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15 Abstract 

16 The concept of evolvability is controversial. To some, it is simply a measure of the standing genetic 

2
17 variation in a population and can be captured by the narrow­sense heritability (h ). To others, 

18 evolvability refers to the capacity to generate heritable phenotypic variation. Many scientists, 

19 including Darwin, have argued that environmental variation can generate heritable phenotypic 

20 variation. However, their theories have been difficult to test. Recent theory on the evolution of sex 

21 and recombination provides a much simpler framework for evaluating evolvability. It shows that 

22 modifiers of recombination can increase in prevalence whenever low fitness individuals produce 

23 proportionately more recombinant offspring. Because recombination can generate heritable variation, 

24 stress­induced recombination might be a plausible mechanism of evolvability if populations exhibit a 

25 negative relationship between fitness and recombination. Here we use the fruit fly, Drosophila 

26 melanogaster, to test for this relationship. We exposed females to mating stress, heat shock or cold 

27 shock and measured the temporary changes that occurred in reproductive output and the rate of 

28 chromosomal recombination. We found that each stress treatment increased the rate of recombination 

29 and that heat shock, but not mating stress or cold shock, generated a negative relationship between 

30 reproductive output and recombination rate. The negative relationship was absent in the low­stress 

31 controls, which suggests that fitness and recombination may only be associated under stressful 

32 conditions. Taken together, these findings suggest that stress­induced recombination might be a 

33 mechanism of evolvability. 

34 

35 Keywords: Evolvability, recombination, stress, pangenesis, fitness, mating, heat shock, Drosophila 
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36 “The tissues of the body, according to the doctrine of pangenesis, are directly affected by the 
37 new conditions, and consequently throw off modified gemmules, which are transmitted with 
38 their newly acquired peculiarities to the offspring…. 

39 [I]n the cases in which the organisation has been modified by changed conditions…the 
40 gemmules cast off from the modified units of the body will be themselves modified, and, when 
41 sufficiently multiplied, will be developed into new and changed structures.” 

42 Charles Darwin 1868 (pp. 394­397) 

43 

44 As we pass the bicentennial of the birth of Charles Darwin, it seems appropriate to consider 

45 not only his ideas that are highly regarded, but also those that are “less fashionable” (Marshall et al. 

46 2010, this issue). Darwin’s “Provisional Hypothesis of Pangenesis” is a fitting topic in this light 

47 (Darwin 1868). Pangenesis was Darwin’s solution to the problem of inheritance. It is usually treated 

48 as being synonymous with blending inheritance. Though modern genetics has led to its rejection, a 

49 key component of the theory may have been overlooked (West­Eberhard 2008). At its core, 

50 pangenesis is a theory about evolvability. In modern biology, evolvability has two distinct yet 

51 interrelated meanings (Radman et al. 1999, Pigliucci 2008; Brookfield 2009). Some define 

52 evolvability as a static measure of the capacity of populations to respond to selection, which is 

53 captured by narrow­sense heritability or the additive genetic coefficient of variation (Fisher 1930; 

54 Houle 1992; for historical reference see Edwards 2010, this issue). Others define evolvability as a 

55 dynamic process that generates heritable variation (Wagner and Altenberg 1996; Kirschner and 

56 Gerhart 1998). As is evident in pangenesis, Darwin embraced dynamic processes in evolution 

57 (Darwin 1868). 

58 In this paper we take a multi­pronged approach to evaluate evolvability as a dynamic process. 

59 We discuss historical aspects, with a particular focus on pangenesis. We review the accumulating 

60 evidence that the environment has a role in generating heritable variation. We argue that the capacity 

61 to evolve might depend on the relationship between physiological and genomic responses to stress. 

62 And, we present two empirical studies on stress­induced chromosomal recombination in Drosophila 

63 to illustrate this idea. Our results suggest that the genome might have a dynamic role in facilitating 

64 evolutionary change. 
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65 In his theory of Pangenesis, Darwin argued that environmental variation could contribute to 

66 evolution through the generation of novel heritable variation (Darwin 1868). There are two ways 

67 novel environmental conditions and stress can stimulate evolutionary change: by increasing 

68 phenotypic variation and/or by increasing genetic variation (reviewed in Hoffmann and Hercus 2000 

69 and Badyaev 2005). The former has been termed phenotypic accommodation (related to the “Baldwin 

70 effect”, Crispo 2007), which can lead to genetic accommodation, the process by which 

71 environmentally induced phenotypic variation becomes constitutively expressed variation after 

72 several generations of selection (West­Eberhard 2003). The latter includes adaptive mutation and 

73 recombination, which occurs when mutations arise or genetic combinations are generated that allow 

74 for rapid adaptation to new conditions. Stress­induced phenotypic and genetic variation can also occur 

75 simultaneously. For example, maternal stress can have both genetic and long­term phenotypic 

76 consequences for offspring (Badyaev 2005; Priest et al. 2007; Priest et al. 2008b; Badyaev &Uller 

77 2009). 

