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ABSTRACT 

 The effect of polyethylene glycol 400 (PEG) dissolved at various concentrations (0-40% v/v) in 

water, on the interfacial transport of methyl nicotinate across an aqueous - isopropyl myristate interface 

was investigated with a rotating diffusion cell.  At four temperatures studied (20-37°C), the presence of 

PEG decreased the rate of solute transfer both into and out of the organic phase in a concentration-

dependent fashion. The bulk partition coefficient of the solute (organic/aqueous) increased with 

increasing PEG in the aqueous phase. Analysis of the temperature dependence of the interfacial transfer 

kinetics allowed thermodynamic activation energy parameters for the phase transport process to be 

determined. Although the free energy of activation (∆G≠) for transfer was not affected by PEG, the 

relative enthalpic and entropic contributions were dramatically altered. At PEG concentrations of 10-40% 

v/v. the enthalpic portion of ∆G≠ was decreased by about a factor of two, while the entropic contribution 

(which is large and positively favorable in the absence of PEG) was reduced considerable such that it was 

totally eliminated at higher PEG levels. These observations suggest novel and direct experimental 

evidence for the concept that high PEG concentrations substantially alter water structure at an aqueous 

solution – organic liquid biomembrane model interface. The results support the hypothesis that the 

critically important function of PEG in inducing cell-cell and liposome-liposome fusion is to remove the 

hydration layer that impedes the close apposition of converging phospholipid bilayers.  
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INTRODUCTION  

 Techniques to fuse cells, which have led to important advances in somatic cell genetics1,2, 

reconstitution of receptor complexes4 or for the delivery of exogenous macromolecules into cells5,6, have 

depended upon the ability of polyethylene glycol (PEG) solutions to mediate the fusion process. This 

widespread use has outstripped our understanding of how these solutions work.  Fusogenic 

concentrations of PEG (50% w/v) bind essentially all of the free water in solution7-9and this has provoked 

the suggestion that PEG induces fusion by altering or removing the hydration layer from the head group 

region of the phospholipids8. Polyethylene glycol also brings about a marked decrease in the surface 

potential of both phosphatidylcholine and phosphatidylethanolamine monolayers10.  

 In phospholipid bilayer systems, PEG solutions (50% w/v) cause an increase in the transition 

temperature of synthetic phosphatidylcholine and phophatidylethanolamine altering the cooperativity, 

enthalpy, and entropy of transitions9.  In phospholipid dispersions, low concentrations of PEG cause 

aggregation9,11 whereas, at higher levels (40-50% w/v), PEG mediates a rearrangement of sonicated 

unilamellar vesicles to the multilamellar structures, and this has been suggested to be a fusion 

phenomenon11.  Freeze-fracture studies have revealed that fusogenic concentrations of PEG induce 

structural defects in phosphatidylcholine bilayers and the appearance of a non-bilayer phase11. The 

appearance of non-bilayer structures was not observed when glycerol or dextran at similar 

concentrations, which are known to dehydrate the lipids, were used12. Arnold13 has proposed that the 

major effect of PEG is a volume-exclusion induced aggregation and dehydration of the bilayer interface 

and this hypothesis has garnered considerable biophysical support from Lentz and others14.  

 In this report, the influence of fusogenic concentrations of PEG on the interfacial transfer kinetics 

of methyl nicotinate across isopropyl myristate impregnated membranes in a rotating diffusion cell15 is 

examined. This system permits investigations into the kinetic and thermodynamic properties of 

interfacial transport. The data indicate to us that, in the presence of fusogenic concentrations of PEG, the 

hydration layer at the interfacial region of the two-phase, aqueous solution-organic liquid system is 

greatly diminished which is consistent with results obtained using other experimental techniques14. 

