4-alkyl-, 4-aryl- and 4-arylamino-5-aminoisoquinolin-1ones and identification of a new PARP-2 selective inhibitor. Organic \& Biomolecular Chemistry, 9 (3), pp. 881891. - Reproduced by permission of The Royal Society of Chemistry

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Synthesis of 4-alkyl-, 4-aryl- and 4-arylamino-5-aminoisoquinolin-1-ones and identification of a new PARP-2 selective inhibitor

Peter T. Sunderland, ${ }^{a}$ Archana Dhami, ${ }^{a}$ Mary F. Mahon, ${ }^{b}$ Louise A. Jones, ${ }^{c}$ Sophie R. Tully, ${ }^{c}$ Matthew D. Lloyd, ${ }^{a}$ Andrew S. Thompson, ${ }^{a}$ Hashim Javaid, ${ }^{c}$ Niall M. B. Martin ${ }^{c}$ and Michael D. Threadgill ${ }^{a, *}$

${ }_{5}$ Received (in $X X X, X X X$) Xth $X X X X X X X X X$ 200X, Accepted Xth XXXXXXXXX $200 X$ First published on the web Xth $X X X X X X X X X$ 200X
DOI: 10.1039/b000000x

The considerable interest in substituted isoquinolin-1-ones related to 5-aminoisoquinolin-1-one (5AIQ) as drugs points to a need for an efficient and straightforward synthesis of the 4,5-disubstitut10 ed bicycles. Bromination of 5-nitroisoquinolin-1-one gave 4-bromo-5-nitroisoquinolin-1-one but neither this nor 5-amino-4-bromoisoquinolin-1-one would participate in Pd-catalysed couplings. Protection of the lactam as 1-methoxy- and 1-benzyloxy-4-bromo-5-nitroisoquinolines, however, permitted Stille, Suzuki and Buchwald-Hartwig couplings to take place in high yields, insensitive to electronic demands and severe steric bulk in the arylboronic acids. Lithiation of 4-bromo-1-
15 methoxy-5-nitroisoquinoline and quench with iodomethane gave 1-methoxy-4-methyl-5-nitroisoquinoline in low yield. Demethylation of the 1-methoxy-4-substituted-5-nitroisoquinolines with hydrogen bromide gave 4-substituted-5-nitroisoquinolin-1-ones, whereas hydrogenolytic debenzylation was achieved with simultaneous reduction of the 5-nitro group. 5-Amino-4-(4-tri-fluoromethylphenyl)isoquinolin-1-one was identified as a new potent and selective inhibitor of ${ }_{20}$ poly(ADP-ribose)polymerase-2 (PARP-2).

Introduction

Isoquinolin-1-ones are of considerable interest as potential drugs, particularly the 5 -substituted analogues, which are potent inhibitors of poly(ADP-ribose)polymerases (PARPs).
${ }_{25}$ Simple 5-substituted isoquinolin-1-ones and 5-substituted 3,4-dihydroisoquinolin-1-ones were reported as long ago as 1991 to be potent inhibitors of PARPs in vitro and in cells ${ }^{1,2}$ and 5-hydroxyisoquinolin-1-one $\mathbf{1}$ (often mis-named as the tautomer 1,5-dihydroxyisoquinoline 2, Figure 1) has shown good inhib-
${ }_{30}$ ition of the enzyme in vitro and in models of inflammation and other PARP-mediated diseases in vivo. ${ }^{3}$ However, of this series, it is the 5 -amino analogue 5-AIQ 3 which has shown most promise as an inhibitor of PARPs, partly owing to the exceptional solubility in water of its hydrochloride salt. 5-AIQ
353 is active in models in vivo and in vitro of a wide range of disease states, including colitis, ${ }^{4}$ ischaemic heart disease, ${ }^{5}$ haemorrhagic shock ${ }^{6}$ and spinal cord trauma, ${ }^{7}$ and has recently been shown to have strong antimetastatic effects in a murine model of cancer. ${ }^{8}$ We have recently reported ${ }^{9}$ that 5 -
40 benzamidoisoquinolin-1-ones 4 and one 3 -substituted 5-benz-amidoisoquinolin-1-one 5 are selective inhibitors of the PARP-2 isoform; 5-benzoyloxyisoquinolin-1-one 6 also selectively inhibits PARP-2. ${ }^{10}$

In the light of these biological activities, we wished to ex${ }_{45}$ plore 4,5-disubstituted isoquinolin-1-ones. There is a marked paucity of reports of preparation of such compounds in the chemical journal literature, shown in Scheme 1. We have disclosed recently that palladium-catalysed cyclisation of N -allyl-2-iodo-3-nitrobenzamide $7 \mathbf{a}$ at high-temperature gives 4-
50 methyl-5-nitroisoquinolin-1-one 8a in low yield; similar reaction of N -cinnamyl-2-iodo-3-nitrobenzamide $\mathbf{7 b}$ leads
inefficiently to 4-benzyl-5-nitroisoquinolin-1-one $\mathbf{8 b} .{ }^{11}$ These products can be then reduced readily to their 5 -amino analogues 9a,b. Croisy-Delcey et al. achieved the synthesis of ${ }_{55} 5$-methoxy-4-methylisoquinolin-1-one 11 in moderate yield by Curtius rearrangement / thermal cyclisation of the acyl azide 10. ${ }^{12}$ Sercel et al. prepared 4-bromo-5-methylisoquinolin-1one 13 by bromination of 5-bromoisoquinolin-1-one 12 with pyridinium perbromide; this was converted to the lactim 14 60 and from this they were then able to introduce formyl, methyl and methylthio at the 4 -position (forming 15a-c) by lithiation and quench with an appropriate electrophile, followed by demethylation with hydrogen bromide. ${ }^{13}$ There is thus a strong need to develop efficient syntheses of 4,5 -disubstituted iso-
${ }_{65}$ quinolin-1-ones with nitrogen substituents in the 5-position and opportunities for diversity at the 4-position to be able, inter alia, to explore the structure-activity relationships for inhibition of the numerous isoforms of PARP and other enzymes.

${ }_{70}$ Chemistry

Palladium-catalysed couplings usually offer great opportunities to introduce a wide range of substituents onto a heterocyclic core under relatively mild conditions, providing chemical diversity rapidly and efficiently. Thus these methods were 75 explored for attachment of the 4 -substituents. 5 -Nitroisoquin-olin-1-one 16 (Scheme 2) is readily accessible as a starting material carrying the required 5 -nitrogen substituent ${ }^{6,9}$ and it was expected that a halogen could be introduced electrophilically to the 4 -position, as this is the most nucleophilic in this ${ }_{80}$ heterocycle. ${ }^{14}$ It proved impossible to iodinate at this position using a variety of reagents and conditions (iodine in acetic acid, N -iodosuccinimide in acetic acid, etc.); even activation

Scheme 1. Previous syntheses of 4,5-disubstituted isoquinolin-1-ones. Reagents: i, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}^{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Bu}_{4} \mathrm{NCl}, \mathrm{DMF} ; \mathrm{ii}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$, aq. HCl ; iii, $\mathrm{Bu}_{3} \mathrm{~N}, \mathrm{Ph}_{2} \mathrm{O}, 240^{\circ} \mathrm{C}$; iv, pyridinium ${ }^{+} \mathrm{Br}_{3}{ }^{-}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; v, $\left(\mathrm{COCl}_{2}, \mathrm{DMF},\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}\right.$, vi, NaOMe , MeOH; vii, BuLi, THF; viii, DMF or MeI or MeSSMe; ix, aq, HBr.

4
5
6

Figure 1. Structures of isoquinolin-1-one inhibitors of PARP-1 and of PARP-2. Compounds 4-6 are selective inhibitors of PARP-2.
of molecular iodine by Ag^{+}ions ($\mathrm{I}_{2} / \mathrm{AgOTf}$) failed to effect any conversion of the starting isoquinolin-1-one 16. Horning et al. ${ }^{15}$ have reported that reaction of 2-methyl-5-nitroisoquin-olin-1-one with bromine in acetic acid afforded an equimolar mixture of 4-bromo-2-methyl-5-nitroisoquinolin-1-one and 4-bromo-3-hydroxy-2-methyl-5-nitro-3,4-dihydroisoquinolin-1one and we sought to investigate whether or not this process could be adapted to the N -unsubstituted analogue. Pleasingly, treatment of a concentrated solution of 16 with bromine in hot 10 acetic acid gave the required 4-bromo compound 18 in moderate yield, accompanied by a significant amount of the 3-hyd-roxy-3,4-dihydro analogue 17 . Heating 17 to $175^{\circ} \mathrm{C}$ in the absence of solvent for several hours eliminated water to give a small additional yield of 16. Bromination of 16 with N15 bromosuccinimide (NBS) in hot acetic acid in lower yield, together with a moderate yield of the 3-acetoxy-3,4-dihydro
analogue 19. Again, thermolysis of $19\left(137^{\circ} \mathrm{C}\right)$ gave a small additional amount of $\mathbf{1 8}$ but mainly the unbrominated starting material 16. As it is known that isocoumarins are easily con-
20 verted into the corresponding isoquinolin-1-ones, bromination of 5-nitroisocoumarin 20 was also investigated; in this case, reaction with bromine in acetic acid furnished only a good yield of the trans-3,4-dibromo compound 21. Interestingly, the small coupling constant $\left({ }^{3} J=1.7 \mathrm{~Hz}\right)$ between the $3-\mathrm{H}$ and 5 the $4-\mathrm{H}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of 21 is only consistent with a trans-diaxial arrangement of the bromine atoms, presumably to avoid steric clash of the $3-\mathrm{Br}$ with the adjacent bulky nitro group.