78 There are several empirical studies which support genetic accommodation and adaptive 

79 mutation and recombination (Waddington 1953; Rutherford and Lindquist 1998; Cairns et al. 1988; 

80 Fischer and Schmid­Hempel 2005; for reviews see Rosenburg 2001; Parsons 1988 and Badyaev 2005). 

81 The number of studies documenting condition specific mutation and recombination is also growing 

82 (Agrawal and Wang 2008; Priest et al. 2007). Although these studies are compelling, they are not 

83 sufficient to deduce whether stress­induced evolutionary change is common or rare. The technical 

84 jargon used in the fields of genetic assimilation and adaptive mutation and recombination may also 

85 have contributed to the difficulty of testing the general applicability of these theories (de Jong and 

86 Crozier 2003, Braendle and Flatt 2006; Moczek AP 2007). 

87 Recent theory on the evolution of recombination (the crossing over of homologous 

88 chromosomes during meiosis) provides a much simpler way to evaluate evolvability (Hadany and 

89 Beker 2003; Agrawal et al. 2005). Recombination has been difficult to explain because its fitness 

90 benefits are context­dependent (Feldman 1972; Charlesworth 1976; Barton 1995; Otto and 

91 Lenormand 2002). The solution may be that the recombination frequency has evolved to be plastic; 

4 



92 frequent in low­fitness individuals, but infrequent in high­fitness individuals. A series of papers by 

93 Lilach Hadany and others on Fitness Associated Recombination show that genes which increase 

94 recombination in individuals with low fitness are likely to evolve. If plastic modifiers of 

95 recombination exist, then they may contribute to evolvability by increasing additive genetic variation. 

96 However, there has been no direct test of the relationship between stress, fitness and recombination 

97 (though see Tucíc et al. 1981). We know that abiotic and biotic factors affect the rate of 

98 recombination (for example, temperature Plough 1917, Grell 1971, Zhuchenko et al. 1986; age, 

99 Bridges 1929, Redfield 1966; and nutrition, Neel 1941, Davis and Smith 2001). But, the comparisons 

100 have usually only been made between treatment and control, not within treatment. In addition, few 

101 studies have examined the consequences of acute stress, defined as a brief and sub­lethal exposure to 

102 conditions that reduce fitness. Which individuals in a population show most change in recombination 

103 rates from bouts of stress? What types of stresses can accelerate evolution? Could stress­induced 

104 recombination be a mechanism of evolvability? 

105 Here, we address these questions through two empirical studies of recombination and 

106 reproductive output in the fruit fly, Drosophila melanogaster. We focused on mating stress, heat 

107 shock, and cold shock because they are known to induce stress in fruit flies (Fowler and Partridge 

108 1989; Champan et al. 1995; Lindquist 1986: Kelty and Lee 1999; Priest et al. 2008a). 

109 Materials and Methods 

110 In Experiment 1, we reanalyzed data from a study on the consequences of mating on the rate 

111 of recombination in female fruit flies (Priest et al. 2007). Our reanalysis was limited to only one of 

112 the three independent marker sets used in the study, Kruppel (Kr) and Black cells (Bc), because it had 

113 sufficient linkage distance between markers and large enough sample size to be able to assess the 

114 relationship between offspring production and stress­induced recombination. In Experiment 2, we 

115 used a longitudinal approach to measure age­specific changes in female offspring production and 

116 recombination rate that occurred as a consequence of temperature stress. 

117 Strains and Recombination 
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118 We used coupled phenotypic markers to assess recombination frequency in female D. 

nd 
119 melanogaster. For Experiment 1, we obtained lines that expressed 2 chromosome dominant 

If­1 1
120 phenotypic markers, Kruppel (Kr ) and Black cell (Bc ), from the Drosophila stock center in 

121 Bloomington, Indiana. The Dahomey line was generously provided by Prof. Linda Partridge 

122 (Partridge and Andrews 1985). We backcrossed each of the markers into the Dahomey line for eight 

123 generations to homogenize the background. For Experiment 2, we obtained the Oregon­R line and a 

nd 1 1
124 line that expressed recessive phenotypic markers for the 2 chromosome, nub (nub ), black (b ), and 

1
125 purple (pr ), from the Drosophila stock center in Bloomington, Indiana. To homogenize the 

126 background for the recessive marker lines we backcrossed them into the Oregon­R line for two 

127 generations, generated F1s to reconstitute the marker lines and repeated this process two additional 

128 times. The tight linkage of both of the marker sets minimised the probability of undetected double 

129 recombination events. Each of the marker lines was cultured at 50 eggs/vial for three generations 

130 before the start of the experiment to limit environmental variation that arises from differences in larval 

131 density. The flies were maintained at 25°C, 50% relative humidity in a 12:12 light cycle. 