 

 



MATERIALS & METHODS 

 Interfacial transfer kinetics were studied with a rotating diffusion cell (RDC), which has been 

described elsewhere15. Essentially, an organic liquid-impregnated Millipore filter (GS type, 0.22 µm size, 

Millipore Corp., Billerica, MA) separates an aqueous donor solution of transferring substrate from an 

aqueous receptor phase. Liquid-liquid interfaces are thus established on both surfaces of the filter, the 

area of which, corrected for porosity, defines the interfacial area. Transport to and from the interfacial 

regions is controlled by rotating disc hydrodynamics, which are produced by the design and rotation of 

the diffusion cell as previously discussed15,16. 

 Elucidation of the interfacial perturbations induced by polyethylene glycol 400 (PEG, approximate 

molecular weight = 400 Daltons) (Sigma Chemical Co., St. Louis) involved monitoring the transport of a 

model solute in the RDC as a function of temperature (T). Experimental systems of four different initial 

configurations were studied, the details of which are summarized in Table I. 

 Methyl nicotinate (3-pyridine carboxylic acid methyl ester, MN) (Sigma) was selected as the 

transferring substrate because its frequent use in earlier RDC work has made available a number of its 

physical properties which are essential for data interpretation. Furthermore, the solute’s high aqueous 

solubility, which allowed a steep concentration gradient to be initially developed across the organic 

liquid-filled filter, enabled improved precision in the results. The solute flux was assayed by periodic 

sampling and UV spectrophotometric analysis of the aqueous receptor phase solution. 

 The organic lipid, isopropyl myristate (IPM) (Sigma), with which the RDC filter was impregnated, 

was chosen for its ability to simulate certain properties of biomembrane structure. IPM has been used 

frequently15,17 in drug absorption and distribution studies to mimic various membrane lipids and it allows 

attention to be focused on the properties of the hydration layer while minimizing the interaction of PEG 

with the amphiphilic portion of the membrane.  

 As seen in Table I, transport experiments (A-D) across the organic liquid barrier were performed 

with and without PEG 400 in the aqueous donor and receptor phases. Three PEG 400 concentrations 

(40% 25%, and 10% v/v) were studied. Additionally, important control experiments were performed as 

part of this investigation: 

1. A sample of the commercial PEG employed was purified by ether precipitation and RDC experiments 

were then conducted using aqueous solutions prepared with the extracted polymer. 



2. The thickness of the rotating membrane was doubled by collapsing together two Millipore filters 

during the cell preparation process. The dual membrane was then impregnated with IPM in the 

normal way before measuring solute permeation as described above.  

3.  A series of transport experiments were carried out in which the 40% PEG solutions were replaced by 

40% glycerol. All other aspects of the transport measurement procedure remained unaltered.  

 The initial experimental configurations of the three controls (C1, C2, C3) are also summarized in 

Table I; their respective rationales were as follows: 

(a) An early report suggested that organic solvent-soluble impurities in the commercially available PEG 

are responsible for the fusogenic properties of the hydrophilic polymer18. Although a later study19 

has suggested that this is not the case for the PEG used in our work, it was nevertheless desirable to 

check that the purified polymer behaved similarly under the conditions of the experiments 

performed.  

(b) In the data reduction to obtain interfacial transfer kinetics from an RDC experiment, it is necessary 

to subtract the membrane diffusion resistance from the total permeation barrier (see below). In the 

second control, we maintain hydrodynamic and interfacial barriers constant and change the 

membrane (IPM – impregnated filter) resistance in a pre-determined manner. It is possible, in this 

way, to demonstrate unequivocally the correct assignation of the transport resistance to the various 

contributing barriers established in RDC. 

(c) Glycerol, like PEG, is a viscous hydrophilic moiety of high water solubility but it does not induce 

bilayer fusion when present at concentrations at which PEG is fusogenic. To ensure that any RDC-

detected effects of PEG were likewise distinct from those of glycerol, the third control was deemed a 

necessary aspect of this work. 