Unfortunately, 4-bromo-5-nitroisoquinolin-1-one 18 failed 30 to couple in Sonogashira, Stille and Suzuki reactions under a wide variety of conditions; in most cases, 18 was recovered but with some of the debrominated analogue 16 also being obtained. The formation of $\mathbf{1 6}$ indicated that some palladation had taken place. To test whether or not the failure to couple 35 was due to steric hindrance from the peri nitro group, 18 was reduced selectively with tin (II) chloride to the 5-amino-4bromo compound 22, under conditions designed to avoid hydrogenolysis of the $\mathrm{C}-\mathrm{Br}$ bond. ${ }^{16}$ Frustratingly, Pd -catalysed couplings to 22 also failed (Scheme 2).
40 Many isoquinolin-1-ones have very limited solubility in solvents which are appropriate for Pd-catalysed couplings and 18 and 22 are no exception. To attempt to alleviate this potential problem, the lactam moiety was masked. As shown in Scheme 2, reaction of 18 with the Vilsmeier reagent generated ${ }_{45}$ in situ from DMF and oxalyl chloride gave the 1 -chloroisoquinoline 23 in excellent yield, from which the chloride was displaced by methoxide to furnish 4-bromo-1-methoxy-5nitroisoquinoline 24. Following Sercel's approach to 15b, exchange of bromine for lithium with butyl lithium, followed by ${ }_{50}$ quench of the anion with iodomethane, furnished the 4-methyl compound 25 but in very poor yield. It could be speculated that the peri nitro group had interfered either with the lithiat-

25

24

26b: $\mathrm{R}=\mathrm{CF}_{3}$

27

Scheme 2. Pd-catalysed couplings to 4-bromo-1-methoxyisoquinolin-1-one 24. Reagents and conditions: i, $\mathrm{Br}_{2}, \mathrm{AcOH}, 60^{\circ} \mathrm{C}, 52 \%$ (18), 26% (17); ii, NBS, $\mathrm{AcOH}, 33 \%$ (19), 21% (18); iii, Br_{2}, $\mathrm{AcOH}, 52 \%$; iv, $\mathrm{SnCl}_{2}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 54 \%$; v, $(\mathrm{COCl})_{2}, \mathrm{DMF}^{2},\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$, $80^{\circ} \mathrm{C}, 89 \%$; vi, Na , MeOH, reflux, 82%; vii, BuLi, THF, MeI, $-78^{\circ} \mathrm{C} \rightarrow 20^{\circ} \mathrm{C}, 9 \%$; viii, $\mathrm{SnMe}_{4}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}$, SPhos, $\mathrm{PhMe}, 100^{\circ} \mathrm{C}, 72 \%$; ix, $\mathrm{PhB}(\mathrm{OH})_{2}$ or $4-\mathrm{F}_{3} \mathrm{CPhB}\left(\mathrm{OH}_{2}\right), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$, SPhos, $\mathrm{PhMe}, 100^{\circ} \mathrm{C}, 86 \%(28 a), 81 \%(28 b) ; \mathrm{x}, \mathrm{PhNH}_{2}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{SPhos}, \mathrm{KOBu}^{t}, 1,4-$ dioxane, $100^{\circ} \mathrm{C}, 45 \%$. Compounds 17,19 and 21 are racemic.
ion or with the subsequent reaction with the electrophile. This lithiation / quench sequence could also not be applied to the introduction of aryl groups at the 4-positions, owing to lack of an appropriate electrophile, so other couplings were sought.
5 Palladium-catalysed couplings are relatively insensitive to the presence of other substituents in the substrates. Stille coupling of $\mathbf{2 4}$ with tetramethyltin using a conventional tetrakis(triphenylphosphine)palladium(0) catalyst failed but the $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ / SPhos catalyst / ligand system introduced by ${ }_{0}$ Buchwald ${ }^{17}$ for enhancing Suzuki couplings was successful in providing 25 in 72% yield. Similarly, Suzuki coupling of 24 with phenylboronic acid and with 4-trifluoromethylphenylboronic acid (an electron-poor boronic acid often associated with poor coupling yields ${ }^{18}$) proceeded very efficiently with ${ }_{5} \mathrm{Pd}_{2}(\mathrm{dba})_{3} /$ SPhos in toluene in providing 26a and 26b, respectively, in high yields. The structure of coupled product 26a
was confirmed by X-ray crystallography (Figure 2). Interestingly, rhomboids of dimensions $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.3 \mathrm{~cm}$ could be grown readily from ethyl acetate / hexane. The crystal ${ }_{20}$ structure shows clearly that the 5 -nitro is rotated significantly out of the plane of the bicycle but the 4 -phenyl remains coplanar with it, retaining maximum conjugation.

Exploring the generality of this reaction, BuchwaldHartwig couplings were attempted with aniline, with thio${ }_{25}$ phenol and with phenol. Only the former coupled effectively, to give the deep red 4 -phenylamino analogue 27. Optimisation of this Buchwald-Hartwig coupling of $\mathbf{2 4}$ with aniline revealed that the optimum ligand was SPhos (compared with XPhos, BuXPhos and JohnPhos), the optimum base was potassium t ${ }_{30}$ butoxide (compared with tripotassium phosphate) and the optimum solvent was 1,4-dioxane (compared with toluene and DMF) (Table 1).

Table 1. Yields of 27 obtained during optimisation of the BuchwaldHartwig coupling of 24 with aniline.

Ligand	PhMe / $\mathbf{K}_{3} \mathbf{P O}_{4}$	$\begin{aligned} & \text { DMF / } \\ & \mathbf{K}_{3} \mathbf{P O}_{4} \end{aligned}$	$\begin{gathered} \text { Diox- } \\ \text { ane } / \\ \mathbf{K}_{3} \mathbf{P O}_{4} \\ \hline \end{gathered}$	PhMe / KOBu^{t}	$\begin{aligned} & \text { DMF / } \\ & \text { KOBu }^{t} \end{aligned}$	$\begin{gathered} \text { Diox- } \\ \text { ane / } \\ \text { KOBu }^{t} \end{gathered}$
$\text { XPhos }{ }^{a}$	30\%	36\%	38\%	32\%	38\%	34\%
$\text { SPhos }^{b}$	32\%	38\%	36\%	34\%	40\%	45\%
$\begin{gathered} t \text {-Bu- } \\ \text { XPhos }^{c} \end{gathered}$	11\%	5\%	10\%	9\%	9\%	14\%
John- Phos ${ }^{d}$	0\%	0\%	0\%	0\%	0\%	0\%

${ }^{a}$ 2-Dicyclohexylphosphino-2', 4', 6'-triisopropylbiphenyl.
${ }^{b}$ 2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl.
c 2-Di- t-butylphosphino-2',4',6'-triisopropylbiphenyl.
${ }^{d} 2$-Di- t-butylphosphinobiphenyl.

Scheme 3 shows how the coupled products were converted to the corresponding isoquinolin-1-ones. The lactim unit of 25 was deprotected to the lactam by demethylation with hydrobromic acid to give 4-methyl-5-nitroisoquinolin-1-one 28. ${ }_{5}$ From here, simple catalytic hydrogenation of the nitro group provided the 5-amino analogue 29 . The 5-aryl-1-methoxyisoquinolines $\mathbf{2 6 a}, \mathbf{b}$ were similarly demethylated to the 4-aryl-5-nitroisoquinolin-1-ones $\mathbf{3 0 a}, \mathbf{b}$, which were reduced to the 5 -amino-4-arylisoquinolin-1-ones $\mathbf{3 1 a}, \mathbf{b}$.
10 This demethylation is inappropriate to the synthesis of $\mathbf{3 4}$ and 31c carrying a 4-(4-methoxyphenyl) group, as this substituent would also be demethylated by the hydrogen bromide. A modified sequence is shown in Scheme 4, in which the protecting 1 -methoxy group is replaced by a benzyloxy group which 15 can be removed under conditions which retain the 4-(4-methoxyphenyl) unit. Reaction of the 1-chloro compound 23 with sodium benzyloxide in boiling DMF furnished the required 1OBn protected compound 33 in moderate yield but a significant amount of the 1-dimethylaminoisoquinoline 32 was also
${ }_{20}$ isolated. This material arose from thermal degradation of the solvent, liberating highly nucleophilic dimethylamine which reacted with the electrophilic 23. The structure of 33 was confirmed by X-ray crystallography. In this structure (Figure 2), the molecule is essentially planar, with the benzyloxy function ${ }_{25}$ pointing away from the core. Again, the nitro group is peri to a large group in the 4-position (bromine), resulting in the nitro group being twisted out of plane and the $\mathrm{C}-\mathrm{Br}$ bond being bent away from the nitro group. Pd-catalysed Suzuki coupling of 33 with 4-methoxyphenylboronic acid smoothly gave a 30 high yield of $\mathbf{3 4}$. From here, removal of the benzyl protecting group and reduction of the 5-nitro group was achieved in one step, giving 31c. To provide a severe test of any steric constraints on this new Suzuki coupling to the 4-bromo-5-nitroisoquinolines, coupling of 33 with phenanthrene-9-boronic acid 35 was attempted. Surprisingly for such a large aromatic group approaching the 4 -position of the isoquinoline with the bulky peri 5-nitro group, coupling was effective under the standard conditions, giving a 42% yield of 35 . The X-ray crystal structure of this highly crowded extended binaphthyl was deter40 mined (Figure 2). As expected, both the 5-nitro and the 4phenanthrene substituents are twisted severely out of the plane

25

28

29

26b: $\mathrm{R}=\mathrm{CF}_{3} \downarrow \mathrm{ii}$

30a: R = H
30b: $\mathrm{R}=\mathrm{CF}_{3}$

31a. $R=H \quad R$
31b: $R=\mathrm{CF}_{3}$

Scheme 3. Formation of the 5-aminoisoquinolin-1-ones 29 and 31a,b. Reagents and conditions: i, aq. $\mathrm{HBr}, 80^{\circ} \mathrm{C}, 70 \%$; ii, aq. $\mathrm{HBr}, 50^{\circ} \mathrm{C}, 65 \%$ (30a), 65% (30b); iii, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$, aq. HCl , 65%; iv, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, $\mathrm{EtOH}, 51 \%$ (31a), 53% (31b).
of the isoquinoline to relieve the steric compression. This is shown by the asymmetry in the angles at C 8 involving the phenanthrene (C7-C8-C17 126.6, C9-C8-C17 116.3 ${ }^{\circ}$) and also 45 by the C8-C17-C30-C29 torsion angle of 171°. Nearest neighbour 4-phenanthrene groups in the gross structure are approximately coplanar, with a separation distance of $3.68 \AA$. The Obenzyl group was removed by hydrogenolysis, with simultaneous reduction of the nitro group, to give 36. This compound ${ }_{50}$ was insoluble in all common solvents, precluding both characterisation by NMR and any biological evaluation.