132 We focused our analysis on recombination in females because crossing over between paired 

133 chromosomes does not occur in male D. melanogaster. We assessed the rate of recombination of a 

134 female at a particular age interval by determining the proportion of recombinant offspring produced 

135 by that female during the interval. In Experiment 1, we scored the proportion of wild type and Bc Kr / 

136 + + recombinant offspring produced by Bc + / + Kr heterozygous females. In Experiment 2, we 

137 scored the proportion of nub, nub b, b pr, pr, nub pr (double recombinant) and b (double recombinant) 

138 offspring produced by nub b pr / + + + heterozygous females that were originally mated with nub b pr 

139 / nub b pr males. We focused our assessment of recombination rate on the entire nub­pr interval, 

140 rather than for each pair of markers, because double recombinants were extremely rare (4 double 

141 recombinants for every 10,000 samples). Estimates of recombination using these methods may 

142 underestimate genome wide consequences, because they employ markers in heteromeric regions, 

143 while centromeric regions appear to be much more sensitive to environment­induced recombination 

144 (Neel 1941). 
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145 Stress experiments 

146 The methodological details of Experiment 1 have been previously reported (Priest et al. 

147 2007). Briefly, we collected four­hour­old virgin Bc + / + Kr heterozygous females. When the 

148 females were two­days­old they were placed in individual vials with three wild­type (Dahomey) 

149 virgin males. At female age 3­day, males were discarded and the females were randomly assigned one 

150 of three treatments: High, Medium, or Low mating. Low mating females did not receive any 

151 additional exposure to males. The Medium mating females were additionally exposed to three new 

152 virgin males for 24 hours at age 5­days. The High mating females were exposed to virgin males every 

153 day for eight days. We collected the eggs that were deposited by each female in the bottom of the 

154 vials over a 48 hour window, from female age 6­day to 8­day. The females were discarded after their 

155 eggs were collected. After the adult offspring had emerged from the vials, they were flash frozen and 

156 the phenotypes of all of the offspring were scored. The timing of the mating treatments and egg 

157 collection intervals were such that females were prevented from additional exposure to males for 96, 

158 24 or zero hours (Low, Medium and High mating, respectively) before the 48 hour egg collection 

159 interval. 

160 In Experiment 2, we collected four­hour­old virgin nub b pr / + + + heterozygous females. At 

161 day 2, they were placed in individual vials with three nub b pr tester males. At day 3, the males were 

162 discarded. On day 4, 6 and 8, all of the females were transferred to fresh media vials. At day 10 the 

163 females were transferred to empty shell vials (with cotton balls pushed close the bottom of the vial to 

164 restrict movement) and were randomly assigned one of three treatments: Heat shock, Cold shock, or 

165 sham (control) treatment. Heat shock was applied by placing the vials into a 37°C water bath for 20 

166 minutes. Cold shock was applied by putting the females into a freezer that shifted temperature from 

167 18°C to 3°C over a 2.5 hour interval. The sham treatment involved holding the females in shell vials 

168 at 25°C for 2.5 hours. After the treatment, the females were placed in media vials, which were 

169 randomly distributed and given blind labels. The vials were visually inspected two days later to assess 

170 egg production. The females were given an additional day in their vials, to increase the sample of eggs, 

171 before they were transferred to fresh media vials on day 13. On day 16, they were discarded. We 
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172 scored all of the vials, except for a set of day 6 vials that were accidentally washed before they had 

173 been scored. The heat shock treatment we used is fairly standard for experiments with live D. 

174 melanogaster (Lindquist 1986). Our cold shock treatment involved cooling flies slowly (at 0.1°C/ 

175 minute) to induce physiologically relevant cold hardening mechanisms (Kelty and Lee 1999). 

