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Discriminative Learning of

Local Image Descriptors


Matthew Brown, Member, IEEE, Gang Hua, Member, IEEE and Simon Winder, Member, IEEE 

Abstract— In this paper we explore methods for learning 
local image descriptors from training data. We describe a set 
of building blocks for constructing descriptors which can be 
combined together and jointly optimized so as to minimize the 
error of a nearest-neighbour classifier. We consider both linear 
and non-linear transforms with dimensionality reduction, and 
make use of discriminant learning techniques such as Linear 
Discriminant Analysis (LDA) and Powell minimization to solve 
for the parameters. Using these techniques we obtain descriptors 
that exceed state-of-the-art performance with low dimensional
ity. In addition to new experiments and recommendations for 
descriptor learning, we are also making available a new and 
realistic ground truth dataset based on multi-view stereo data. 

Index Terms— image descriptors, local features, discriminative 
learning, SIFT 

L
I. INTRODUCTION 

OCAL feature matching has rapidly emerged to become 
the dominant paradigm for recognition and registration in 

computer vision. In traditional vision tasks such as panoramic 
stitching [1], [2] and structure from motion [3], [4], it has largely 
replaced direct methods due to its speed, robustness, and the 
ability to work without initialization. 

It is also used in many recognition problems. Vector quantizing 
feature descriptors to finite vocabularies and using the analogue 
of “visual words” has enabled visual recognition to scale into 
the millions of images [5], [6]. Also the statistical properties of 
local features and visual words have been exploited by many 
researchers for object class recognition problems [7], [8], [9]. 

However, despite the proliferation of learning techniques that 
are being employed for higher level visual tasks, the majority 
of researchers still rely upon a small selection of hand coded 
feature transforms for the lower level processing. A good survey 
of some of the more common techniques can be found in [10], 
[11]. Some exceptions to this rule and good examples of low-level 
feature learning include the work of Lepetit and Fua [12], Shotton 
et al [13] and Babenko [14]. Lepetit and Fua [12] showed that 
randomized trees based on simple pixel differences could be an 
effective low level operation. This idea was extended by Shotton 
et al [13], who demonstrated a compelling scheme for object 
class recognition. Babenko et al. [14] showed that boosting could 
be applied to learn point based feature matching representations 
from a large training dataset. Another example of learning low 
level image operations is the Berkeley edge detector [15], which, 
rather than being optimized for recognition performance per se, 
is designed to mimic human edge labellings. 
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Progress in image feature matching improved rapidly following 
Schmid and Mohr’s work on indexing using grey-value invariants 
[16]. This represented a step forward over previous approaches to 
invariant recognition that had largely been based on geometrical 
entities such as edges and contours [17]. Another landmark paper 
in the area was the work of Lowe [18], [19] who demonstrated 
the importance of scale invariance and a non-linear, edge-based 
descriptor transformation inspired by the ideas of Hubel and 
Wiesel [20]. Since then small improvements have resulted, mainly 
due to improved spatial pooling arrangements that are more 
closely linked to the errors present in the interest point detection 
process [11], [21], [22]. 

One criticism of the local image descriptor designs described 
above has been the high dimensionality of descriptors (e.g., 128 
dimensions for SIFT). Dimensionality reduction techniques can 
help here, and have also been used to design features as well. 
A first attempt was PCA-SIFT [23], which used the principal 
components of gradient patches to form local descriptors. Whilst 
this provides some benefits in reducing noise in the descriptors, a 
better approach is to find projections that actively discriminate 
between classes [24], instead of just modelling the total data 
variance. Such techniques have been extensively studied in the 
face recognition literature [25], [26], [27]. 

Our work attempts to improve on the state of the art in local de
scriptor matching by learning optimal low-level image operations 
using a large and realistic training dataset. In contrast to previous 
approaches that have used only planar transformations [11] or 
jittered patches [12] we use actual 3D correspondences obtained 
via a stereo depth map. This allows us to design descriptors that 
are optimized for the non-planar transformations and illumination 
changes that result from viewing a truly 3D scene. We note that 
Moreels and Perona have also proposed a technique for evaluating 
3D feature matches based on trifocal constraints [28]. Our work 
extends this approach by giving us the ability to generate new 
correspondences at arbitrary locations and also to reason about 
visibility. 

To generate correspondences, we leverage recent improvements 
in multi-view stereo matching [29], [30]. In contrast to previous 
approaches [31], this allows us to generate correspondences 
for arbitrary interest points and to model true interest point 
noise. We explore two methodologies for feature learning. The 
first uses parametric models inspired by previous successful 
feature designs, and Powell minimization [32] to solve for the 
parameters. The second uses non-parametric dimensionality re
duction techniques common in the face recognition literature. 
Our training and test datasets containing approximately 2.5 ×
106 labelled image patches are being made available online at 
http://www.cs.ubc.ca/∼mbrown/patchdata/patchdata.html. 

A. Contributions 

The main contributions of this work are as follows: 

http:matthew.brown@epfl.ch
http:ganghua@gmail.com
mailto:swinder@microsoft.com
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2 

1) We present a new ground-truth dataset for descriptor learn
ing, making use of multi-view stereo from large 3D recon
structions. This allows us to optimize descriptors for real 
interest point detections. We will be making this dataset 
available to the community. 

2) We extend previous work in parametric and non-parametric 
descriptor learning, and provide recommendations for future 
designs. 

3) We conduct several new experiments, including reducing 
dynamic range to minimize the number of bits used by our 
feature descriptors (important for scalability) and optimiz
ing descriptors for different types of interest point (e.g., 
Harris and DOG). 

II. GROUND TRUTH DATASET 

To generate ground truth data for our descriptor matching 
problems, we make use of recent advances in multi-view image 
recognition and correspondence. Recent improvements in wide-
baseline matching and structure from motion have made it possi
ble to find matches and compute cameras for datasets containing 
thousands of images, with greatly varying pose and illumination 
conditions [33], [34]. Furthermore, advances in multi-view stereo 
have made it possible to reconstruct dense surface models for 
such images despite the greatly varying imaging conditions [29], 
[30]. 