As 5-benzamidoisoquinolin-1-one 4 was highly selective for inhibition of the PARP-2 isoform, ${ }^{9}$ 31a was benzoylated at the exocyclic amine to furnish 37 as one example of a 4 -sub55 stituted 5-benzamidoisoquinolin-1-one.

Biochemical evaluation

Selected isoquinoline-1-ones 22, 30a, 31b,c and 37 were evaluated for their inhibition of the catalytic activities of PARP-1 and PARP-2; the data are presented in Table 2. Comparative ${ }_{60}$ data are also given for the non-isoform-selective inhibitor 5AIQ 3, ${ }^{9}$ for $4(\mathrm{Ar}=\mathrm{Ph})$, which is 9.3 -fold selective for inhib-

26a

33

35

Figure 2. X-ray crystal structures of 4,5-disubstituted isoquinolines 26a, 33 and $\mathbf{3 5}$. Ellipsoids are represented at 30% probability. Solvent in the structure of $\mathbf{3 5}$ is omitted for clarity.

Scheme 4. Pd-catalysed couplings to 1-benzyloxy-4-bromo-5-nitroisoquinolin-1-one 33. Reagents and conditions: i, $\mathrm{BnOH}, \mathrm{NaH}, \mathrm{DMF}$, $100^{\circ} \mathrm{C}, 71 \%(33), 12 \%(32)$; ii, $4-\mathrm{MeOPhB}(\mathrm{OH})_{2}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}$, , $\mathrm{SPhos}, \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{PhMe}, 100^{\circ} \mathrm{C}, 61 \%$; iii, phenanthrene-9-boronic acid, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{SPhos}^{2} \mathrm{~K}_{3} \mathrm{PO}_{4}, \mathrm{PhMe}, 100^{\circ} \mathrm{C}, 42 \%$; iv, $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}, 47 \%$ (31c), 57% (36).
ition of PARP-2, ${ }^{9}$ and for $\mathbf{6}$, which is 2.75 -fold selective for PARP- 2^{9} (60 -fold claimed by Pellicciari et al. ${ }^{10}$). Introduction of the 4 -bromo substituent in 22 led to increase in potency against both PARP isoforms, relative to the lead non-selective 5 inhibitor 5-AIQ 3; notably, the activity against PARP-2 was increased over 4 -fold, leading to a 2.6 -fold selectivity for inhibition of PARP-2 by 22. The 5-nitro-4-phenyl analogue 30a was non-selective and less potent than was $\mathbf{3}$, as expected for

5-nitroisoquinolin-1-ones which are generally weaker inhib${ }_{10}$ itors of PARP enzymes. ${ }^{1}$ By contrast, 31b, which corresponds to 5-AIQ 3 but carrying a 4 -trifluorophenyl group at the 4position, is four-times less potent than $\mathbf{3}$ against PARP-1 but more inhibitory towards PARP-2. Thus 31b is almost as selective (7.6 -fold) for PARP-2 as is most selective compound ${ }_{15} 4$ ($\mathrm{Ar}=\mathrm{Ph} ; 9.3$-fold) reported to date ${ }^{9}$ and presents a new lead core to explore further the structural requirements for selec-

31a

Scheme 5. Benzoylation of 31a. Reagents and conditions: i, PhCOCl, pyridine, $90^{\circ} \mathrm{C}, 36 \%$.

Table 2. Inhibition of the activities of PARP-1 and PARP-2 by 4,5disubstituted isoquinolin-1-ones 22, 30a, 31b,c and 37; data for 5-AIQ 3, 5-benzamidoisoquinolin-1-one $4(\mathrm{Ar}=\mathrm{Ph})$ and 5-benzoyloxyiso-quinolin-1-one 6 are shown for comparison. ${ }^{9}$

Cpd. No.	4-Subst- ituent	5-Subst- ituent	PARP-1 IC $_{50}$ $(\boldsymbol{\mu M})$	PARP-2 IC $_{50}$ $(\mu \mathbf{M})$	Observed selectivity
$\mathbf{2 2}$	Br	$\mathrm{H}_{2} \mathrm{~N}$	0.56	0.22	2.6
$\mathbf{3 0 a}$	Ph	$\mathrm{O}_{2} \mathrm{~N}$	3.8	2.5	1.5
$\mathbf{3 1 b}$	$4-\mathrm{F}_{3} \mathrm{CPh}$	$\mathrm{H}_{2} \mathrm{~N}$	4.1	0.54	7.6
$\mathbf{3 1 c}$	$4-\mathrm{MeOPh}$	$\mathrm{H}_{2} \mathrm{~N}$	4.7	2.2	2.2
$\mathbf{3 7}$	Ph	PhCONH	>100	>100	-
$\mathbf{3}$	H	$\mathrm{H}_{2} \mathrm{~N}$	0.94	1.05	0.9
$\mathbf{4}(\mathrm{Ar}$ $=\mathrm{Ph})$	H	PhCONH^{2}	13.9	1.5	9.3
$\mathbf{6}$	H	PhCO_{2}	4.10	1.49	2.8

${ }^{a}$ IC $_{50}$ (PARP-1) $/$ IC $_{50}$ (PARP-2)
tivity. Curiously, changing the electron-withdrawing trifluoromethyl group in 31b for an electron-donating methoxy group in 31c decreased binding to PARP-2 and hence selectivity. The most selective lead inhibitor $4(\mathrm{Ar}=\mathrm{Ph})$ contains a 5 5 benzamido group but including this into the 4 -aryl series in 37 completely abolished activity against both isoforms. This is probably owing to the steric crowding between the 4 - and 5-peri-substituents evident in the MM2-minimised structure of 37 (Figure 3), distorting the bicycle and related to that obser10 ved in the crystal structure of 35 (Figure 2). Figure 4 shows the results of post facto modelling of the structure of 31b complexed to the NAD^{+}-binding site of human PARP-2. The starting stucture was of human PARP-2 complexed with the non-selective inhibitor ABT888. ${ }^{19}$ PARP-2-selective inhibitor
${ }_{15} \mathbf{3 1 b}$ was then docked into the models using the existing bound inhibitor as template. Once docked, the inhibitor was subjected molecular mechanics and dynamics calculations to establish optimal docking conformations; during these calculations, the receptor was restrained to its original conformation. ${ }_{20}$ Lastly, both the inhibitors and binding pockets (radius $10 \AA$) were subjected to molecular dynamics and finally molecular mechanics calculations to give the final structure (Figure 3).

Figure 3. MM2-Minimised structure of 37, showing steric crowding between the peri 4,5 -substituents.

Figure 4. Molecular modelling of 31b bound to the $\mathrm{NAD}^{+}-$ binding site of human PARP-2.

The larger binding pocket of PARP- 2^{9} accomodates the 4-(4trifluoromethyphenyl) group, whereas the smaller pocket of ${ }_{25}$ PARP- $1{ }^{9}$ does not.

Conclusions

In this paper, we report that palladium-catalysed couplings (Stille, Suzuki, Buchwald-Hartwig) to the sterically very crowded 4-position of 1-alkoxy-4-bromo-5-nitroisoquinolines 3024 and 33 are very efficient in providing 4-alkyl- and 4-aryl1 -alkoxy-5-nitroisoquinolines. The Suzuki coupling with arylboronic acids is insensitive to electron-withdrawing ($-\mathrm{CF}_{3}$) and electron-donating (-OMe) groups on the phenylboronic acid. Surprisingly, major steric bulk is also tolerated in the ${ }_{35}$ coupling reaction, in that phenanthrene-9-boronic acid is also a satisfactory coupling partner in the formation of 35 . Analogous couplings were not possible using the corresponding isoquinolin-1-ones 18 and 22, probably owing to poor solubility of these lactams. 1-Alkoxyisoquinolines can be considered 40 as masked isoquinoline-1-ones ${ }^{22}$ and 25, 26a,b, 34 and 35 are no exception. Demethylation of the 1-methoxy compounds 25 and 26a,b led to the 5 -nitroisoquinolin-1-ones 28 and 30a,b,
respectively, for later reduction to the 4-substituted 5-AIQs 29 and 31a,b. Simplifying the syntheses of 4 -substituted 5 -AIQs further, catalytic hydrogenolysis simultaneously removed the protecting O-benzyl group and reduced the nitro function of ${ }_{5} 34$ and 35 to access the 4 -aryl 5-AIQs 31c and 36, respectively. Benzoylation of 31a gave 5 -benzamido-4-phenylisoquinol-in-1-one 37, despite the severe crowding in the product. Selected 4,5 -disubstituted isoquinoline-1-ones were evaluated as isoform-selective inhibitors of PARP-2; 4-(4-trifluoromethyl-
${ }_{10}$ phenyl)-5-AIQ 31b was particularly potent and selective and is a new lead in the search for isoform-selectivity for this important family of enzymes.

Experimental

General

${ }_{15}$ NMR spectra were recorded on JEOL Delta 270 and Varian Mercury 400 spectrometers of solutions in deuteriochloroform, unless otherwise stated; coupling constants (J) are given in Hz. Mass spectra were obtained using VG7070E and Bruker microTOF ${ }^{\mathrm{TM}}$ spectrometers in the ES^{+}mode. IR spec20 tra were measured on a Perkin-Elmer RXI FTIR spectrometer as KBr discs. The stationary phase for chromatography was silica gel. All reactions were carried out at ambient temperature, unless otherwise stated. Solvents were evaporated under reduced pressure. Melting points were determined using a
${ }_{25}$ Reichert-Jung Thermo Galen instrument and are uncorrected. SPhos refers to 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl and $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ refers to tris(dibenzylideneacetone)dipalladium.