 Analysis of all experimental results including controls (see Theory below) required, at each 

temperature studied, knowledge of (i) the substrate organic liquid/aqueous phase partition coefficients, 

and (ii) the diffusion coefficients of the solute in IPM. The former were found classically as reported in 

earlier publications15; the latter were available in the literature15. 



THEORY 

 The rate of transfer (J mol·s-1) of substrate from the donor compartment of the RDC to the 

receptor is given by an equation analogous to Fick’s 1st Law of Diffusion: 

   )( RD CCPAJ         (1) 

where A is the area of the filter across which transport occurs and CD and CR are the solute concentrations 

in the aqueous donor and receptor phases, respectively. P is the overall effective permeability coefficient 

for the substrate and is associated with three distinct resistances to movement across the rotating 

filter15, i.e.: 
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2·zD/Da is the barrier to solute transport caused by stagnant diffusion layers in the aqueous phases on 

either side of the organic liquid-filled filter. This hydrodynamic resistance is the result of the cell rotation 

and the thickness of the boundary layers (zD) is given by the Levich equation20: 

   2/13/16/1643.0   aD Dz       (3) 

where ν is the kinematic viscosity of the aqueous solvent, Da is the substrate aqueous phase diffusion 

coefficient and ω (revolutions per second) is the rotation speed of the filter.  

L/α∙K∙Do is the diffusional resistance (RM) offered to solute movement by the organic liquid-filled filter of 

length L and porosity α.  K is the solute’s organic/aqueous partition coefficient and Do its diffusion 

coefficient in the organic liquid.  

2/α∙kao corresponds to the interfacial resistance (RI), i.e., the barrier to solute transport across the two 

interfacial regions between the aqueous phase and the organic liquid. Schematically, one may represent 

interfacial transfer rate constants kao and koa as follows: 

 

and hence one may recognize that 2/α∙kao is merely shorthand for two terms  (1/α∙kao + 1/α∙K∙koa) that 

more obviously relate to the two interfacial transfer processes which take place during the movement of 

a solute molecule from the donor compartment of the RDC to the receptor. 

MN (aqueous) MN (organic)

koa

kao

interface

;   K = kao/koa



 Combination of Eqs. (2) and (3) shows that measurement of P-1 as a function of rotation speed 

enables evaluation of the sum L/α∙K∙Do + 2/α∙kao. Knowledge of the first of these terms then allows 

determination of the interfacial transfer rate constants kao and koa  (since kao =  K∙koa). 

 The activation free energy barriers associated with the kinetic parameters can be obtained using 

Eq. (4)15: 

   )/ln( ZkTRG ii         (4)  

(where the subscript i replaces either ao or oa). In this equation, a frequency factor Z of 100 m∙s-1 is 

included21.  

 Finally, the temperature dependence of the transport process generates further thermodynamic 

information. The slope of an Arrhenius-type plot of In ki against reciprocal absolute temperature (1/T) 

gives ∆Hi
≠ the enthalpic contribution to the free energy barrier, and subsequently ∆Si

≠, the entropy, is 

found by difference: 

   TGHS iii /)(         (5) 

 The substrate’s bulk partition coefficient (K) and its variation with T can be utilized in a similar 

fashion to obtain corresponding information for bulk, rather than interfacial, transfer22. 

 



RESULTS 

 Methyl nicotinate flux measurements were performed in the RDC as a function of rotation speed, 

temperature and PEG concentration as shown in Table I.  A typical set of experimental data for a PEG 

concentration of 40% v/v is shown in Figure 1. Regression lines through the results have been drawn to 

derive intercepts on the P-1 axis at ω-1/2 = 0. Here the resistance of the stagnant diffusion layers is zero 

and the value of P-1 is the sum of membrane diffusional and interfacial transport barriers (L/α∙K∙Do + 

2/α∙kao). The relative contribution of these two terms may be found because the first resistance is 

calculable from known parameters. In Table II, the partition coefficient (K) values determined in this 

study are presented for the various systems together with the corresponding methyl nicotinate diffusion 

coefficient (Do) in IPM which has been reported elsewhere15. 