We view these 3D reconstructions as a possible source of train
ing data for object recognition problems. Previous work [31] used 
re-projections of 3D point clouds to establish correspondences 
between images, adding synthetic jitter to emulate the noise 
introduced in the interest point detection process. This approach, 
whilst being straightforward to implement, has the disadvantage 
of allowing training data to be collected only at discrete locations, 
and fails to model true interest point noise. 

In this work, we use dense surface models obtained via stereo 
matching to establish correspondences between images. Note 
that because of the epipolar and multi-view constraints, stereo 
matching is a much easier problem than unconstrained 2D feature 
matching. We can thus generate correspondences via local stereo 
matching and multi-view consistency constraints that will be very 
challenging for wide baseline feature matching methods to match. 
We can also learn descriptors that are optimized for actual (and 
arbitrary) interest point detections, finding corresponding points 
by transferring their positions via the depth maps. 

We make use of camera calibration information and dense 
multi-view stereo data for three datasets containing over 1000 
images provided by [34] and [30]. In a similar spirit to [31], we 
extract patches around each interest point and store them in a large 
dataset on disk for efficient processing and learning. We detect 
Difference of Gaussian (DOG) interest points with associated 
position, scale and orientation in the manner of [19] (we also 
experiment with multi-scale Harris corners in Section VI-E). This 
results in around 1000 interest points per image. 

For each interest point detected, we compute the position, 
scale and orientation of the local region when mapped into each 
neighbouring image. These parameters are solved for by a least-
squares procedure. We do this by creating a uniform, dense point 
sampling (once per pixel) within the feature footprint in the first 
image. These points are then transferred via the depth map into the 
second image. In general the sampled points will not undergo an 
exact similarity transform, due to depth variations and perspective 

effects, so we estimate the best translation, rotation and scale 
between the corresponding image regions by least squares. 

First, we check to see if the interest point is visible in the 
neighbouring image using the visibility maps supplied by [30] (a 
visibility map is defined over each neighbouring image, and each 
pixel has the label 1 if the corresponding point in the reference 
image is visible, and 0 otherwise). We then declare interest points 
that are detected within 5 pixels of position, 0.25 octaves of scale 
and π/8 radians in angle to be “matches”. Those falling outside 
2× these ranges are defined to be “non-matches”. Interest point 
detections that are in between these ranges are deemed to be 
ambiguous and not used in learning or testing. We chose fairly 
small ranges for position, orientation and scale tolerance to suit 
our intended applications in automatic stitching and structure from 
motion. However, for category recognition problems one might 
choose larger ranges that should result in more position invariance 
but less discriminative representations. See Figures 1 and 2 for 
examples of correspondences and image patches generated by this 
process. 

III. DESCRIPTOR ALGORITHM 

In previous work [31] we have noted that many existing 
descriptors described in the literature, while appearing quite 
different, can be constructed using a common modular framework 
consisting of processing stages similar to Figure 3. At each stage, 
different candidate block algorithms (described below) may be 
swapped in and out to produce a new overall descriptor. In 
addition, some candidates have free parameters that we can adjust 
in order to maximize the performance of the descriptor as a whole. 
Certain of these algorithmic combinations give rise to published 
descriptors but many are untested. Using this structure allows us 
to examine the contribution of each building block in detail and 
obtain a better covering of the space of possible algorithms. 

Our approach to learning descriptors is therefore to put to
gether a combination of building blocks and then optimize the 
parameters of these blocks using learning to obtain the best 
match/no-match classification performance. This contrasts with 
prior attempts to hand tune descriptor parameters and helps to 
put each algorithm on the same footing so that we can obtain 
and compare best performances. 

Figure 3 shows the overall learning framework for building 
robust local image descriptors. The input is a set of image patches, 
which may be extracted from the neighbourhood of any interest 
point detector. The processing stages consist of the following: 

G-block Gaussian smoothing is applied to the input patch. 
T-blocks We perform a range of non-linear transformations 

to the smoothed patch. These include operations such as 
angle-quantized gradients and rectified steerable filters, 
and typically resemble the “simple-cell” stage in human 
visual processing. 

S-blocks/E-blocks We perform spatial pooling of the 
above filter responses. S-blocks use parametrized pool
ing regions, E-blocks are non-parametric. This stage 
resembles the “complex-cell” operations in visual pro
cessing. 

N-blocks We normalize the output patch to account for 
photometric variations. This stage may optionally be 
followed by another E-block, to reduce the number of 
dimensions at the output. 
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Fig. 1. Generating ground truth correspondences. To generate the ground truth image correspondences needed as input to our algorithms, we use multi-view 
stereo data provided by Goesele et al [30]. Interest points are detected in the reference image, and transferred to each neighbouring image via the depth map. 
If the projected point is visible, we look for interest points within a specified range of position, orientation and scale, and declare these to be matches. Points 
lying outside of twice this range are declared to be non-matches. This is the basic input to our learning algorithms. Left to right: reference image, neighbour 
image, reference matches, neighbour matches, depth map, visibility map. 

In general, the T-block stage extracts useful features from the data 
like edge or local frequency information, and the S-block stage 
pools these features locally to make the representation insensitive 
to positional shift. These stages are similar to the simple/complex 
cells in the human visual cortex[36]. It’s important that the T-
block stage introduces some non-linearity, otherwise the smooth
ing step amounts to simply blurring the image. Also, the N-
block normalization is critical as many factors such as lighting, 
reflectance and camera response have a large effect on the actual 
pixel values. 

These processing stages have been combined into 3 different 
pipelines, as shown in the figure. Each stage has trainable 
parameters, which are learnt using our ground truth dataset of 
match/non-match pairs. In the remainder of this section, we will 
take a more detailed look at the parametrization of each of these 
building blocks. 

A. Pre-smoothing (G-block) 

We smooth the image pixels using a Gaussian kernel of 
standard deviation σs as a pre-processing stage to allow the 
descriptor to adapt to an appropriate scale relative to the interest 
point scale. This stage is optional and can be included in the 
T-block processing (below) if desired. 