4-Bromo-5-nitroisoquinolin-1-one (18) and 4-bromo-3-
 ${ }_{30}$ hydroxy-5-nitro-3,4-dihydroisoquinolin-1-one (17)

Bromine ($5.0 \mathrm{~g}, 32 \mathrm{mmol}$) in acetic acid (5.0 mL) was added slowly to a suspension of $\mathbf{1 6}(6.0 \mathrm{~g}, 32 \mathrm{mmol})$ in acetic acid $(15 \mathrm{~mL})$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h , then cooled and poured onto ice-water (60 mL). The precipitate
${ }_{35}$ was collected, washed (methanol) and dried. Chromatography (hexane / ethyl acetate $6: 1$) gave 18 ($4.5 \mathrm{~g}, 52 \%$) as a pale orange solid: $\mathrm{mp} 229-232^{\circ} \mathrm{C}$; $v_{\text {max }} 3467,1674,1534,1368 \mathrm{~cm}^{-}$ ${ }^{1}$; $\delta_{\mathrm{H}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) 7.73(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.77(1 \mathrm{H}, \mathrm{t}, J 7.8,7-\mathrm{H})$, $8.10(1 \mathrm{H}, \mathrm{dd}, J 7.8,1.6,6-\mathrm{H}), 8.61$ ($1 \mathrm{H}, \mathrm{dd}, J 8.6,1.9,8-\mathrm{H}$); ${ }_{40} \delta_{\mathrm{C}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)(\mathrm{HMQC} / \mathrm{HMBC}) 90.4(4-\mathrm{C}), 128.0(10-\mathrm{C})$, 128.3 (7-C), 129.5 ($6-\mathrm{C}), 129.9$ (9-C), 132.1 ($8-\mathrm{C}$), 135.6 (3C), 147.3 ($5-\mathrm{C}$), 159.0 (1-C); $m / z 292.9354$ ($\mathrm{M}+\mathrm{Na}$) $\left(\mathrm{C}_{9} \mathrm{H}_{5}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{Na}\right.$ requires 292.9312), $290.9376(\mathrm{M}+\mathrm{Na})$ $\left(\mathrm{C}_{9} \mathrm{H}_{5}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{Na}\right.$ requires 290.9332), 267.9478 (M)
${ }_{45}\left(\mathrm{C}_{9} \mathrm{H}_{5}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{3}\right.$ requires 267.9484); Found: C, 40.60 ; $\mathrm{H}, 1.61$; $\mathrm{N}, 10.19$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{BrN}_{2} \mathrm{O}_{3}: \mathrm{C}, 40.18 ; \mathrm{H}, 1.87$; N , 10.41%. Further elution gave $17(2.4 \mathrm{~g}, 26 \%)$ as a pale yellow solid: mp $170-172^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) 5.52(1 \mathrm{H}, \mathrm{dd}, J 5.7,1.2$, $3-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{d}, J 5.9,4-\mathrm{H}), 7.82(1 \mathrm{H}, \mathrm{t}, J 7.9,7-\mathrm{H}), 8.00$
${ }_{50}(1 \mathrm{H}, \mathrm{dd}, J 7.9,1.5,6-\mathrm{H}), 8.30(1 \mathrm{H}, \mathrm{dd}, J 7.7,1.5,8-\mathrm{H}), 8.55$ ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$).
4-Bromo-5-nitroisoquinolin-1-one (18) and 3-acetoxy-4-bromo-5-nitro-3,4-dihydroisoquinolin-1-one (19)

N -Bromosuccinimide ($90 \mathrm{mg}, 0.5 \mathrm{mmol}$) was stirred with $\mathbf{1 6}$ ${ }_{55}(100 \mathrm{mg}, 0.5 \mathrm{mmol})$ in acetic acid $(5 \mathrm{~mL})$ for 30 min . The
mixture was poured into ice- $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and stirred for 10 min. Extraction (ethyl acetate), washing (aq. sodium hydrogen carbonate, water), drying, evaporation and chromatography (hexane / ethyl acetate $4: 1$) yielded $19(70 \mathrm{mg}, 33 \%)$ as a pale ${ }_{60}$ buff solid: $\mathrm{mp} 137^{\circ} \mathrm{C}$; $v_{\text {max }} 3462,1675,1534,1335 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.79(1 \mathrm{H}, \mathrm{d}, J 4.7,4-\mathrm{H}), 5.95$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 7.82(1 \mathrm{H}, \mathrm{t}, J 7.9,7-\mathrm{H}), 8.33(1 \mathrm{H}, \mathrm{dd}, J 8.2$, $1.5,6-\mathrm{H}), 8.45(1 \mathrm{H}, \mathrm{dd}, J 8.0,1.2,8-\mathrm{H})$. Further elution gave 18 ($300 \mathrm{mg}, 21 \%$), with data as above.

${ }_{65}$ (\pm)-trans-3,4-Dibromo-5-nitroisocoumarin (21)

Bromine ($210 \mathrm{mg}, 1.3 \mathrm{mmol}$) in acetic acid (1.0 mL) was added to 5 -nitroisocoumarin $2 \mathbf{2 0}^{6}(250 \mathrm{mg}, 1.3 \mathrm{mmol})$ in acetic acid (2.5 mL) and the mixture was stirred for 2 h before being poured into ice $-\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The suspension was stirred for ${ }_{70} 10 \mathrm{~min}$, then extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Drying, evaporation and chromatography (hexane / EtOAc 4:1) yielded 21 (240 mg , 52%) as white crystals: $\mathrm{mp} 116-118^{\circ} \mathrm{C}$; $v_{\text {max }} 1761,1528,1346$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 6.32(1 \mathrm{H}, \mathrm{d}, J 1.7,4-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{d}, J 1.7,3-\mathrm{H})$, $7.80(1 \mathrm{H}, \mathrm{t}, J 8.2,7-\mathrm{H}), 8.52(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 8.64(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$; ${ }_{75} \delta_{\mathrm{C}}$ (HMQC / HMBC) 38.4 (4-C), 78.2 (3-C), 125.1 (9-C), 130.9 (7-C), 131.3 ($8-\mathrm{C}$), 133.0 (10-C), 135.7 ($6-\mathrm{C}$), 145.3 (5C), $158.3(1-\mathrm{C}) ; m / z 373.8455(\mathrm{M}+\mathrm{Na})\left(\mathrm{C}_{9} \mathrm{H}_{6}{ }^{79} \mathrm{Br}^{81} \mathrm{BrNO}_{4} \mathrm{Na}\right.$ requires 373.8463$)$, $353.8621(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{9} \mathrm{H}_{6}{ }^{81} \mathrm{Br}_{2} \mathrm{NO}_{4}\right.$ requires 353.8623), $351.8647(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{9} \mathrm{H}_{6}{ }^{79} \mathrm{Br}^{81} \mathrm{BrNO}_{4}\right.$ requires $\left.{ }_{80} 351.8642\right), \quad 349.8658(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{9} \mathrm{H}_{6}{ }^{79} \mathrm{Br}_{2} \mathrm{NO}_{4}\right.$ requires 349.8664).

5-Amino-4-bromoisoquinolin-1(2H)-one (22)

Compound 18 ($540 \mathrm{mg}, 2.0 \mathrm{mmol}$) was heated with $\operatorname{tin}(\mathrm{II})$ chloride ($1.21 \mathrm{~g}, 6.4 \mathrm{mmol}$) in ethanol $(20 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 4 ${ }_{85} \mathrm{~h}$, then carefully poured into ice $-\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$. The suspension was made alkaline with aq. NaOH and the precipitate was filtered. Extraction of the filtrate (EtOAc), evaporation and chromatography (ethyl acetate / hexane 4:1) gave 22 (250 mg , $54 \%)$ as a pale buff powder: $\mathrm{mp} 210-212^{\circ} \mathrm{C}$; $v_{\max } 3443,3321$,
${ }_{90} 1661,1624 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 5.92\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.73(1$ $\mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{dd}, J 8.2,1.6,6-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, $7.25(1 \mathrm{H}, \mathrm{t}, J 8.2,7-\mathrm{H}), 7.54(1 \mathrm{H}, \mathrm{dd}, J 7.8,1.2,8-\mathrm{H}), 11.34$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{C}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)(\mathrm{HMQC} / \mathrm{HMBC}) 93.10$ (4C), 115.83 ($8-\mathrm{C}$), 119.17 (6-C), 119.42 ($10-\mathrm{C}$), 128.04 (3-C),
${ }_{95} 128.44$ ($9-\mathrm{C}$), 128.56 (7-C), 144.72 (5-C), 160.83 ($1-\mathrm{C}$); m / z $238.9815(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{9} \mathrm{H}_{8}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}\right.$ requires 238.9820).

4-Bromo-1-chloro-5-nitroisoquinoline (23)

Oxalyl chloride ($5.3 \mathrm{~mL}, 7.67 \mathrm{~g}, 60.4 \mathrm{mmol}$) was added dropwise during 30 min to dry dimethylformamide $(4.7 \mathrm{~mL}, 4.4 \mathrm{~g}$,
$10060.4 \mathrm{mmol})$ in 1,2 -dichloroethane (35 mL) at $0^{\circ} \mathrm{C}$. The suspension was stirred at room temperature for 10 min , then $\mathbf{1 8}$ $(7.3 \mathrm{~g}, 27 \mathrm{mmol})$ was added. The mixture was then heated at $80^{\circ} \mathrm{C}$ for 6 h , allowed to cool and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Washing (water), drying and evaporation gave $23(7.0 \mathrm{~g}, 89 \%)$ 105 as a yellow solid: $\mathrm{mp} 164-166^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 7.82(1 \mathrm{H}, \mathrm{t}, J 7.6,7-\mathrm{H})$, 8.01 ($1 \mathrm{H}, \mathrm{dd}, J 7.6,1.2,6-\mathrm{H}), 8.62$ ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$), 8.65 (1 H , dd, $J 7.6,1.2,8-H)$; $\delta_{\mathrm{C}} .112 .4,127.1,127.8,128.2,128.6$, 131.0, 147.4, 147.6, 152.0.

4-Bromo-1-methoxy-5-nitroisoquinoline (24)

Finely divided sodium ($700 \mathrm{mg}, 31 \mathrm{mmol}$) was added to 23 $(5.0 \mathrm{~g}, 17 \mathrm{mmol})$ in dry methanol (90 mL) and the mixture was boiled under reflux for 16 h . The solvent was then evap5 orated until 20 mL remained; the residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted (chloroform). Drying and evaporation gave $24(4.0 \mathrm{~g}, 82 \%)$ as a yellow solid: mp $154-157^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 4.18$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.63(1 \mathrm{H}, \mathrm{t}, J 7.8,7-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{dd}, J 7.8,1.1$, $6-\mathrm{H}), 8.29(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.48(1 \mathrm{H}, \mathrm{dd}, J 7.8,1.1,8-\mathrm{H}) ; \delta_{\mathrm{C}}$ ${ }_{10} 54.6,104.2,110.0,121.9,126.3,126.9,128.5,146.2,147.0$, 160.3; Found: C, 42.43; H, 2.63; N, 9.69. Calc. For $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{O}_{3}$: C, $42.43 ; \mathrm{H}, 2.49 ; \mathrm{N}, 9.90 \%$.