 The possibility that in our experiments, PEG partitions into IPM and alters its solvent 

characteristics (and hence Do for a solute diffusing through it), was checked by attempting to distribute 

radiolabeled PEG between water and the organic liquid. No radioactivity above background was ever 

found in the IPM. The characteristics, L and α, are given by Millipore as 150 µm and 0.75, respectively. 

These values have been independently verified using an elegant electrochemical technique23. 

 Thus, the experimentally determined intercepts of plots of P-1 versus ω-1/2 provide the transport 

resistances and contributions. In Table III, the intercept values found are given and the relative 

contributions due to membrane and interfacial barriers (RM and RI, respectively) are calculated. Also 

given in this Table are the regression slopes through the individual data sets. In accord with theory (Eqs. 

(2) and (3)), the gradients increase with increasing PEG in the aqueous phase and increase with 

decreasing temperature (reflecting, respectively, increasing viscosity (ν) and decreasing diffusion 

coefficient (Da)). From the interfacial resistance and the partition coefficients, the phase transfer rate 

constants kao and koa can be found for each system and temperature studied. These kinetic parameters 

are displayed graphically as a function of PEG concentration employed in Figure 2. 

 The free energies of activation (∆Gi
≠) associated with the interfacial transfer rate constants were 

determined using Eq. (4) and the values are given in Table IV.  Enthalpic and entropic contributions to 

∆Gi
≠, derived at 25°C as described in the Theory, are presented in Figure 3, the former showing the 

thermodynamic parameters for the koa process, the latter the energetics associated with kao. 

 Finally, the temperature dependence of the bulk partition coefficients given in Table II is used to 

access the thermodynamic parameters at 25°C associated with solute movement from the bulk aqueous 



phase to the bulk organic phase. These energetics at each PEG concentrations in the aqueous phase are 

summarized in Table V. 

Control experiments 

1. Purified PEG:  Using extracted polymer and experimental configuration C1 shown in Table I, methyl 

nicotinate flux at 25°C was measured at two rotation speeds. It was found that P-1 = 4.24 x 105 m-1·s at 

494 rpm (ω-1/2 = 0.622 s1/2) and P-1 = 4.84 x 105 m-1·s at 298 rpm (ω -1/2 = 0.449 s1/2). These values did not 

differ significantly from those observed when unpurified PEG was employed.  

2. Membrane diffusion resistance:  This control involved measurement of solute transport across a 

double thickness IPM-impregnated filter paper barrier (configuration C2, Table I). Nicotinate flux was 

monitored at three rotation speeds (319, 341 and 367 rpm) and the results were extrapolated in the 

normal way to yield an intercept of 7.34 (± 0.27) x 105 m-1∙s. The single membrane barrier gave an 

intercept of 3.41 x 105 m-1∙s and an interfacial resistance (RI = 2/α∙kao) of 1.09 x 105 m-1∙s. From these 

individuals resistance, we can theoretically calculate the resistance of the double membrane. First, α 

must change because the filter pores will overlap in a random fashion, thereby reducing the effective 

porosity. Assuming that there is random distribution of pores then the effective porosity of the double 

filter must be α2 or 0.56. Secondly, for the connecting pores L will double in length to 300 µm. Thus, from 

the single filter resistances we may calculate RM and RI for the double membrane to be 6.19 x 105 m-1∙s 

and 1.45 x 105 m-1∙s, respectively. The sum is the predicated intercept, 7.64 x 105 m-1∙s, which is not 

distinguishable from the experimental value.  