B. Transformation (T-block) 

The transformation block maps the smoothed input patch onto 
a grid with one length k vector with positive elements per 
output sample. In this paper, the output grid was given the same 
resolution as the input patch, i.e., 64×64. Various forms of linear 

or non-linear transformations or classifiers are possible and have 
been described previously [31]. In this paper we restrict our choice 
to the following T-blocks which were found to perform well: 

[T1] We evaluate the gradient vector at each sample and 
recover its magnitude m and orientation θ. We then quantize the 
orientation to k directions and construct a vector of length k such 
that m is linearly allocated to the two circularly adjacent vector 
elements i and i + 1 representing θi < θ < θi+1 according to the 
proximity to these quantization centres. All other elements are 
zero. This process is equivalent to the orientation binning used in 
SIFT and GLOH[11]. For the T1a-variant we use k = 4 directions 
and for the T1b-variant we use k = 8 directions. 

[T2] We evaluate the gradient vector at each sample and rectify 
its x and y components to produce a vector of length 4 for the 
T2a-variant: {|∇x|−∇x; |∇x|+∇x; |∇y|−∇y ; |∇y|+∇y }. This 
provides a natural sine-weighted quantization of orientation into 
4 directions. Alternatively for T2b, we extend this to 8 directions 
by concatenating an additional length 4 vector using ∇45 which 
is the gradient vector rotated through 45◦ . 

[T3] We apply steerable filters at each sample location using n 

orientations and compute the responses from quadrature pairs [37] 
with rectification to give a length k = 4n vector in a similar way 
to the gradient computation described above so that the positive 
and negative parts of the quadrature filter responses are placed in 
different vector elements. We tried two kinds of steerable filters: 
those based on a second derivatives provide broader scale and 
orientation tuning while fourth order filters give narrow scale and 
orientation tuning that can discriminate multiple orientations at 
each location in the input patch. These filters were implemented 
using the example coefficients given in [37]. The variants were 
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Fig. 2. Patch correspondences from the Liberty dataset. Top rows: reference image and depth map (left column), generated point correspondences (other 
columns). Note the wide variation in viewpoints and scales. Bottom rows: patches extracted from this dataset. Patches are considered to be “matching” if the 
detected interest points are within 5 pixels in position, 0.25 octaves of scale and π/8 radians in angle. 

Fig. 3. Schematic showing the learning algorithms explored for building local image descriptors. Three overall pipelines have been explored: (1) uses 
parametric parameter optimization, (‘S’ blocks) using Powell Minimization as in [31]; (2) uses optimal linear projections (‘E’ blocks), found via LDA as 
in [35]; and a third approach (3) combines a stage of (1) followed by the linear projection step in (2). 



T3g: 2nd order, 4 orientations; T3h: 4th order 4 orientations; T3i: 
2nd order, 8 orientations; and T3j: 4th order, 8 orientations. 

[T4] We compute two isotropic Difference of Gaussians (DOG) 
responses with different centre scales at each location by con
volving the already smoothed patch with three new Gaussians 
(one additional larger centre and two surrounds). The two linear 
DOG filter outputs are then used to generate a length 4 vector 
by rectifying their responses into positive and negative parts as 
described above for gradient vectors. We set the ratio between the 
centre and surround space constants to 1.4. The pre-smoothing 
stage sets the size of the first DOG centre and so we use one 
additional parameter to set the relative size of the second DOG 
centre. 

S1: SIFT grid with S2:  GLOH polar grid S3: 3x3 grid with S4: 17 polar samples 
bilinear weights with bilinear radial Gaussian weights with Gaussian weights 

and angular weights 

Fig. 4. Examples of the different spatial summation blocks. For S3 and S4, 
the positions of the samples and the sizes of the Gaussian summation zones 
were parametrized in a symmetric manner. 

C. Spatial Pooling (S-block) 

Many descriptor algorithms incorporate some form of his
togramming. In our pooling stage we spatially accumulate 
weighted vectors from the previous stage to give N linearly 
summed vectors of length k and these are concatenated to form 
a descriptor of kN dimensions where N ∈ {3, 9, 16, 17, 25}. We 
now describe the different spatial arrangements of pooling and 
the different forms of weighting: 

[S1] We used a square grid of pooling centres (see Figure 4), 
with the overall footprint size of this grid being a parameter. The 
vectors from the previous stage were summed together spatially 
by bilinearly weighting them according to their distance from the 
pooling centres as in the SIFT descriptor [19] so that the width of 
the bilinear function is dictated by the output sample spacing. We 
use sub-pixel interpolation throughout as this allows continuous 
control over the size of the descriptor grid. Note that all these 
summation operations are performed independently for each of 
the k vector elements. 

[S2] We used the spatial histogramming scheme of the GLOH 
descriptor introduced by Mikolajczyk and Schmid [11]. This uses 
a polar arrangement of summing regions as shown in Figure 4. 
We used three variants of this arrangement with 3, 9 and 17 
regions, depending on the number of angular segments in the 
outer two rings (zero, 4, or 8). The radii of the centres of the 
middle and outer regions and the outer edge of the outer region 
were parameters that were available for learning. Input vectors 
are bilinearly weighted in polar coordinates so that each vector 
contributes to multiple regions. As a last step, each of the final 
vectors from the N pooling regions is normalized by the area of 
its summation region. 

[S3] We used normalized Gaussian weighting functions to sum 
input vectors over local pooling regions arranged on a 3×3, 4×4 

or 5×5 grid. The sizes of each Gaussian and the positions of the 
grid samples were parameters that could be learned. Figure 4 
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displays the symmetric 3 3 arrangement with two position ×
parameters and three Gaussian widths. 

[S4] We tried the same approach as S3 but instead used a polar 
arrangement of Gaussian pooling regions with 17 or 25 sample 
centres. Parameters were used to specify the ring radii and the size 
of the Gaussian kernel associated with all samples in each ring 
(Figure 4). The rotational phase angle of the spatial positioning of 
middle ring samples was also a parameter that could be learned. 
This configuration was introduced in [31] and named the DAISY 
descriptor by [38]. 