176 Statistical analysis 

177 We calculated a standardized rate of recombination in cM/Mb by dividing each of the 

178 recombination values we had measured for each female and age by the estimated physical distance of 

179 the marker intervals in mega base pairs. We obtained physical marker distances from FlyBase (Kr­Bc: 

180 7.3 Mb; nub­pr: 7.4 Mb). We calculated 95% confidence intervals for each estimate of female 

181 recombination rate using the Wilson score interval (see online supplementary figures). To test for the 

182 effects of the treatments on recombination, in both Experiment 1 and 2, we constructed logistic 

183 regression models with mating and temperature treatment as fixed effects and the proportion of 

184 recombinant offspring as the response variable. We used logistic regression because it weights 

185 estimates of recombination according to the sampling intensity. To exclude the possibility that the 

186 effects of treatments on recombination rates were driven by a few influential observations or 

187 observations derived from females with low fecundity, we repeated the analysis after removing 

188 females with low reproductive output. We also repeated the analysis after removing females that were 

189 identified as statistically significant outliers using regression deletion diagnostics function 

190 “influence.measures” in the R statistical software. The results of the logistic regression models 

191 without females of low reproductive output or without females that were statistical outliers are 

192 qualitatively similar to those using the entire data set (data not shown). In Experiment 2, we also used 

193 a repeated measures analysis, which treats female as the unit of replication, to examine the possibility 

194 that stress­induced changes in recombination were driven by mortality­induced changes in cohort 

195 composition, not physiological changes within females. To test for the effects of the treatments on 

196 offspring production, we used analysis of variance (ANOVA), with mating and temperature treatment 

197 as fixed effects and the number of offspring as the response variable. For Experiment 1, ANOVA was 
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198 performed on square transformed data. For Experiment 2, analysis was conducted on untransformed 

199 data. 

200 To examine the relationship between recombination and offspring production, we first 

201 constructed ANCOVA models which included treatment as a fixed effect, offspring production as a 

202 covariate, offspring production x treatment interaction and the proportion of recombinant offspring as 

203 the response variable. We estimated the fitted slopes for each level of treatment in the model to assess 

204 the relationship between recombination and offspring production. We used the interaction coefficients 

205 of the ANCOVA model to assess differences between the slopes of treatment levels. We repeated this 

206 analysis using logistic regression to account for differences in sampling intensity. For Experiment 2, 

207 ANCOVA was conducted on natural log transformed data. Each analysis conformed to statistical 

208 model assumptions. All statistical analyses were performed using version 2.10.1 of the R statistical 

209 software (R Development Core Team 2009). 

210 Results 

211 Mating stress 

212 Similar to what was reported previously with the data (Priest et al. 2007), there was a 

2
213 significant effect of the mating treatment on the rate of recombination (χ = 18.7, df=2,123, p < 0.001; 

214 Figure 1). On average, bouts of mating that occurred 0­3 days before the end of the assessment 

215 resulted in a 29.3% increase in recombination rate, relative to bouts of mating that occurred 6­days 

216 before the end of the assessment (3.22 ± 0.2 cM/Mb for High, 2.62 ± 0.1 cM/Mb for Medium, and 

217 2.49 ± 0.1 cM/Mb for Low mating). There was a significant effect of mating treatment on offspring 

218 production (F2,123 = 3.06, p = 0.05). High mating treatment females produced more offspring than 

219 either Medium or Low mating treatment females, although the only significant difference was 

220 between High and Medium mating treatment (Tukey’s test: High­Medium, t = 2.42, p = 0.05; High­

221 Low, t = 1.66, p = 0.23; Medium­Low, t = 0.74, p = 0.74). 

222 The effect of mating on the relationship between offspring production and recombination was 

223 complex. In the ANCOVA, there was a significant negative relationship (i.e., a negative slope) 
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224 between offspring production and recombination within the High mating treatment (t=4.3, p< 0.001; 

225 Figure 2). This indicates that females with lower offspring production in the two day post­mating egg 

226 collection interval have a higher rate of recombination than females that produced many offspring 

227 over the same post­mating period. The slopes of the relationship between offspring production and 

228 recombination did not differ significantly from zero in the Medium and Low mating treatments 

229 (Medium: t = 0.24, p = 0.81; Low: t = 1.58, p = 0.12). Overall, ANCOVA found that the rate of 

230 recombination in females was significantly influenced by mating (F2,120 = 10.8, p < 0.001), offspring 

231 production (F1,120 =13.3, p < 0.001) and mating x offspring production interaction (F2,120 = 4.0, p = 

232 0.02). However, in the logistic regression analysis, which weights recombination rate estimates 

233 according to sample size, the slope of the relationship between offspring production and 

234 recombination did not differ significantly from zero for any level of mating treatment (High: z = 0.55, 

235 p = 0.46; Medium: z = 0.001, p = 0.97; Low: z =1.99, p = 0.16). Taken all together, logistic regression 

2
236 only found a significant effect of mating (χ = 18.7, df = 2,123, p < 0.001), while offspring production 

2 2
237 (χ = 1.50, df = 2,122, p = 0.22) and mating x offspring production interaction (χ = 1.04, df = 2,120, p 

238 = 0.59) were not significant. 