1-Methoxy-4-methyl-5-nitroisoquinoline (25) Method A

Butyllithium in tetrahydrofuran ($1.6 \mathrm{M}, 0.24 \mathrm{~mL}, 0.38 \mathrm{mmol}$) 15 was added to $\mathbf{2 4}$ ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$) in dry tetrahydrofuran $(9 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The suspension was stirred for 20 min . Iodomethane ($55.4 \mathrm{mg}, 0.39 \mathrm{mmol}$) in tetrahydrofuran (1 mL) was added and the mixture allowed to warm to $20^{\circ} \mathrm{C}$ during 1 h . The reaction was quenched with water. Extraction (dichloro20 methane), evaporation and chromatography (hexane / ethyl acetate $15: 1$) gave $\mathbf{2 5}(7 \mathrm{mg}, 9 \%)$ as a yellow-orange solid: mp $90-93^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.91$ ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), 4.09 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.50 (1 $\mathrm{H}, \mathrm{t}, J 8.6,7-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{d}, J 7.4,8-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ $8.42(1 \mathrm{H}, \mathrm{d}, J 7.4,6-\mathrm{H}) ; \delta_{\mathrm{C}}$ (HMBC / HMQC) 16.00 ($4-\mathrm{Me}$), ${ }_{25} 53.94$ (OMe), 120.00 ($4-\mathrm{C}$), 125.02 ($7-\mathrm{C}$), 125.34 ($4 \mathrm{a}-\mathrm{C}$), 125.66 ($8-\mathrm{C}$), 128.34 (6-C), 128.91 ($8 \mathrm{a}-\mathrm{C}$), 143.24 (5-C), 143.58 (3-C), 159.99 (1-C); m/z $241.0582(\mathrm{M}+\mathrm{Na})$ $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{NaO}_{3}\right.$ requires 241.0589), $219.0772(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 219.0770).

${ }_{30}$ 1-Methoxy-4-methyl-5-nitroisoquinoline (25) Method B

Compound $24(1.00 \mathrm{~g}, 3.52 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(180 \mathrm{mg}, 0.35$ mmol), SPhos ($140 \mathrm{mg}, 0.70 \mathrm{mmol}$) and tetramethyltin (0.95 $\mathrm{g}, 5.28 \mathrm{~mol})$ were placed in a dry flask. Degassed toluene (20 mL) was added and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 7 d . ${ }_{35}$ Evaporation and chromatography (hexane / ethyl acetate 15:1) gave $25(0.77 \mathrm{~g}, 72 \%)$ as a yellow-orange solid with data as above.

1-Methoxy-5-nitro-4-phenylisoquinoline (26a)

Compound $24(1.00 \mathrm{~g}, 3.53 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(180 \mathrm{mg}, 0.35$ ${ }_{40} \mathrm{mmol}$), SPhos ($140 \mathrm{mg}, 0.70 \mathrm{mmol}$), tripotassium phosphate $(1.5 \mathrm{~g}, 7.06 \mathrm{mmol})$ and phenylboronic acid $(640 \mathrm{mg}, 5.30$ mmol) were placed in a dry flask. Degassed toluene (40 mL) was added and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . Evaporation and chromatography (hexane / ethyl acetate 10:1) ${ }_{45}$ gave 26 ($850 \mathrm{mg}, 86 \%$) as yellow crystals: $\mathrm{mp} 118-120^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 4.20(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.27-7.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.38-$ $7.43\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 3,4,5-\mathrm{H}_{3}\right), 7.62(1 \mathrm{H}, \mathrm{t}, J 8.0,7-\mathrm{H}), 7.97$ (1 H , dd, $J 8.0,1.2,6-\mathrm{H}$ or $8-\mathrm{H}), 8.06(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.60(1 \mathrm{H}$, $\mathrm{dd}, J 8.0,1.2,8-\mathrm{H}$ or $6-\mathrm{H}) ; \delta_{\mathrm{C}} 54.4,120.7,124.5,125.5$, so 127.4, 127.7, 127.8, 128.1, 128.4, 129.1, 137.5, 144.7, 147.6, 160.3; m/z 303.0740 (M + Na) $\left(\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NaN}_{2} \mathrm{O}_{3}\right.$ requires 303.0746); $281.0915(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 281.0926); Found: C, 68.50; H, 4.26; N, 10.19. Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 68.57; H, 4.32; N, 10.00\%.

5s 1-Methoxy-5-nitro-4-(4-trifluoromethylphenyl)isoquinoline (26b)
Compound 24 was treated with 4-trifluoromethylphenylboronic acid, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, SPhos and $\mathrm{K}_{3} \mathrm{PO}_{4}$ in toluene, as for the synthesis of 26a, to give 26b (81\%) as yellow crystals: mp 95${ }_{60} 97^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 4.25$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.43 ($2 \mathrm{H}, \mathrm{d}, J 8.8$, Ar 2,6-H2), 7.68-7.72 ($3 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ and $\operatorname{Ar} 3,5-\mathrm{H}_{3}$), $8.05(1 \mathrm{H}, \mathrm{dd}, J 8.4$, $1.2,6-\mathrm{H}), 8.07(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.66(1 \mathrm{H}, \mathrm{dd}, J 8.4,1.2,8-\mathrm{H}) ; \delta_{\mathrm{C}}$ 54.5, 120.7, 123.1, 125.4 (q, J 3.7, Ar 3.5-C C_{2}), 125.8, 127.3 ($\mathrm{m}, \mathrm{CF}_{3}$), 127.6, 128.3, 129.4, 130.0 (m, Ar 4-C), 141.2, ${ }_{65} 145.0,160.8 ; m / z 371.0631(\mathrm{M}+\mathrm{Na})\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NaN}_{2} \mathrm{O}_{3}\right.$ requires 371.0619$)$, $349.0805(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 349.0800); Found: C, 58.47 ; H, 3.23; N, 7.96. Calc. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 58.63 ; \mathrm{H}, 3.18 ; \mathrm{N}, 8.05 \%$.

1-Methoxy-5-nitro-4-phenylaminoisoquinoline (27)

${ }_{70}$ Compound $24(1.00 \mathrm{~g}, 3.5 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(180 \mathrm{mg}, 0.35$ mmol), SPhos ($140 \mathrm{mg}, 0.70 \mathrm{mmol}$), potassium t-butoxide ($790 \mathrm{mg}, 7.06 \mathrm{mmol}$) and aniline ($0.49 \mathrm{~g}, 5.3 \mathrm{mmol}$) were placed in a dry flask. Degassed 1,4-dioxane (40 mL) was added and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . Evapor75 ation and chromatography (hexane / ethyl acetate $10: 1$) gave $27(470 \mathrm{mg}, 45 \%)$ as a deep red solid: $\mathrm{mp} 124-126^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 4.17$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.61$ ($2 \mathrm{H}, \mathrm{dd}, J 7.4,1.1, \mathrm{Ph}$ $\left.2,6-\mathrm{H}_{2}\right), 6.79(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Ph} 4-\mathrm{H}), 7.14(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{Ph}$ $\left.3,5-\mathrm{H}_{2}\right), 7.59(1 \mathrm{H}, \mathrm{d}, J 8.2,7-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{dt}, J 8.2,1.2,8-$ $\left.{ }_{80} \mathrm{H}\right), 8.14(1 \mathrm{H}, \mathrm{d}, J 1.1,3-\mathrm{H}), 8.51(1 \mathrm{H}, \mathrm{dd}, J 8.2,1.2,6-\mathrm{H})$; $\delta_{\mathrm{C}} 54.3,114.2,119.5,121.2,124.7,125.8,126.3,127.8$, 128.7, 129.3, 142.3, 146.8, 158.7; m/z 318.0850 (M + Na) $\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{3}\right.$ requires 318.0855), 296.1027 (M+H) $\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}\right.$ requires 296.1035.

${ }_{85}$ 4-Methyl-5-nitroisoquinolin-1-one (28)

Compound 25 ($200 \mathrm{mg}, 0.92 \mathrm{mmol}$) was stirred in aq. hydrobromic acid $(48 \%, 30 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 4 h . Evaporation and recrystallisation (hexane / ethyl acetate) gave 28 (131 mg , 70%) as a pale buff solid $\mathrm{mp}: \mathrm{mp} 211-214^{\circ} \mathrm{C}$ (lit. ${ }^{11} \mathrm{mp} 209-$ $\left.{ }_{90} 211^{\circ} \mathrm{C}\right)$; $\delta_{\mathrm{H}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.22(1 \mathrm{H}, \mathrm{d}, J 5.1$, $3-\mathrm{H}), 7.66(1 \mathrm{H}, \mathrm{t}, J 7.8,7-\mathrm{H}), 8.13(1 \mathrm{H}, \mathrm{dd}, J 7.8,1.3,6-\mathrm{H})$, $8.50(1 \mathrm{H}, \mathrm{dd}, J 7.8,1.3,8-\mathrm{H}), 11.64(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$.

5-Amino-4-methylisoquinolin-1-one hydrochloride (29)

Compound 28 ($116 \mathrm{mg}, 0.56 \mathrm{mmol}$) was stirred with pallad${ }_{95}$ ium on charcoal $(10 \%, 100 \mathrm{mg})$ in ethanol $(14 \mathrm{~mL})$ and aq. hydrochloric acid ($34 \%, 0.4 \mathrm{~mL}$) under hydrogen for 2 h . The suspension was filtered through Celite ${ }^{\circledR}$. The Celite ${ }^{\circledR}$ pad and residue were suspended in water (100 mL) and heated. The hot suspension was filtered through a second Celite ${ }^{\circledR}$ pad.
${ }_{100}$ Evaporation of the solvent and drying gave 29 ($78 \mathrm{mg}, 65 \%$) as a pale buff solid: $\mathrm{mp} 225-228^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{11} \mathrm{mp} 227-229^{\circ} \mathrm{C}$); δ_{H} $\left(\mathrm{D}_{2} \mathrm{O}\right) 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.94(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{t}, J=$ $8.2,7-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{d}, J=7.8,6-\mathrm{H}), 8.14(1 \mathrm{H}, \mathrm{d}, J=8.2$, $8-\mathrm{H})$.