D. Embedding (E-block) 

Embedding methods are prevalent in the face recognition 
literature [24], [25], and have been used by some authors for 
building local image descriptors [23], [35], [39]. Discriminative 
linear embedding can identify more robust image descriptors, 
whilst simultaneously reducing the number of dimensions. We 
summarize the different embedding methods we have used for 
E-blocks below (see also the objective functions in Section V). 

[E1] We perform principal component analysis (PCA) on the 
input vectors. This is a non-discriminative technique and is used 
mostly for comparison purposes. 

[E2] We find projections that minimize the ratio of in-class 
variance for match pairs to the variance of all match pairs. This 
is similar to Locality Preserving Projections (LPP) [25]. 

[E4] We find projections that minimize the ratio of variance 
between matched and non-matched pairs. This is similar to Local 
Discriminative Embedding [26]. 

[E6] We find projections that minimize the ratio of in-class 
variance for match pairs to the total data variance. We call 
this generalized local discriminative embedding (GLDE). If the 
number of classes is large, this objective function will be similar 
to [E2] and [E4] [35]. 

[E3], [E5] and [E7] are the same as [E2], [E4] and [E6] with 
the addition of orthogonality constraints which ensure that each 
of the projection directions are mutually orthogonal [40], [27], 
[41]. 

E. Post Normalization (N-block) 

We use normalization to remove the descriptor dependency on 
image contrast and to introduce robustness. 

For parametric descriptors, we employ the SIFT style nor
malization approach which involves range clipping descriptor 
elements. Our slightly modified algorithm consists of four steps: 
(1) Normalize to a unit vector, (2) clip all the elements of 
the vector that are above a threshold κ by computing vi 

′ = 

min(vi, κ), (3) re-normalize to a unit vector, and (4) repeat from 
step 2 until convergence or a maximum number of iterations 
has been reached. This procedure has the effect of reducing the 
dynamic range of the descriptor and creating a robust function 
for matching. The threshold κ was available for learning. 

In the case of the non-parametric descriptors of Figure 3(2), 
we normalize the descriptor to a unit vector. 

IV. LEARNING PARAMETRIC DESCRIPTORS 

This section corresponds to Pipeline 1 in figure 3. The input 
to the modular descriptor is a 64 × 64 image patch and the final 
output is a descriptor vector of D = kN numbers where k is the 
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T-block dimension and N is the number of S-block summation 
regions. 

We evaluate descriptor performance and carry out learning 
using our ground-truth data sets consisting of match and non-
match pairs. For each pair we compute the Euclidean distance 
between descriptor vectors and form two histograms of this value 
for all true matching and non-matching cases in the data set. 
A good descriptor minimizes the amount of overlap of these 
histograms. We integrate the two histograms to obtain an ROC 
curve which plots correctly detected matches as a fraction of all 
true matches against incorrectly detected matches as a fraction 
of all true non-matches. We compute the area under the ROC 
curve as a final score for descriptor performance and aim to 
maximize this value. Other choices for quality measures are 
possible depending on the application but we choose ROC area 
as a robust and fairly generic measure. In terms of reporting our 
results on the test set, however, we choose to indicate performance 
in terms of the percentage of false matches present when 95% of 
all correct matches are detected. 

We jointly optimized parameter values of G, T, S, and N-blocks 
by using Powell’s multidimensional direction set method [32] to 
maximize the ROC area. We initialized the optimization with 
reasonable choices of parameters. 

Each ROC area measure was evaluated using one run over the 
training data set. After each run we updated the parameters and 
repeated the evaluation until the change in ROC area was small. 
In order to avoid over-fitting we used a careful parametrization of 
the descriptors using as few parameters as possible (typically 5–11 
depending on descriptor type). Once we had determined optimal 
parameters, we re-ran the evaluation over our testing data set to 
obtain the final ROC curves and error rates. 

V. LEARNING NON-PARAMETRIC DESCRIPTORS 

This section corresponds to Pipeline 2 in figure 3. In this 
section, we attempt to learn the spatial pooling component of 
the descriptor pipeline without committing to any particular 
parametrization. To do this, we make use of linear embedding 
techniques as described in Section III-D. Instead of using nu
merical gradient descent methods such as Powell minimization to 
optimize parametrized descriptors, the embedding methods solve 
directly for a set of optimal linear projections. The projected 
output vector in this embedding space becomes the final image 
descriptor. Although Pipeline 2 also involves parameters for 
T and N-blocks, these are learned independently using Powell 
Minimization as described above. We leave the joint optimization 
of these parameters for future work. 

The input to the embedding learning algorithms is a set of 
match/non-match labelled image pairs that have been processed 
by different processing units (T-blocks), i.e., 

S = {xi = T (pi),xj = T (pj ), lij }. (1) 

In Equation 1, pk is an input image patch, T ( ) represents a ·
composite set of different image processing units presented in 
Section III, xk is the output vector of T ( ), and lij takes binary ·
value to indicate if patch pi and pj are match (lij = 1) or non-
match (lij = 0). We now present the mathematical formulation 
of the different embedding learning algorithms. 

A. Objective functions of different embedding methods. 

Our E2 block attempts to maximize the ratio of the projected 
variance of all xi in the match patch pair set to that of the 
difference vectors xi − xj . Letting w be the projection vector, 
we can write this mathematically as follows: 

“ ”2 
P T 

lij =1 w xi 
J1(w) = 

P

` ´2 . (2) 
wT (xi − xj )lij =1 

The intuition for this objective function is that in projection space, 
we try to minimize the distance between the match pairs while 
at the same time keeping the overall projected variance of all 
vectors in the match pair set as big as possible. This is similar to 
the Laplacian eigen-map adopted in previous works such as the 
locality preserving projections [25]. 

Alternatively, motivated by local discriminative embed
ding [26], the E4 block optimizes the following objective func
tion: 

“ ”2 
P 

lij =0 
T (xi − xj )w 

J2(w) = 
P

` 

. (3) 
wT (xi − xj ) 

´2 
lij =1 

By maximizing J2(w), we are seeking the embedding space under 
which the distances between match pairs are minimized and the 
distances between non-match pairs are maximized. 