239 Temperature stress 

240 Before the stress treatment was imposed, there was a decline in the rate of recombination with 

241 age in the four egg collection intervals (Figure 3). Significant increases in recombination frequency 

2
242 were detected in the three day interval after the stress treatment was imposed (χ = 49.5, df= 2,23, p < 

2
243 0.001), but not in the subsequent three day interval (χ = 1.06, df = 2,22, p = 0.59; Figure 3). This 

244 indicates that the consequences of temperature stress are immediate and short­lived. On average, Heat 

245 Shock and Cold Shock increased recombination rate between the nub­pr markers of chromosome 2 by 

246 more than ten and five times, respectively, relative to control temperature (Tukey’s test: Heat­Control, 

247 z = 5.56, p < 0.001; Cold­Control, z = 5.16, p < 0.001; 4.75 ± 1.0 cM/Mb for Heat Shock, 2.67 ± 0.5 

248 cM/Mb for Cold Shock, 0.43 ± 0.2 cM/Mb for Control). There was no significant difference between 

249 Heat Shock and Cold Shock treatments (Tukey’s test: z = 0.82, p = 0.69; Figure 3). A repeated 

250 measures analysis, consisting of the interval before and two intervals after the temperature stress 
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251 treatment was imposed, revealed a significant positive effect of treatment on recombination (Log 

2
252 Likelihood Ratio test: χ = 13.55, df = 2, p < 0.01). This indicates that the stress­induced changes were 

253 driven by changes within females, not mortality­induced changes in cohort composition. There were 

254 no significant effects of the temperature stress treatment on offspring production (F2,23 = 2.26, p = 

255 0.12). 

256 Similar to the mating treatment in Experiment 1, the temperature stress treatment also altered 

257 the relationship between offspring production and recombination. In the ANCOVA, there was a 

258 significant negative relationship between offspring production and recombination within the Heat 

259 Shock treatment (t=5.2, p< 0.001), but not within the Cold Shock (t = 0.93, p = 0.36) or Control 

260 treatments (t = 0.13, p = 0.90; Figure 4). This indicates the heat stressed females with low fecundity 

261 have greater rates of recombination than highly fecund females. The result also shows that heat shock 

262 and cold shock have different consequences on the relationship between offspring production and 

263 recombination. Overall, ANCOVA found that the rate of recombination was significantly influenced 

264 by temperature (F2,20 = 39.8, p < 0.001), offspring production (F1,20 = 10.5, p = 0.004) and temperature 

265 x offspring production interaction (F2,20 = 8.8, p = 0.002). The weighted, more conservative, logistic 

266 regression analysis revealed similar findings. The slope of the relationship between offspring 

267 production and recombination was significantly negative in the Heat Shock treatment (z = 2.36, p = 

268 0.018), and did not differ significantly from zero for either Cold Shock or Control (Cold Shock: z = 

269 0.79, p = 0.43; Control: z = 1.28, p = 0.17). Overall, logistic regression showed that the temperature 

2 2
270 treatment (χ = 49.5, df= 2,23, p < 0.001) and temperature x offspring production (χ = 6.05, df = 2, p 

2
271 = 0.049) were significant, while the main effect of offspring production was not significant (χ = 2.6, 

272 df = 1, p = 0.11). 

273 

274 Discussion 

275 Pangenesis is perhaps Darwin’s most puzzling intellectual contribution. In contrast to his 

276 other ideas, which were usually well supported by data, pangenesis is more similar to a conjecture 
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277 than a formal theory. He speculated that organisms could accelerate adaptation to novel environments 

278 by secreting cell­specific factors (gemmules) that accumulate in the germline and contribute to 

279 heritable trait expression in offspring (Darwin 1868). Although Darwin himself admitted that there 

280 was little evidence to support it, he stuck by his theory because he was convinced that it would one 

281 day find empirical support: “[My] much despised child, ‘pangenesis,’ who I think will some day, 

282 under some better nurse, turn out a fine stripling (Darwin 1887, p. 120).” Darwin expressed his 

283 optimism about the eventual acceptance of pangenesis to many of his colleagues, including Huxley, 

284 Hooker, Gray, Hildebrand, Müller, Ogle, Carus and Weir (Stanford 2006). Even when his cousin, 

285 Francis Galton, completed an extensive set of experiments in rabbits that failed to support it, Charles 

286 Darwin did not refute pangenesis (Clark 1984). 

287 So, why, in the absence of any concrete empirical support, was Darwin such an advocate for 

288 the hypothesis? One explanation is that pangenesis might have reflected Darwin’s intuition about the 