3. Glycerol Experiment:  To check that the effect of PEG on methyl nicotinate interfacial transfer was 

distinct from that of glycerol, the controls designated C3 in Table I were conducted. Three rotation 

speeds at each temperature were studied. 40% v/v glycerol solution viscosities were measured with an 

Ostwald viscometer at both temperatures so that theoretical RDC gradients were known. Solute partition 

coefficients were determined in the unusual way to allow appropriate evaluation of the membrane 

resistance contribution to P-1. From the intercepts, thus, interfacial transfer rate constants were 

evaluated. These are given in Table VI and are compared to those obtained when the inner and outer 

compartment phases were water. Agreement is very good and the values differ markedly from those 

found when 40% v/v PEG is the aqueous medium. We deduce that glycerol (at 40% v/v) has minimal 

effects on the nicotinate transport in this system compared to PEG. 

 



DISCUSSION 

 The transport resistance and contribution data in Table III show that phase transfer kinetics play 

a key role in the systems studied and confirm the utility of this process as a probe for interfacial events. 

The rate constants for interfacial transfer decrease as the % PEG used in these experiments increases 

(see Figure 2). The change is reflected by the increase in transport resistance due to the phase transfer 

process (Table III). Although it cannot be shown unequivocally from this data, the implication of the 

values in Figure 2 is that some PEG molecules may be populating the water - IPM interface thereby 

hindering solute movement in both directions (aqueous  organic and organic  aqueous). Our inability 

to identify any PEG partitioning into the organic phase suggest that, if PEG is present at the interface, it is 

localized on the aqueous side and has its action there.  

 The alteration of kao and koa by increasing amounts of PEG is also reflected in the bulk partition 

coefficients which have been determined in this study (see Table II). In the absence of PEG, increasing 

temperature leads to a disfavoring of the aqueous phase by the solute and subsequent rise in K. With 

increasing amount of PEG, however, this temperature dependence is gradually reversed such that, at 

40% PEG, K decreases as the temperature rises. The thermodynamic data in Table V suggest some clues 

as to the reasons behind these observations. Firstly, the free energy (∆GK) for the process is weakly 

favorable in all cases (since K always exceeds unity). Secondly, as the percent PEG increases, ∆HK switches 

from an endothermic to an exothermic value. This may suggest that the greater the percent PEG in the 

aqueous phase, the less efficient is solvation of the solute in water. Thirdly, as the percent PEG in water is 

decreased from 40% to zero, the entropy (∆SK) of solute movement from the bulk aqueous phase to the 

bulk organic phase becomes increasingly positive. This is consistent with the solute solvation efficiency 

indicated by ∆HK. With no PEG present, it appears that bulk transfer of methyl nicotinate out of water is 

entropically favorable (due to the release of a solvation sphere of water, perhaps). At high PEG 

concentrations, though, we would expect little free water available and that solvating molecules released 

by the solute on transfer may be immediately restructured by the polymer. What the sequence of events 

taking place, it is clear that equilibrium substrate - PEG - water - IPM interactions are complex and 

require further study. 

 The thermodynamics associated with the interfacial transfer processes are now considered. It is 

first apparent that the activation free energy barrier to phase transport at the liquid-liquid interfaces 

studied is about 40 KJ mol-1 (see Table IV). The values are consistent with previous determinations15 and 

insensitive to the concentration of PEG in the aqueous phase. Conversely, the enthalpic (∆H≠) and 



entropic (∆S≠) contributions to ∆G≠ are very dependent upon the presence of PEG (see Figure 3). When 

the aqueous phase is simply water, ∆G≠ is the result of a large positive ∆H≠ (for both kao and koa processes).  

The entropic term, however, acts so as to reduce the activation free energy barrier and is large and 

positive (159 J mol-1K-1 for kao, 121 J mol-1K-1 for koa). Because there is increasing disorder for solute 

transfer in both directions, the ∆S≠ values have been interpreted22 as reflecting disruption of interfacial 

water structure by transferring substrate molecules. Such a hypothesis is consistent with a positive ∆S≠ 

for both kao and koa processes. With PEG present in the aqueous phase, enthalpic and entropic 

contributions to ∆G≠ (kao and koa) changed markedly. There appears a slight PEG concentration 

dependence but the gross effects are similar at all PEG levels studied. Firstly, ∆H≠ is reduced by about a 

factor of two. However, this change is counteracted by the almost complete elimination of ∆S≠ which, for 

all intents and purposes, goes to zero. In other words, the favorable ∆S≠, observed for methyl nicotinate 

crossing a simple water-IPM interface, is destroyed by the presence of PEG (at ≥10% v/v) in the aqueous 

phase.  