A third objective function (E6 blocks) unifies the above two 
objective functions under certain conditions [35]: 

“ ”2 
P T 

xi∈S w xi 
J3(w) = 

P

` ´2 . (4) 
lij =1 wT (xi − xj ) 

All three objective functions J1, J2, and J3 can be written in 
matrix form as 

Ji(w) = 
w T Aiw 

. (5) 
wT Bw 

where 

X X 

A1 = ( lij )xix 
T (6) i 

S j 
X 

A2 = (xi − xj )(xi − xj )
T (7) 

lij =0 
X 

A3 = xix 
T
i (8) 

xi∈S 
X 

B = (xi − xj )(xi − xj )
T . (9) 

lij =1 

In the following, for ease of presentation, we use A to represent 
any of A1, A2 and A3. Setting the derivative of our objective 
function (Equation 5) to zero gives 

∂J 
=

2Aw(w T Bw) − 2(w T Aw)Bw 
= 0 (10) 

∂w (wT Bw)2 

which implies that the optimal w is given by the solution to a 
generalized eigenvalue problem 

Aw = λBw (11) 

where λ = w T Aw/w T Bw. Equation 11 is solved using standard 
techniques, and the first K generalized eigenvectors are chosen 
to form the embedding space. 
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E3, E5 and E7 blocks place orthogonality constraints on the 
corresponding E2, E4 and E6 blocks, respectively. The mathe
matical formulation is quite straightforward: Suppose we have 
already obtained k− 1 orthogonal projections for the embedding, 
i.e., 

Wk = [w1,w2, . . . , wk−1], (12) 

to pursue the kth vector, we solve the following optimization 
problem: 

w T Aw 
arg maxw (13) 

wT Bw 

s.t. w 
T 
w1 = 0 (14) 

w 
T 
w2 = 0 (15) 

. . . (16) 

w 
T 
wk−1 = 0. (17) 

By formulating the Lagrangian, it can be shown that the solution 
to this problem can be found by solving the following eigenvalue 
problem [27], [41]: 

ˆ −1 −1 T −1
Mw = ((I − B WkQ Wk )B A)w = λw, (18) k 

where 
Qk = Wk

T 
B

−1
Wk. (19) 

The optimal wk is then the eigenvector associated with the largest 
eigenvalue in Equation 18. We omit the details of the derivation 
of the solution here but refer readers to [27], [41]. 

B. Power regularization 

A common problem with the linear discriminative formulation 
in Equation 5 is the issue of over-fitting. This occurs because 
projections w which are essentially noise can appear discrimina
tive in the absence of sufficient data. This issue is exacerbated 
by the high dimensional input vectors used in our experiments 
(typically several hundred to several thousands of dimensions). 
To mitigate the problem, we adopt a power regularization cost 
function to force the discriminative projections to lie in the signal 
subspace. To do this, we first perform eigenvalue decomposition 
for the B matrix in Equation 5, i.e., B = UΛUT . Here Λ is 
a diagonal matrix with Λii = λi being the ith eigenvalue of B 

and λ1 ≥ λ2 ≥ ... ≥ λn. We then regularize Λ by clipping its 
diagonal elements against a minimal value λr , where 

′ λi = max(λi, λr). (20) 
P 

We choose r such that i≥r λi accounts for a portion α of the 
total power, i.e., 

Pn λi 
r = min s.t. P 

i=k ≤ α. (21) 
k 

n
i=1 λi 

Figure 5 shows the top 10 projections learnt from a set of 
match/non-match image patches with different power regulariza
tion rate α. The only pre-processing applied to these patches 
was bias-gain normalization. As we can clearly observe, as α 

decreases from 0.2 to 0 (top to bottom), the projections become 
increasingly noisy. 

Fig. 5. The first 10 projections learned from normalized image patches 
in a match/non-match image patch set using J2(w) with different power 
regularization rate [35]. From top to bottom, α takes the value of 0.2, 0.1, 
0.02 and 0, respectively. Notice that the projections become progressively 
noisier as the power regularization is reduced. 

VI. EXPERIMENTS 

We performed experiments using the parametric and non
parametric descriptor formulations described above, using our 
new test dataset. The following results all apply to Difference 
of Gaussian (DOG) interest points. For experiments using Harris 
corners, see Section VI-E. In each case we have compared to 
Lowe’s original implementation of SIFT. Since SIFT performs 
descriptor sampling at a certain scale relative to the Difference 
of Gaussian peak, we have optimized over this scaling parameter 
to ensure that a fair comparison is made (see Figure 6). 

For the results presented in this paper, we used three test 
sets (Yosemite, Notre Dame, and Liberty) which were obtained 
by extracting scale and orientation normalized 64 64 patches ×
around DOG interest points as described in Section II. Typically 
four training and test set combinations were used: Yosemite– 
Notre Dame, Yosemite–Liberty, Notre Dame–Yosemite, and Notre 
Dame–Liberty, where the first of the pair is the training set. In 
addition a “synthetic” training set was obtained which incorpo
rated artificial geometric jitter as described in [31]. Training sets 
typically contained from 10,000 to 500,000 patch pairs depending 
on the application while test sets always contained 100,000 pairs. 
The training and test sets contained 50% match pairs, and 50% 
non-match pairs. During training and testing, we recomputed all 
match/non-match descriptor distances as the descriptor transfor
mation varied, sweeping a threshold on the descriptor distance to 
generate an ROC curve. Note that using predefined match/non
match pairs eliminates the need to recompute nearest neighbours 
in the 100,000 element test set, which would be computationally 
very demanding. In addition to presenting ROC curves, we give 
many results in terms of the 95% error rate which is the percent 
of incorrect matches obtained when 95% of the true matches are 
found (Section IV). 