289 evolutionary process. Darwin’s insight was that the material basis of inheritance itself can be open to 

290 direct influences of the environment, independent of its effect on mediating natural selection. Though 

291 pangenesis had the wrong mechanism of inheritance and incorporated molecular details which, in 

292 hindsight, seem fanciful (Charlesworth and Charlesworth 2009), we now know that there are many 

293 phenomena that appear to represent cases of evolvability (for example, Waddington 1953; Rutherford 

294 and Lindquist 1998; Cairns et al. 1998; Hoffmann and Hercus 2000; Rosenburg 2001; West­Eberhard 

295 2003, 2008; Schlichting 2004; Badyaev 2005; Pigliucci et al. 2006; Lucht et al. 2002; Lui 2008). The 

296 problem, however, remains that we do not know whether an organism’s capacity to generate heritable 

297 variation is a common or rare contributor to phenotypic evolution. 

298 This study was designed to examine the relationships between stress, offspring production 

299 and recombination. We did not find the negative between offspring production and recombination in 

300 control conditions, which is the pattern predicted by the theory of Fitness Associated Recombination 

301 (Hadany and Beker 2003; Agrawal et al. 2005). Instead, we found that this relationship is only 

302 apparent under particular forms of acute stress. 
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303 The consequences of acute stress can be immediate and quite short lived. Previous analysis of 

304 Experiment 1 revealed that the bouts of mating only elevate recombination rate for short periods 

305 (Priest et al. 2007). We found a similar pattern in Experiment 2. Recombination rate was elevated 0­3 

306 days after temperature stress had occurred, but not 3­6 days after it had occurred. Interestingly, though 

307 it increased recombination rate, the consequences of cold shock were not associated with offspring 

308 production. Taken together, the results indicate that if these conditions frequently occur in nature, then 

309 it is possible that heat shock and perhaps also mating stress, but not cold shock, might have a general 

310 role in accelerating evolution. 

311 At the outset, the mating stress experiment seemed to be ideal for testing Fitness Associated 

312 Recombination because there was a significant effect of the mating treatment on both recombination 

313 rate and offspring production. However, tests of that relationship are complicated by the nature of 

314 acute stress. Frequent mating has negative long term consequences for offspring production and 

315 survival (Fowler and Partridge 1989; Chapman et al.1995; Priest et al. 2008a), but acute bouts of 

316 mating can also have short term benefits (Wolfner 1997; Priest et al. 2008b; Long et al. 2010). In 

317 Experiment 1, we found that exposure to males actually increased offspring production. Though this 

318 did not prevent us from testing for a negative relationship between offspring production and 

319 recombination, it may have limited our ability to detect such a pattern. Similarly, though heat stress is 

320 thought to have long term fitness costs for fruit flies (Sayeed & Benzer 1996), individual bouts of heat 

321 stress generally do not have fitness consequences (Krebs & Loeschcke 1994). In Experiment 2, there 

322 was no evidence that heat shock or cold shock affected offspring production. The discordance 

323 between acute and chronic stress in both experiments highlights the difficulties in empirically 

324 assessing the relationship between fitness and recombination. 

325 Experiment 1 and 2 could have been greatly influenced by a small collection of females with 

326 low fecundity, which is a problem because recombination rate estimates are less accurate with small 

327 sample sizes (see online supplementary figures). This potential problem was addressed by analyzing 

328 the results with logistic regression, which weights observations by sample size. The robustness of the 

329 results were further checked by repeating the analysis after removing observations based on small 
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330 sample size and repeating the analysis after removing observations that were deemed statistically 

331 influential. Overall, with only one exception (analyses with logistic regression that involved the High 

332 mating treatment), the weighted and non­weighted regressions produced similar findings. 

333 The choice of statistical analysis can influence our ability to detect negative relationships 

334 between fitness and recombination. All weighted regression techniques, including logistic regression 

335 adopted in this study, necessarily penalize observations that are based on small sample sizes. But, 

336 these are precisely the individuals that are expected to be most affected by the treatments if stress­

337 induced recombination is a general mechanism of evolvability. Another statistical issue is that, as we 

338 expected, the stress treatments shifted the range of data points in recombination frequency and 

339 offspring production. This is problematic because it is inappropriate to test for differences in 

340 relationships between treatments when there are non­overlapping data ranges. To compensate for both 

341 of these issues, in future work we will need to increase our sample size and identify ecologically 

342 relevant stresses with large effect sizes. 