${ }_{105}$ 5-Nitro-4-phenylisoquinolin-1-one (30a)

Compound 26a was treated with aq. hydrobromic acid, as for the synthesis of 28, to give 30a (65%) as yellow crystals: mp $211-214^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 7.20\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.\mathrm{Ph} 2,6-\mathrm{H}_{2}\right)$,
7.32 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 3,4,5-\mathrm{H}_{3}$), 7.70 ($1 \mathrm{H}, \mathrm{t}, J 7.6,7-\mathrm{H}$), 8.14 (1 $\mathrm{H}, \mathrm{dd}, J 7.8,1.2,6-\mathrm{H}), 8.58(1 \mathrm{H}, \mathrm{dd}, J 7.8,1.2,8-\mathrm{H}) ; \delta_{\mathrm{C}}$ $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 113.5,126.4,127.2,127.6,128.0,128.2,128.5$, 129.0, 131.6, 133.1, 136.7, 147.0, 159.7; m/z 289.0598 (M + $\left.{ }_{5} \mathrm{Na}\right)\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{NaN}_{2} \mathrm{O}_{3}\right.$ requires 289.0589); $267.0761(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 267.0770); Found: C, $68.60 ; \mathrm{H}, 3.48$; N , 10.49. Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.67; H, 3.59; N, 10.52\%.

5-Nitro-4-(4-trifluoromethylphenyl)isoquinolin-1-one (30b)

Compound 23b was treated with aq. hydrobromic acid, as for ${ }_{10}$ the synthesis of $\mathbf{2 8}$, to give $\mathbf{3 0 b}(65 \%)$ as yellow crystals: mp $283-285^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 7.34(1 \mathrm{H}, \mathrm{d}, J 6.5,3-\mathrm{H})$, 7.46 (2 H, d, $J 7.8$, Ar 3,5-H2), $7.70(2 \mathrm{H}, \mathrm{d}, J 7.8$, Ar 2,6-H2), 7.73 (1 $\mathrm{H}, \mathrm{t}, J 8.2,7-\mathrm{H}), 8.22$ ($1 \mathrm{H}, \mathrm{dd}, J 8.2,1.2,6-\mathrm{H}), 8.61(1 \mathrm{H}, \mathrm{dd}$, $J 8.2,1.2,8-\mathrm{H}), 12.09(1 \mathrm{H}, \mathrm{d}, J c a .5 .5, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ ${ }_{15} 112.0,125.1$ (q, J 3.8, Ar 3.5-C 2), 126.7, 127.7, 128.0, 128.1, 128.2, 129.3, 131.9 (m, Ph C-4), 134.0 ($\mathrm{m}, \mathrm{CF}_{3}$), 141.1, 146.7, 159.8; Found: C, 57.14; H, 2.67; N, 8.04. Calc. for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $57.50 ; \mathrm{H}, 2.71 ; \mathrm{N}, 8.38 \%$.

5-Amino-4-phenylisoquinolin-1-one (31a)

${ }_{20}$ Compound 30a ($46 \mathrm{mg}, 0.17 \mathrm{mmol}$) was stirred with palladium on charcoal ($10 \%, 50 \mathrm{mg}$) in ethanol (15 mL) under hydrogen for 6 h . The suspension was then filtered through Celite ${ }^{\circledR}$. Evaporation of the solvent and drying gave 31a (21 $\mathrm{mg}, 51 \%$) as a pale yellow solid: $\mathrm{mp} 236-240^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}$
${ }_{25}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.70(1 \mathrm{H}, \mathrm{brs}, 3-\mathrm{H}), 6.86(1$ H , dd, $J 7.8,1.2,6-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{t}, J=7.8,7-\mathrm{H}), 7.36(2 \mathrm{H}$, dd, $J 7.3,1.2$, Ph 2,6-H2$), ~ 7.41-7.47\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 3,4,5-\mathrm{H}_{3}\right)$, $7.60(1 \mathrm{H}, \mathrm{d}, J 7.8,1.2,8-\mathrm{H}), 11.20(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ (HMBC / HMQC) 116.2 (8-C), 118.40 (6-C), ${ }_{30} 122.6$ (4a-C) 125.4 (4-C), 127.4 (3-C), 128.0 (7-C), 128.3 (Ph 4-C), 129.1 ($\mathrm{Ph} 3,5-\mathrm{C}_{2}$), 130.2 ($8 \mathrm{a}-\mathrm{C}$), 130.3 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 141.1 ($\mathrm{Ph} 1-\mathrm{C}$), 142.3 (5a-C), 160.1 (1-C); $m / z 259.0841$ (M + $\mathrm{Na})\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NaN}_{2} \mathrm{O}\right.$ requires 259.0847), $237.1017(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 237.1022); Found: C, 76.68 ; H, 5.46 ; N, ${ }_{35}$ 11.43. Calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 76.26 ; \mathrm{H}, 5.12 ; \mathrm{N}, 11.37 \%$.

5-Amino-4-(4-trifluoromethylphenyl)isoquinolin-1-one (31b)

Compound 30b was treated with hydrogen and palladium on charcoal, as for the synthesis of 31a, to give 31b (53\%) as a ${ }_{40}$ pale yellow solid: $\mathrm{mp} 265-267^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 4.37(2 \mathrm{H}, \mathrm{s}$, NH_{2}), 6.81 (1 H , brs, $3-\mathrm{H}$), 6.93 (1 H , dd, $J 7.8,1.2,6-\mathrm{H}$), 7.27 ($1 \mathrm{H}, \mathrm{t}, J 7.8,7-\mathrm{H}$), 7.57 ($2 \mathrm{H}, \mathrm{d}, J 7.6$, Ar 2,6-H2), 7.63 ($1 \mathrm{H}, \mathrm{dd}, J 7.8,1.2,6-\mathrm{H}), 7.77(1 \mathrm{H}, \mathrm{d}, J 7.6,8-\mathrm{H}), 11.31$ (1 H , brs, NH$)$; $\delta_{\mathrm{C}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 112.9,114.7,115.8,118.2,120.9$, ${ }_{45} 124.9$ ($\mathrm{m}, \mathrm{Ph} 3,5-\mathrm{C}_{2}$), 127.5, 127.8, 127.9 ($\mathrm{m}, \mathrm{CF}_{3}$ or $\mathrm{Ar} \mathrm{C}-4$), 128.8 (m, Ar C-4 or CF_{3}), 130.2, 130.5, 143.0, 144.2, 161.5; $m / z 327.0729(\mathrm{M}+\mathrm{Na})\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NaN}_{2} \mathrm{O}\right.$ requires 327.0712), $305.0905(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 305.0902); Found: C, 63.21; H, 3.69; N, 9.30. Calc. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$: C, 63.16; so H, 3.64; N, 9.21%.

5-Amino-4-(4-methoxyphenyl)isoquinolin-1-one (31c)

Compound 34 was treated with hydrogen and palladium on charcoal, as for the synthesis of 31a, to give 31c (32 mg , $47 \%)$ as a pale buff solid: $\mathrm{mp} 240-243^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 4.03$ ${ }_{55}(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.62\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.85(1 \mathrm{H}, \mathrm{dd}, J 7.8,1.2$,
$6-\mathrm{H}), 6.93$ ($2 \mathrm{H}, \mathrm{d}, J 8.6$, Ar 3,5-H2), 7.34 ($2 \mathrm{H}, \mathrm{d}, J=8.6$, Ar $\left.2,6-\mathrm{H}_{2}\right), 7.39\left(1 \mathrm{H}, \mathrm{d}, J 8.6\right.$, Ar $\left.3.5-\mathrm{H}_{2}\right), 7.46(1 \mathrm{H}, \mathrm{t}, J 7.8,7-$ H), $7.60(1 \mathrm{H}, \mathrm{d}, J 7.8,1.2,8-\mathrm{H}), 10.86(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) 55.4,112.1,112.7,113.9,114.3,115.0,122.4$, ${ }_{60} 126.8,127.4,127.5,130.5,143.4,159.0,161.4 ; \mathrm{m} / \mathrm{z} 267.1105$ $(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 267.1134); Found: C, $76.68 ; \mathrm{H}$, 5.46; N, 11.43. Calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 76.26; H, 5.12; N, 11.37%.

1-Benzyloxy-4-bromo-5-nitroisoquinoline (33) and 4${ }_{65}$ bromo-1-dimethylamino-5-nitroisoquinoline (32)

Benzyl alcohol ($680 \mathrm{mg}, 6.3 \mathrm{mmol}$) was added to sodium hydride ($300 \mathrm{mg}, 12.5 \mathrm{mmol}$) in dry dimethylformamide $(10 \mathrm{~mL})$ and the mixture was stirred for 30 min . Compound $20(1.5 \mathrm{~g}$, 5.2 mmol) in dry dimethylformamide (30 mL) was added and 70 the suspension was heated at $100^{\circ} \mathrm{C}$ for 48 h . The solvent was evaporated until 5 mL remained. The residue was diluted with water and extracted (chloroform). Evaporation and chromatography (hexane / ethyl acetate $15: 1$) gave $33(1.3 \mathrm{~g}, 71 \%)$ as a yellow solid: mp $106-108^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 5.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.40(3 \mathrm{H}$, ${ }_{75} \mathrm{~m}$, Ph 3,4,5- H_{3}), $7.52\left(2 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.62(1 \mathrm{H}, \mathrm{t}, J$ $7.8,7-\mathrm{H}), 7.90(1 \mathrm{H}, \mathrm{dd}, J 7.1,1.2,8-\mathrm{H}), 8.33$ ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$), $8.55(1 \mathrm{H}, \mathrm{dd}, J 7.1,1.2,6-\mathrm{H}) ; \delta_{\mathrm{C}} 68.96\left(\mathrm{CH}_{2}\right), 104.5,122.0$, 126.3, 126.9, 127.0, 128.2, 128.3, 128.5, 128.6, 136.1, 146.2, 147.1, 159.7; m/z $382.9826(\mathrm{M}+\mathrm{Na})\left(\mathrm{C}_{16} \mathrm{H}_{11}{ }^{81} \mathrm{BrNaN}_{2} \mathrm{O}_{3}\right.$ ${ }_{80}$ requires 382.9830); $380.9860(\mathrm{M}+\mathrm{Na})\left(\mathrm{C}_{16} \mathrm{H}_{11}{ }^{79} \mathrm{BrNaN}_{2} \mathrm{O}_{3}\right.$ requires 380.9851), $359.0039(\mathrm{M}+\mathrm{H})\left(\mathrm{C}_{16} \mathrm{H}_{12}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{3}\right.$ requires 359.0031). Further elution gave $32(184 \mathrm{mg}, 12 \%)$ as a red-orange solid $\mathrm{mp} 127-130^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 3.14(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe})_{2}$, $7.52(1 \mathrm{H}, \mathrm{t}, J=7.6,7-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.2,6-\mathrm{H})$, ${ }_{85} 8.26(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.2,8-\mathrm{H}), 8.30(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$; δ_{C} (HMQC / HMBC) 43.06 (NMe_{2}), 103.28 (4-C), 122.78 ($8 \mathrm{a}-$ C), 124.21 ($4-\mathrm{C}$), 126.38 ($6-\mathrm{C}), 127.95$ ($4 \mathrm{a}-\mathrm{C}$), 130.65 ($8-\mathrm{C}$), 147.04 (3-C), 147.42 (5-C), 160.87 (1-C); $m / z 319.9840$ ($\mathrm{M}+$ $\mathrm{Na})\left(\mathrm{C}_{11} \mathrm{H}_{10}{ }^{81} \mathrm{BrNaN}_{3} \mathrm{O}_{2}\right.$ requires 319.9834), $317.9848(\mathrm{M}+$ $\left.{ }_{90} \mathrm{Na}\right)\left(\mathrm{C}_{11} \mathrm{H}_{10}{ }^{79} \mathrm{BrNaN}_{3} \mathrm{O}_{2}\right.$ requires 317.9854).