A. Parametric Descriptors 

We obtained very good results using combinations of the para
metric descriptor blocks of Section III, exceeding the performance 
of SIFT by around 1/3 in terms of 95% error rates. We chose to 
focus specifically on four combinations that were shown to have 
merit in [31]. These included a combination of angle quantized 
gradients (T1) or steerable filters (T3) with log-polar (S2) or 
Gaussian (S4) summation regions. Other combinations with T2, 
T4, S1, S3 performed less well. Example ROC curves are shown 
in Figure 7 and 8, and all error rates are given in Table I (all tables 
show the 95% error rate with the optimal number of dimensions 
given in parentheses). 
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Fig. 6. Results for Lowe-SIFT descriptors: (a) shows the solution for the optimal SIFT descriptor footprint using the Liberty dataset. Note that the performance 
is quite sensitive to this parameter, so it must be set carefully. (b) shows ROC curves when using this optimal patch scaling and the Yosemite dataset for 
testing. We also tried using PCA and GLDE on the SIFT descriptors (shown in the other curves). GLDE gave only small improvement in performance (1% 
error at 95% true positives) to Lowe’s algorithm, but substantially reduced the number of dimensions from 128 to 19. PCA also gives a large dimensionality 
reduction for only a small drop in performance. 
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 34  0.82

 32  0.8

log2 scale Incorrect Match Fraction 

S3-9 (3x3) S3-16 (4x4) S3-25 (5x5) S4-17 S4-25 

Fig. 9. Optimal summation regions are foveated and this is despite 
initialization with a rectangular arrangement in the case of S3. 

On three of the four datasets, the best performance was 
achieved by the T3h-S4-25 combination, which is a combination 
of steerable filters with 25 Gaussian summation regions arranged 
in concentric rings. We found that when optimized over our 
training dataset, these summation regions tended to converge to a 
foveated shape, with larger and more widely space summation 
regions further from the centre (see Figure 9). This structure 
is reminiscent of the geometric blur work of [22], and similar 
arrangements were independently suggested and named DAISY 
descriptors by [38]. Rectangular arrays of summation regions 
were found to have lower performance and their results are not 
included here. 

Note that the performance of these parametric descriptors is 
uniformly strong in comparison to SIFT, but the downside of this 
method is that the number of dimensions is very large (typically 
several hundred). 

B. Non-Parametric Descriptors 

The ROC curves for training on Yosemite and testing on Notre 
Dame using Non-Parametric descriptors are shown in Figure 10. 
To summarize the remaining results, we have created tables 
showing the 95% error rates only. 

Table II shows the best results for each T-block using the 
scheme of Figure 3(2) over all subspace methods that we tried 
(PCA, LDE, LPP, GLDE and orthogonal variants). Also shown 
are results for applying subspace methods to raw bias-gain 
normalized pixel patches and gain normalized gradients. We see 
that the T3 (steerable filter) block performs the best, followed 
by T1 (angle-quantized gradients) and T2 (rectified gradients). In 

half of the cases the combination of T3 and E-block learning beat 
SIFT. Table III shows the best results for each E-block over all T-
block filters. LPP is the clear winner when trained on Yosemite. 
For Notre Dame the case is not so clear, and no one method 
performs consistently well. The best results for each subspace 
method are almost always using T3. 

To investigate sensitivity to training data, we tested on the 
Liberty set using training on both Notre Dame and Yosemite. 
For the non-parametric descriptor learning it seems that the 
Yosemite dataset was best for training, whereas for the parametric 
descriptors the performance was comparable (within 1-2%) for 
both datasets. In general the results from the E-block learning 
are less strong and more variable than the parametric S-block 
techniques. Certain combinations, such as T3/LPP were able to 
generate SIFT beating performance (e.g. 19.29% vs 26.10% on 
the Yosemite/Notre Dame test case), but many other combinations 
did not. The principal advantage of these techniques is that di
mensionality reduction is simultaneously achieved, so the number 
of dimensions is typically low (e.g. 32 dimensions in the case of 
T3/LPP). 

C. Dimension reduced parametric descriptors 

Parametric descriptor learning yielded excellent performance 
with high dimensionality, whereas the non-parametric learning 
gave us a very small number of dimensions but with a slightly 
inferior performance. Thus it seems natural to combine these 
approaches. We did this by running a stage of non-parametric 
dimensionality reduction after a stage of parametric learning. This 
corresponds to Pipeline 3 in Figure 3. Note that we did not attempt 
to jointly optimize for the embedding and parametric descriptors, 
although this could be a good direction for future work. The 
results are shown in Figure 11 and Table IV. This approach gave 
us the overall best results, with typically 1-2% less error than 
parametric S-blocks alone, and far fewer dimensions (∼30-40). 
Although LDA gave much better results than PCA when applied 
to raw pixel data [35], running PCA on the outputs of S-block 
learning gave equal or better results to LDA. It may be that LDA is 
slightly overfitting in cases where a discriminative representation 
has already been found. For half the datasets, the best results were 
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Fig. 7. ROC curves for parametrized descriptors. Training on Notre Dame Fig. 8. ROC curves for parametrized descriptors. Training on Notre Dame 
and testing on Yosemite. and testing on Liberty. 

Train Test T1c-S2-17 T3h-S4-25 T3h-S2-17 T3j-S2-17 SIFT 
Yosemite 
Yosemite 
Notre Dame 
Notre Dame 

Notre Dame 
Liberty 
Yosemite 
Liberty 

17.90(272) 

23.00(272) 

18.30(272) 

22.76(272) 

14.43(400) 

20.48(400) 

16.35(400) 

21.85(400) 

15.44(272) 

22.00(272) 

16.56(272) 

22.05(272) 

15.87(544) 

22.28(544) 

15.91(544) 

21.98(544) 

26.10(128) 

35.09(128) 

28.50(128) 

35.09(128) 

Synthetic Liberty 29.50(272) 24.25(400) 25.74(272) 32.36(544) 35.09(128) 

TABLE I


PARAMETRIC DESCRIPTOR RESULTS. 95% ERROR RATES ARE SHOWN, WITH THE NUMBER OF DIMENSIONS IN PARENTHESIS.


normalized normalized 
Training Set Test Set pixels gradients T1 T2 T3 T4 SIFT 
Yosemite Notre Dame 37.17(14) 32.09(15) 25.68(24) 27.78(33) 19.29(32) 35.37(28) 26.10(128) 

Yosemite Liberty 56.33(14) 51.63(15) 38.55(24) 41.10(20) 31.10(32) 47.74(28) 35.09(128) 

Notre Dame Yosemite 43.37(27) 38.36(19) 33.59(21) 33.99(40) 31.27(19) 42.39(27) 28.50(128) 

Notre Dame Liberty 55.70(27) 52.62(17) 41.37(24) 43.80(15) 36.54(19) 50.63(27) 35.09(128) 

Synthetic Notre Dame 37.85(15) 39.15(24) 24.47(32) 24.47(32) 22.94(30) 34.41(28) 26.10(128) 

TABLE II


BEST T-BLOCK RESULTS OVER ALL SUBSPACE METHODS.