343 There are many other possible confounding factors that influence our ability to generalize the 

344 evolutionary significance of these results. The ones we are most concerned about are body size, 

345 genetic variation between Drosophila lines, age, culture conditions, larval interactions during 

346 development, and even, potentially, the barometric pressure in the laboratory at the time heat stress 

347 experiments are conducted (B. Mackowiak and N. K. Priest, personal communication). Though we 

348 attempted to distribute some unaccounted for sources of variation through randomization, we simply 

349 need more studies of this sort, with substantially larger sample sizes, to be confident of the 

350 relationship between stress­induced fitness and heritable variation. 

351 What types of molecules can generate heritable variation? 

352 In his theory of pangenesis, Darwin proposed that an organism’s capacity to adapt to novel 

353 conditions depends on its ability to produce gemmules, factors secreted by cells that accumulate in the 

354 germline and contribute to heritable trait expression in offspring (Darwin 1868). We now know that 

355 gemmules do not exist (Charlesworth and Charlesworth 2009). Nevertheless, it is possible that 
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356 lineages have evolved to express or respond to specific kinds molecules which accelerate adaptation 

357 to novel conditions. Though it should only be considered as speculation, it is useful to consider what 

358 molecules might have a role in evolvability. 

359 One such candidate molecule is the heat­shock protein, Hsp90, which is thought to capacitate 

360 evolutionary change (Rutherford and Lindquist 1998). Other, potential evolvability molecules could 

361 be stress hormones or, for that matter, any agent that induces stress or activates a stress­induced 

362 cascade. For example, it is well known that bacteria such as Escherichia coli can enter a hyper­

363 mutable state via stress­induced genetic pathways in response to stimuli such as nutrient starvation 

364 (reviewed in Tenaillon et al. 2004). 

365 To identify further candidate molecules, we first need to determine the types of stress 

366 organisms typically encounter. J.B.S. Haldane and W. D. Hamilton, in particular, believed that disease 

367 has a profound role in evolution (Haldane 1949; Hamilton 2001). Pathogens could be a key source of 

368 environmental stress that helps to drive the evolution of recombination (see Fischer and Schmid­

369 Hempel 2005). A pair of exciting plant studies recently showed that fungal and viral infections can 

370 trigger a systemic stress response in the plants, which include defence signal transduction as well as 

371 increased recombination in uninfected tissues (Lucht et al. 2002; Kovalchuk et al. 2003). In addition, 

372 since it is quite likely that many small ectotherms such as the fruit fly experience considerable thermal 

373 stress upon exposure to direct sunlight (Heinrich 1993), molecules involved in the temperature stress 

374 pathway, perhaps even heat shock proteins could also be potential candidates. Lastly, as toxic 

375 compounds in male seminal fluid are responsible for mating stress and can stimulate maternal effects 

376 which increase the fitness of daughters (Chapman et al. 1995; Priest et al. 2008b), they may also 

377 stimulate recombination (Priest et al. 2007). 

378 How can we mathematically characterize evolvability? 

379 One of the reasons the concept of evolvability is controversial is that models of evolvability 

380 usually invoke levels of selection above the individual (Pigliucci 2008). Because natural selection 

381 lacks foresight and tends to fix alleles that maximise current fitness regardless of the consequences for 
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382 future evolutionary potential of the population, evolvability is generally not expected to be selected at 

383 the level of individuals. The evolution of sexual reproduction and recombination are particularly 

384 difficult to explain because neither is likely to provide immediate fitness benefits to the individual 

385 expressing it and may even be deleterious for the offspring of the individual if recombination breaks 

386 apart existing beneficial allele combinations. Therefore, it is thought that some form of group or even 

387 higher levels of selection such as species and clade selection might be necessary for the evolution of 

388 evolvability (van Valen 1973; Stanley 1975; Williams 1992; Pigliucci 2008). 

389 In contrast, models of Fitness Associated Recombination (FAR) do not require higher levels 

390 of selection. In models of FAR recombination evolves by the spread of modifier alleles which have no 

391 effect on the fitness of the individuals that bear them (Hadany and Beker 2003, Agrawal et al. 2005). 

392 Instead, the modifiers form associations with loci under positive selection and increase in frequencies 

393 via hitchhiking on the selective sweeps of beneficial alleles in a population. By demonstrating that 

394 rare mutant plastic recombination modifiers can invade populations of uniform recombination 

395 modifiers, FAR models show that short­sighted selection at the level of the gene can favour alleles 

396 which increase levels of genetic variation and thereby enhance population­level evolvability. 

397 FAR can easily evolve in haploid models (Hadany and Beker 2003), but the relationship is 

398 more complex in diploid models (Agrawal et al. 2005). Under normal genetic assumptions, plastic 

399 modifiers of recombination do not evolve because during meiosis the modifier is just as likely to 

400 segregate with low fitness­encoding haplotypes as high fitness­encoding haplotypes (Agrawal et al. 