1-Benzyloxy-4-(4-methoxyphenyl)-5-nitroisoquinoline (34)

Compound 33 ($500 \mathrm{mg}, 1.4 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(72 \mathrm{mg}, 0.14$ mmol), SPhos ($168 \mathrm{mg}, 0.70 \mathrm{mmol}$), tripotassium phosphate ($594 \mathrm{mg}, 2.8 \mathrm{mmol}$) and 4-methoxyphenylboronic acid (317 ${ }_{95} \mathrm{mg}, 2.1 \mathrm{mmol}$) were placed in a dry flask. Degassed toluene $(20 \mathrm{~mL})$ was added and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h . Chromatography (hexane / ethyl acetate, 20:1) gave 34 ($330 \mathrm{mg}, 61 \%$) as a yellow solid: mp $162-164^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 3.85$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.93\left(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{Ar} 3,5-\mathrm{H}_{2}\right)$,
${ }_{100} 7.21(2 \mathrm{H}, \mathrm{d}, J 8.6$, Ar 2,6-H2), 7.36-7.45 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 3,4,5-$ $\left.\mathrm{H}_{3}\right), 7.55\left(2 \mathrm{H}, \mathrm{d}, J 7.5\right.$, $\left.\mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.60(1 \mathrm{H}, \mathrm{t}, J 8.2,7-\mathrm{H})$, $7.95(1 \mathrm{H}, \mathrm{d}, J 7.4,6-\mathrm{H}$ or $8-\mathrm{H}), 8.04(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.63(1 \mathrm{H}$, d, $J 7.4,8-\mathrm{H}$ or $6-\mathrm{H}) ; \delta_{\mathrm{C}}(\mathrm{HMBC} / \mathrm{HMQC}) \delta 55.2(\mathrm{Me}), 68.6$ $\left(\mathrm{CH}_{2}\right), 108.7,113.8\left(\mathrm{Ar} 3.5-\mathrm{C}_{2}\right), 120.7$ (8a-C), 124.4 (Ar 1-C), ${ }_{105} 125.4$ (7-C), 127.2 (6-C), 128.0 (Ph 4-C), 128.1 ($4 \mathrm{a}-\mathrm{C}$), 128.2 ($\mathrm{Ph} 3.5-\mathrm{C}_{2}$), 128.6 ($\mathrm{Ph} 2,6-\mathrm{C}_{2}$), 129.0 (8-C), 129.3 ($\mathrm{Ar} 2,6-$ C_{2}), 129.8 (4-C), 131.5 ($\mathrm{Ar} 4-\mathrm{C}$), 136.7 ($\mathrm{Ph} 1-\mathrm{C}$), 147.7 (3-C), 159.2 (5-C), $159.5(1-\mathrm{C}) ; \quad m / z \quad 409.1164(\mathrm{M}+\mathrm{Na})$ $\left(\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{NaO}_{4}\right.$ requires 409.1164), 387.1366 (M + H) ${ }_{110}\left(\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$ requires 387.1345); Anal. Found: C, 71.56 ; H, 4.82; $\mathrm{N}, 7.31$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $71.49 ; \mathrm{H}, 4.70 ; \mathrm{N}$,
7.25\%.

1-(Benzyloxy)-5-nitro-4-(phenanthren-9-yl)isoquinoline (35)

Compound 33 was treated with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, SPhos, tripotassium ${ }_{5}$ phosphate and phenanthrene-9-boronic acid, as for the synthesis of 34 , to give $35(42 \%)$ as yellow crystals: mp $102-105^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 5.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.41(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{Ph} 4-\mathrm{H}), 7.47(2 \mathrm{H}$, $\left.\mathrm{t}, J 7.8, \mathrm{Ph} 3,5-\mathrm{H}_{2}\right), 7.52(1 \mathrm{H}, \mathrm{td}, J 7.8,1.2$, Phen 3 or $6-\mathrm{H})$, $7.56\left(1 \mathrm{H}, \mathrm{s}\right.$, Phen 9-H), 7.60-7.65 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 2,6-\mathrm{H}_{2}$ and $7-$ $\left.{ }_{10} \mathrm{H}\right)$, 7.66-7.71 ($2 \mathrm{H}, \mathrm{m}$, Phen 1,8-H2), $7.82(2 \mathrm{H}, \mathrm{t}, J 7.4$, Phen $\left.2,7-\mathrm{H}_{2}\right), 7.85(1 \mathrm{H}, \mathrm{dd}, J 7.6,1.2,6-\mathrm{H}), 8.71(1 \mathrm{H}, \mathrm{dd}, J 7.6$, $1.2,8-\mathrm{H}), 8.74(1 \mathrm{H}, \mathrm{d}, J 7.8$, Phen $4-\mathrm{H}$ or $5-\mathrm{H}), 8.79(1 \mathrm{H}, \mathrm{d}$, $J 7.8$, Phen $5-\mathrm{H}$ or $4-\mathrm{H})$; δ_{C} (HMQC / HMBC) $68.8\left(\mathrm{CH}_{2}\right)$, 120.8, 122.1 (Phen 1-C), 122.7, 123.1, 125.6, 126.4 (Phen 2-C 15 or $7-\mathrm{C}$), 126.6, 126.8, 127.0 (8-C), 127.0, 128.2 (Ph 2,6-C C_{2}), 128.3 (Ph 4-C), 128.4, 128.7, 128.8 (Ph 3,5-C2), 129.0 (Phen 7-C or $2-\mathrm{C}$), 129.2, 130.3, 130.6, 131.0, 131.4, 132.7, 136.7 (Ph 1-C), 145.8 (3-C), 147.7 (5-C), 160.0 (1-C); $m / z 479.1360$ $(\mathrm{M}+\mathrm{Na})\left(\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{3}\right.$ requires 479.1372), $457.1571(\mathrm{M}+$ $\left.{ }_{20} \mathrm{H}\right)\left(\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 457.1552).

5-Amino-4-(phenanthren-9-yl)isoquinolin-1-one (36)

Compound 35 was treated with hydrogen and palladium on charcoal, as for the synthesis of 31c, to give $\mathbf{3 6}$ (57%) as a buff solid: $\mathrm{mp}>300^{\circ} \mathrm{C}$; m/z $359.1196(\mathrm{M}+\mathrm{Na})$ ${ }_{25}\left(\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{NaN}_{2} \mathrm{O}\right.$ requires 359.1160$)$, $337.1331(\mathrm{M}+\mathrm{H})$ $\left(\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right.$ requires 337.1341.

5-Benzamido-4-phenylisoquinolin-1-one (37)

Compound 31a ($68 \mathrm{mg}, 0.25 \mathrm{mmol}$) was stirred with benzoyl chloride ($39 \mathrm{mg}, 0.28 \mathrm{mmol}$) in pyridine $\left(2.0 \mathrm{~mL}\right.$) at $90^{\circ} \mathrm{C}$ for ${ }_{30} 16$ h. Evaporation and chromatography (ethyl acetate \rightarrow ethyl acetate / methanol $4: 1$) gave $31(31 \mathrm{mg}, 36 \%)$ as a very pale pink solid: mp $230-232^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 7.10-7.16$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 3,4,5-\mathrm{H}_{3}$), $7.24(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.26-7.36(4 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}$ and $\left.\mathrm{COPh} 3,4,5-\mathrm{H}_{3}\right), 7.62\left(2 \mathrm{H}, \mathrm{d}, J 7.2\right.$, $\left.\mathrm{Ph} 2,6-\mathrm{H}_{2}\right), 7.71$ $35(1 \mathrm{H}, \mathrm{d}, J 7.8,6-\mathrm{H}), 7.78(1 \mathrm{H}, \mathrm{d}, J 7.4$, COPh 2,6-H2$), 8.42(1$ $\mathrm{H}, \mathrm{d}, J 7.8,8-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 119.5,127.7,127.6,128.4$, 128.6, 128.9, 129.2, 129.4, 129.9, 130.3, 130.9, 131.8, 133.0, 134.6, 140.2, 164.1, 168.3; m/z 363.1133 (M + Na) $\left(\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NaN}_{2} \mathrm{O}_{2}\right.$ requires 363.1109), $341.1312(\mathrm{M}+\mathrm{H})$ $40\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 341.1290).