Training Test PCA GLDE GOLDE LDE OLDE LPP OLPP SIFT 
Yosemite 
Yosemite 
Notre D. 
Notre D. 

Notre D. 
Liberty 
Yosemite 
Liberty 

40.36(29) 

53.20(29) 

45.43(61) 

51.63(97) 

24.20(28) 

35.76(28) 

32.53(45) 

41.66(45) 

26.24(31) 

43.35(31) 

34.61(25) 

40.75(18) 

24.65(31) 

34.97(31) 

31.27(19) 

36.54(19) 

25.01(27) 

40.15(27) 

33.38(20) 

39.95(20) 

19.29(32) 

31.10(32) 

33.19(46) 

42.68(46) 

23.71(31) 

39.46(31) 

35.04(17) 

41.46(17) 

26.10(128) 

35.09(128) 

28.50(128) 

35.09(128) 

Synthetic Notre D. 43.78(66) 24.04(29) 26.25(29) 24.86(26) 26.10(33) 22.94(30) 26.05(34) 26.10(128) 

TABLE III


BEST SUBSPACE METHOD OVER ALL T-BLOCKS.


obtained using PCA on T3h-S4-25 (rectified steerable filters with 
DAISY-like Gaussian summation regions) and for the other half, 
the best results were from T3j-S2-17 plus PCA (rectified steerable 
filters and log-polar GLOH-like summation regions). The best 
results here gave less than half the error rate of SIFT, using about 
1/4 of the number of dimensions. See “best of the best” table V. 

To aid in the dissemination of these results, we have cre
ated a document detailing parameter settings for the most 
successful DAISY configurations, as well as details of the 
recognition performance/computation time tradeoffs. This can 
be found on the same website as our patch datasets: 

http://www.cs.ubc.ca/∼mbrown/patchdata/tutorial.pdf. 
We also used this approach to perform dimensionality reduction 

on SIFT itself, the results are shown in Figure 6(b). We were able 
to reduce the number of dimensions significantly (to around 20), 
but the matching performance of the LDA reduced SIFT descrip
tors was only slightly better than the original SIFT descriptors 
(∼1% error). 

D. Comparisons with Synthetic Interest Point Noise 

Previous work [31], [12] used synthetic jitter applied to image 
patches in lieu of the position errors introduced in interest point 

http://www.cs.ubc.ca/�mbrown/patchdata/tutorial.pdf
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Fig. 10. Testing of linear discriminant descriptors trained on Yosemite and tested on Notre Dame. The optimal number of dimensions and the associated 
95% error rate is given in parentheses. NSSD: Normalized sum squared difference computed on the output of the T-block directly without embedding. 

Training Test PCA GLDE GOLDE LDE OLDE LPP OLPP SIFT 
Yosemite 
Yosemite 
Notre D. 
Notre D. 

Notre D. 11.98(29) 19.12(39) 

Liberty 18.27(29) 26.92(32) 

Yosemite 13.55(36) 25.25(87) 

Liberty 16.85(36) 30.38(28) 

13.64(49) 

19.88(49) 

15.67(67) 

20.01(53) 

18.03(60) 

25.20(60) 

21.78(35) 

26.48(45) 

12.48(71) 

18.70(71) 

15.04(99) 

19.80(49) 

16.77(52) 

25.39(32) 

22.30(48) 

26.78(48) 

14.07(36) 26.10(128) 

20.33(36) 35.09(128) 

15.56(86) 28.50(128) 

19.47(48) 35.09(128) 

TABLE IV


BEST SUBSPACE METHODS FOR COMPOSITE DESCRIPTORS.
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Train Test Parametric Non-parametric Composite SIFT 
Yosemite 
Yosemite 
Notre Dame 
Notre Dame 

Notre Dame 
Liberty 
Yosemite 
Liberty 

14.43(400) 

20.48(400) 

15.91(544) 

21.85(400) 

19.29(32) 

31.10(32) 

31.27(19) 

36.54(19) 

11.98(29) 

18.27(29) 

13.55(36) 

16.85(36) 

26.10(128) 

35.09(128) 

28.50(128) 

35.09(128) 

TABLE V


“BEST OF THE BEST” RESULTS.


detection. In order to evaluate the effectiveness of this strategy,

we tested a number of descriptors that were trained on a dataset 35

with synthetic noise applied ([31]).
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Fig. 13. Change in error rates as the normalization clipping threshold is varied 
for parametric descriptors. The threshold was set to r/ 

√ 
D where r is the 

ratio and D is the descriptor dimensionality. Unit: unit length normalization 
without clipping. 

G. Minimizing Bits 

For certain applications, such as scalable recognition, it is im
portant that descriptors are represented as efficiently as possible. 
A natural question is: “what is the minimum number of bits 
required for accurate feature descriptors?”. To address this ques
tion we tested the recognition performance of our parametrized 
descriptors as the number of bits per dimension was reduced from 
8 to 1. The results are shown in Figure 14 for the parametric 
descriptors. Surprisingly, there seems to be very little benefit to 
using any more than 2 or 3 bits of dynamic range per dimension, 
which suggests that it should be possible to create local image 
descriptors with a very small memory footprint indeed. In one 
case (T1c-S2-17), the performance actually degraded slightly as 
more bits were added. It could be that in this case quantization 
caused a small noise reduction effect. Note that this effect was 
small ( 1% in error rate), and not shown for the other descriptors, 
where the major change in performance came from 1 to 2 bits per 
dimension, which gave around 16% change in error rate. Whilst 
it would also be possible to quantize bits for dimension reduced 
(embedded) descriptors, a variable number of bits per dimension 
would be required as the variance on each dimension can differ 
substantially across the descriptor. 