401 2005). However, the modifier may evolve if it is encoded by gene expression in mothers (Agrawal et 

402 al. 2005). It seems likely that stress­induced recombination could have a central role in models of 

403 recombination in fluctuating environments (spatial heterogeneity and Red­Queen dynamic) or if 

404 fitness and recombination are also associated with negative fitness interaction between loci e.g. 

405 negative epistasis (Otto and Michalakis 1998; Otto and Lenormand 2002; Hadany and Comeron 2008). 

406 There are other possible mechanisms of stress­induced evolvability that need further 

407 mathematical treatment. Stress­induced mutation might be a potent force for generating heritable 
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408 phenotypic variation (Taddei et al. 1997; Rosenburg 2001; Agrawal and Wang 2008). Stress might 

409 also contribute to evolvability through phenotypic accommodation, the first step in the process of 

410 genetic accommodation (West­Eberhard 2003). According to the theory of phenotypic 

411 accommodation, previously hidden genetic variation can become expressed after environmental 

412 stresses overcome the normally canalized developmental process. If novel phenotypic variation is 

413 beneficial in the stressful environment, then selection will favour alleles underlying the selected 

414 phenotype. This results in genetic accommodation which stabilizes the expression of the phenotype, 

415 i.e. constitutive expression independent of stress exposure (West­Eberhard 2003; Moczek 2007). 

416 Though we have emphasized the role of stress, mathematical models of evolvability do not have to 

417 invoke stress. Computational models have been used to describe how genetic modularity contributes 

418 to evolvability (Wagner and Altenberg 1996). Quantitative genetic models of maternal effects and 

419 other indirect genetic effects might also be considered models of evolvability because they allow for 

420 the additive genetic variation in one individual to be positively influenced by trait expression in 

421 another (Kirkpatrick and Lande 1989; Wolf 2003). 

422 Regardless of the mechanism, it is clear that we will only be able to resolve the general 

423 significance of evolvability by testing mathematical models with empirical evidence. This study is, to 

424 the best of our knowledge, the first attempt at empirically elucidating the relationships between fitness 

425 and stress­induced variation for ecologically relevant stresses. Our results did not provide evidence 

426 for a general relationship between offspring productions and recombination as predicted by FAR. 

427 Instead, the expected negative relationship was only found in the heat shock treatment. These results 

428 suggest that certain types stress might have the capacity to stimulate evolutionary change. Thus, while 

429 future studies utilising larger sample sizes are clearly needed, it is possible that part of the intuition 

430 behind Darwin’s theory of pangenesis is correct. 
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568 Figure Legends: 

569 Figure 1. The effect of mating frequency on the average recombination rate in females within the Kr­
570 Bc marker interval of chromosome 2 (Data from Priest et al. 2007). Sample sizes are displayed above 
571 the standard error bars. Mean total offspring production used in calculation of recombination rate 
572 were 70.3 (High), 65.2 (Medium) and 62.5 (Low). Differences between treatments were evaluated 
573 using Tukey’s multiple comparison tests. Significance codes “N.S.” (p>0.5) and “**” (p<0.01). 

574 Figure 2. The effect of mating frequency on the relationships between offspring production and 
575 recombination rate within the Kr­Bc marker interval of chromosome 2 (Data from Priest et al. 2007). 
576 Each data point represents the estimated value of recombination for a single female over a single 
577 three­day (day­13) egg laying period. Sample sizes: 41 (High mating, black square), 43 (Medium 
578 mating, grey diamond) and 42 (Low mating, light grey triangle). Fitted lines are linear regressions on 
579 untransformed data. 

580 Figure 3. The effect of brief and extreme changes in temperature on average recombination rate in 
581 female fruit flies within the nub­pr marker interval of chromosome 2. The flies that survived to day 10 
582 were either exposed to heat shock, cold shock, or sham treatment. The black arrow indicates when the 
583 stress treatment was applied. Differences between treatments were evaluated using Tukey’s multiple 
584 comparison tests on log­transformed data. Significance is indicated by letters above the standard error 
585 bars, with different letters indicating a significant differences at p = 0.05. 

586 Figure 4. The effect of brief and extreme changes in temperature on the relationships between female 
587 recombination rate and female offspring production within the nub­pr marker interval of chromosome 
588 2. Each data point represents the estimated value of recombination for a single female over a single 
589 three­day (day­13) egg laying period. Sample sizes: 7 (Heat shock, black square), 7 (Cold shock, grey 
590 diamond) and 10 (Control, light grey triangle). Fitted lines are linear regressions on untransformed 
591 data. 
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