X-Ray crystallography

General: All data were collected at 150 K on a Nonius kappaCCD diffractometer. The structures were uniformly solved using SHELXS- 97^{23} and refined using full-matrix least ${ }_{45}$ squares in SHELXL-97.
Crystal data for 26a: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}, M=280.28, \lambda=0.71073$ \AA, orthorhombic, space group $=P 2_{1} 2_{1} 2_{1}, a=7.4710(1), b=$ 8.3050(1), $c=21.1940(4) \AA, U=1315.02(3) \AA^{3}, Z=4, D_{c}=$ $1.416 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.100 \mathrm{~mm}^{-1}, F(000)=584$, crystal size $=$ ${ }_{50} 0.50 \times 0.40 \times 0.30 \mathrm{~mm}$. Reflections collected $=23576$, unique reflections $=3016\left[R_{\text {int }}=0.0757\right]$, reflections observed ($I>$ $2 \sigma>(I))=2288$, data $/$ restraints $/$ parameters $=3016 / 0 / 192$. Final R indices $[I>2 \sigma>(I)] ; R 1=0.0426, w R 2=0.0893 . R$ indices (all data); $R 1=0.0725, w R 2=0.1022$. Max $/ \mathrm{min}$ peak ${ }_{55}$ and hole $=0.468,-0.407 \mathrm{e}^{\AA^{-3}}$.

Crystal data for 33: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{3}, M=359.18, \lambda=0.71073$ \AA, triclinic, space group $=P-1$ (No. 2), $a=8.6180(4), b=$ 9.9120(4), $c=10.2260(5) \AA, \alpha=114.347(2), \beta=108.553(2)$, $\gamma=100.738(2)^{\circ}, U=701.65(6) \AA^{3}, Z=2, D_{c}=1.700 \mathrm{~g} \mathrm{~cm}^{-3}$,
${ }_{60} \mu=2.944 \mathrm{~mm}^{-1}, F(000)=360$, crystal size $=0.40 \times 0.30 \times$ 0.30 mm . Reflections collected $=11401$, unique reflections $=$ $3168\left[R_{\text {int }}=0.0484\right]$, reflections observed $(I>2 \sigma>(I))=$ 2680, data $/$ restraints $/$ parameters $=3168 / 0 / 200$. Final R indices $[I>2 \sigma>(I)] ; R 1=0.0303, w R 2=0$. 0642. R indices
${ }_{65}$ (all data); $R 1=0.0421, w R 2=0.0680$. Max $/ \mathrm{min}$ peak and hole $=0.369,-0.388 \mathrm{e}^{-3}$.

Crystal data for 35: $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}, M=500.53, \lambda=0.71073 \AA$, monoclinic, space group $=P 2 / c, a=13.9880(2), b=$ 10.9970(2), $c=16.1970(2) \AA, b=95.645(1)^{\circ} U=2479.44(7)$
${ }_{70} \AA^{3}, Z=4, D_{c}=1.341 \mathrm{~g} \mathrm{~cm}^{-3}, \beta=0.089 \mathrm{~mm}^{-1}, F(000)=1048$, crystal size $=0.40 \times 0.20 \times 0.20 \mathrm{~mm}$. Reflections collected $=$ 44827, unique reflections $=5661\left[R_{\text {int }}=0.0507\right]$, reflections observed $(I>2 \sigma>(I))=4556$, data $/$ restraints $/$ parameters $=$ 5661/0/350. Final R indices $[I>2 \sigma>(I))] ; R 1=0$. 0649 ,
75 $w R 2=0.1729 . R$ indices (all data); $R 1=0.0836, w R 2=0$. 1860. Max $/ \min$ peak and hole $=0.442,-1.102 \mathrm{e}^{-3}{ }^{-3}$.

PARP-1 inhibition assay

Compounds were assayed for inhibition of the catalytic activity of PARP-1 using the FlashPlate scintillation proximity ${ }_{80}$ assay previously developed at KuDOS. ${ }^{20}$ Compounds were evaluated at eight different concentrations in triplicate; data were fitted to the dose-response curve using a $\log _{10}$ concentration scale using SigmaPlot, IC_{50} values were measured in two or three independent experiments and the mean values are ${ }_{85}$ reported.

PARP-2 inhibition assay

Compounds were assayed for inhibition of the catalytic activity of PARP-2 using a method in which recombinant PARP-2 protein (recombinant) was bound down by a PARP-2-specific ${ }_{90}$ antibody in a 96 -well white-walled plate. PARP-2 activity was measured following addition of ${ }^{3} \mathrm{H}-\mathrm{NAD}^{+}$and DNA. ${ }^{21}$ After washing, scintillant was added to measure the ${ }^{3} \mathrm{H}$-incorporated. Compounds were evaluated at eight different concentrations in triplicate; data were fitted to the dose-response curve ${ }_{95}$ using a $\log _{10}$ concentration scale using SigmaPlot, IC_{50} values were measured in two or three independent experiments and the mean values are reported.

Acknowledgements

We wish to thank Dr. Timothy J. Woodman (University of Bath) 100 for many of the NMR spectra, Dr. Anneke Lubben (University of Bath) for the mass spectra and Professor Rex M. Tyrrell (University of Bath) for the kind gift of the FEK4 cells. We are very grateful to KuDOS Pharmaceuticals Ltd. and the University of Bath for financial support. MDT, MDL and AST are members of ${ }_{105}$ Cancer Research at Bath (CR@B).

Notes and references

${ }^{a}$ Medicinal Chemistry, Department of Pharmacy \& Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. Fax: +44 1225 386114; Tel: +44 1225 386840; E-mail: m.d.threadgill@bath.ac.uk
$110{ }^{b}$ Crystallography Unit, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
${ }^{c}$ KuDOS Pharmaceuticals Ltd., 410 Cambridge Science Park, Milton Road, Cambridge CB4 OPE, UK
\ddagger Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre: CCDC 781105 (26a), CCDC 781106 (33) and
${ }_{5}$ CCDC 781107 (35). Requests for data should be addressed to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK.
1 M. J. Suto, W. R. Turner, C. M. Arundel-Suto, L. M. Werbel and J. S. Sebolt-Leopold, Anti-Cancer Drug Des. 1991, 6, 107-117.

2 C. M. Arundel-Suto, S. C. Scavone, W. R. Turner, M. J. Suto and J. $10 \quad$ S. Sebolt-Leopold, Radiat. Res. 1991, 126, 367-371.
3 M. Banasik, H. Komura, M. Shimoyama and K. Ueda, J. Biol. Chem. 1992, 267, 1569-1575; S. Sánchez-Fidalgo, I. Villegas, A. Martín, M. Sánchez-Hidalgo and C. Alarcón de la Lastra, C. Eur. J. Pharmacol. 2007, 563, 216-223.
154 S. Cuzzocrea, E. Mazzon, R. Di Paola, T. Genovese, N. S. A. Patel, C. Muià, M. D. Threadgill, A. De Sarro and C. Thiemermann, Naunyn-Schmiedebergs Arch. Pharmacol. 2004, 370, 464-473.
5 N. Wayman, M. C. McDonald, A. S. Thompson, M. D. Threadgill and C. Thiemermann, Eur. J. Pharmacol. 2001, 430, 93-100.
206 M. C. McDonald, H. Mota-Filipe, J. A. Wright, M. Abdelrahman, M. D. Threadgill, A. S. Thompson and C. Thiemermann, Br. J. Pharmacol. 2000, 130, 843-850.
7 T. Genovese, E. Mazzon, C. Muià, N. S. A. Patel, M. D. Threadgill, P. Bramanti, A. De Sarro, C. Thiemermann and S. Cuzzocrea, J.

25 Pharmacol. Exp. Ther. 2005, 312, 449-457.
8 M. Li, M. D. Threadgill, Y. Wang, L. Cai and X. Lin, Pathobiol. 2009, 76, 108-116; Y. Qin, Y. Wang and Y.-Y. Li, J. Third Military Med. Univ. 2008, 30, 1330-1333.
9 P. T. Sunderland, E. C. Y. Woon, A. Dhami, M. F. Mahon, P. J.
30 Wood, L. A. Jones, S. R. Tully M. D. Lloyd, A. S. Thompson, H. Javaid, N. M. B. Martin and M. D. Threadgill, J. Med. Chem. submitted.
10 R. Pellicciari, E. Camaioni, G. Costantino, L. Formentini, P. Sabbatini, F. Venturoni, G. Eren, D. Bellocchi, A. Chiarugi and F.
35 Moroni, ChemMedChem 2008, 3, 914-923.
11 A. Dhami, M. F. Mahon, M. D. Lloyd and M. D. Threadgill, Tetrahedron 2009, 65, 4751-4765.
12 M. Croisy-Delcey, E. Bisagni, C. Huel, D. Zilberfarb and A. Croisy, J. Heterocycl. Chem. 1991, 28, 65-71.

4013 A. D. Sercel, J. P. Sanchez and H. D. H. Showalter, Synth. Commun. 2007, 37, 4199-4208.
14 J. M. Berry, C. Y. Watson, W. J. D. Whish and M. D. Threadgill, J. Chem. Soc., Perkin Trans. 1 1997, 1147-1156; P. T. Sunderland, A. S. Thompson and M. D. Threadgill, J. Org. Chem. 2007, 72, 74097412.

15 D. E. Horning, G. Lacasse and J. M. Muckowski, Can. J. Chem. 1971, 49, 2785-2796.
16 I. Parveen, D. P. Naughton, W. J. D. Whish and M. D. Threadgill, M Bioorg. Med. Chem. Lett. 1999, 9, 2031-2036.
5017 T. E. Barder, S. D. Walker, J. R. Martinelli and S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4685-4696.
18 M. S. Wong and X. L. Zhang, Tetrahedron Lett. 2001, 42, 40874089.

19 T. Karlberg, M. Hammarström, P. Schütz, L.Svensson and H. Schüler 55 Biochemistry 2010, 49, 1056-1058.

20 K. J. Dillon, G. C. M. Smith and N. M. B. Martin, J. Biomol. Screen. 2003, 8, 347-352.
21 K. A. Menear, C. Adcock, R. Boulter, X.-L. Cockcroft, L. Copsey, A. Cranston, K. J. Dillon, J. Drzewiecki, S. Garman, S. Gomez, H.
60 Javaid, F. Kerrigan, C. Knights, A. Lau, V. M. Loh, I. T. W. Matthews, S. Moore, M. J. O'Connor, G. C. M. Smith and N. M. B. Martin, J. Med. Chem. 2008, 51, 6581-6591.
22 S. Ferrer, D. P. Naughton and M. D. Threadgill, Tetrahedron 2003, 59, 3437-3444; S. Ferrer, D. P. Naughton and M. D. Threadgill, Tetrahedron 2003, 59, 3445-3454.
23 G. M. Sheldrick, SHELXL-97, a computer program for crystal structure refinement; University of Göttingen: Göttingen, 1997.