VII. LIMITATIONS 

Here we address some limitations of the current method and 
suggest ideas for future work. 

A. Repetitive image structure 

One caveat with our learning approach scheme is that distinct 
3D locations are defined to be different classes, when in the 

For results, see the last rows of tables I, II and III. Here, 
“synthetic” means that synthetic scale, rotation and position jitter 
noise was applied to the patches, although the actual patch data 
was sampled from real images as in [31]. For the parametric 
descriptors, there is a clear gain of 5-10% from training using the 
new non-synthetic dataset. For the LDA based methods smaller 
gains are noticeable. 

E. Learning Descriptors for Harris Corners 

Using our multi-view stereo ground truth data we can easily 
create optimal descriptors for any choice of interest point. To 
demonstrate this, we also created a dataset of patches centred 
on multi-scale Harris corner points (see Figure 12). The left 
column shows the projections learnt from Harris corners and the 
right column from DOG interest points, for normalized image 
patches. The projections learnt from the two different types of 
interest points share several similarities in appearance. They 
are all centre focused, and look like Gaussian derivatives [16] 
combined with geometric blur [22]. We also found that the order 
of the performance of the descriptors learnt from the different 
embedding methods are similar to each other across the two data-
sets. 

F. Effects of Normalization 

As demonstrated in [35], the post-normalization step is very 
important for the performance of the non-parametric descriptors 
learnt from synthetically jittered data-set. We observe a similar 
phenomenon in our new experiments with the new data. 

The higher performance of the parametric descriptors when 
compared to the non-parametric descriptors is in some part 
attributable to the use of SIFT-style clipping normalization ver
sus simple unit-length normalization for these. Since parametric 
descriptors maintain a direct relation between image-space and 
descriptor coefficients compared with coefficients after PCA re
duction, SIFT-style clipping, by introducing a robustness function, 
can mitigate differences due to spatial occlusions and shadowing 
which affect one part of the descriptor and not another. For 
this reason applying SIFT-style normalization prior to dimension 
reduction seems appropriate. 

Figure 13 shows the effect of changing the threshold of clipping 
for SIFT normalization. Error rates are significantly improved 
when the clipping threshold are equal to around 1.6/

√
D when 

tested on a wide range of parametric descriptors with different 
dimensionality. This graph shows the drastic reduction in error 
rate compared with simple unit normalization.
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Fig. 14. Results of limiting the number of bits in each descriptor dimension. 
Not many more than 2 bits are required per dimension to retain a good error 
rate. 

real world, they can often have the same visual appearance. 
One common example would be repeated architectural structures, 
such as windows or doors. Such repetitions typically cause false 
positives in our matching schemes (see Figure 15). For the Notre 
Dame dataset, false positives occur due to translational repetition 
(e.g. the stone figures) as well as rotational repetitions (e.g. the 
rose window). 

B.	 Multi-view Stereo Data 

Although there have been great improvements in stereo in 
recent years [30], using multi-view stereo to train local image de
scriptors has its limitations. Noise in the stereo reconstruction will 
inevitably propagate through to the set of image correspondences, 
but probably a bigger issue is that certain image correspondences, 
i.e., in regions where stereo fails, will not be present at all. One 
way around this problem would be to use imagery registered to 
LIDAR scans as in [42]. 

VIII. CONCLUSIONS 

We have described a scheme for learning discriminative, low-
dimensional image descriptors from realistic training data. These 
techniques have state-of-the-art performance in all our test sce
narios. The techniques described in this paper have been used to 
design local feature descriptors for a robust structure from mo
tion application called Photosynth1 and an automatic panoramic 
stitcher named ICE2 (Image Compositing Editor). 

Recommendations 

To summarize our work, we suggest a few recommendations 
for practitioners in this area: 

•	 Learn parameters from training data Successful descrip
tor designs typically have many parameter choices that are 
difficult to optimize by hand. We recommend using realistic 
training datasets to optimize these parameters. 

•	 Use foveated summation regions Pooling regions that 
become larger away from the interest point are generally 
found to have good performance. See [38] for an efficient 
implementation approach. 

1http://www.photosynth.com 
2http://research.microsoft.com/ivm/ice.html 

•	 Use non-linear filter responses Some form of non-linear 
filtering before spatial pooling is essential for the best 
performance. Steerable filters work well if the phase is kept. 
Rectified or angle-quantized gradients are also a good and 
simple choice. 

•	 Use LDA for discriminative dimension reductions LDA 
can be used to find discriminative, low dimensional descrip
tors without imposing a choice of parameters. However, if a 
discriminative representation has already been found, PCA 
can work well for reducing the number of dimensions. 

•	 Normalization Thresholding normalization often provides a 
large boost in performance. If dimension reduction is used, 
normalization should come before the dimension reduction 
block. 
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Fig. 11. ROC curves for composite descriptors trained on Yosemite and testing on Notre Dame. 

Fig. 12. Comparison of projections on patches centred on Harris corner points (left column), and DOG points (right column), respectively. From top to the 
bottom, we present projections learnt using the embedding blocks of E2, E3, E4, E5, E6, E7 and E1, respectively. 

Fig. 15. Some of the false positive, false negative, true positive and true negative image patch pairs when testing on the new Notre Dame dataset using 
E-blocks learnt from the new Yosemite dataset. We used a combination of T3 (steerable filters) and E2 (LPP) in this experiment. Each row shows 6 pairs of 
image patches and the two image patches in each pair are shown in the same column. Note that the two images in the false positive pairs are indeed obtained 
from different 3D points but their appearances look surprisingly similar. 
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