 In conclusion, these observations, therefore, seem consistent with the thesis that PEG 

substantially reduces water structure at the aqueous solution - organic liquid interface. In terms of a 

putative mechanism by which PEG induces cell-cell fusion, the results of this investigation suggest new 

and direct evidence for the theory of hydration layer removal/destabilization and consequential allowed 

close approach of converging membranes8,9,11,13,14. That is, this study provides additional evidence for the 

mechanism of PEG induced bilayer aggregation and fusion put forward 25 years ago by Arnold et al.13,14  
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Table I: Initial experimental configurations of the systems studied. 

System 
Aqueous donor 

phase (vol = 40 cm3) 
Organic liquid 

membrane 
Aqueous receptor 

phase (vol = 250 cm3) 
T (°C) 

 

A 0.1M MNa in waterb IPMa Water 25,30,37 

B 0.1M MN in 40% v/v PEGa IPM 40% v/v PEG  20,25,30,37 

C 0.1M MN in 25% v/v PEG IPM 25% v/v PEG  20,25,30,37 

D 0.1M MN in 10% v/v PEG IPM 10% v/v PEG 20,30,37 

 

C1 0.1M MN in 10% v/v PEG IPM 10% v/v PEG 25 

C2 0.1M MN in water 2 x IPMc Water 25 

C3 0.1M MN in 40% v/v glycerol IPM 40% v/v glycerol  20,37 

aMN = methyl nicotinate; IPM = isopropyl myristate; PEG = polyethylene glycol 400. 
bAqueous solutions were prepared with water distilled from an all-glass apparatus. 
cA double-thickness membrane was used in this experiment. 

 

 

 

 

 

 

Table II:  Methyl nicotinate diffusion coefficients in IPM (Do) and partition coefficients (K) between 
IPM and aqueous solutions containing increasing amounts (%v/v) of PEG. 

 

T (°C) 
105∙Do 

(cm2∙s-1) 

K(IPM/aq) 

aq = water aq = 10% PEG aq = 25% PEG aq = 40% PEG 

 

20 0.37 2.13 1.96 1.64 1.35 

25 0.41 2.22 2.00 1.64 1.32 

30 0.48 2.38 n.d. 1.61 1.28 

37 0.51 2.59 2.22 1.61 1.23 

  

 



Table III: Results from RDC experiments and transport resistances and contributions. 

%PEG (v/v) T (°C) 10-5∙slope (m-1∙s) 10-5∙intercept (m-1∙s) RM (%)a RI (%)b 

 

40 20 4.60 7.30 57 43 

 25 3.72 6.16 60 40 

 30 3.12 5.34 65 35 

 37 2.29 4.57 70 30 

 

25 20 3.45 6.11 54 46 

 25 2.84 5.07 59 41 

 30 2.39 4.12 64 36 

 37 1.85 3.63 67 33 

 

10 20 2.30 4.43 62 38 

 25 1.96 3.62 67 33 

 37 1.38 2.36 75 25 

 

5 25 1.37 3.41 68 32 

 30 1.14 2.46 71 29 

 37 1.97 1.84 83 17 

aRM = L/α∙K∙Do 
bRI = 2/α∙kao 

 



Table IV:  Free energies of activation (∆Gi
≠) at 25°C associated with the kinetic parameters kao and koa for 

the systems studied. 

% PEG (v/v) ∆Gi
≠, aq  org (KJ∙mol-1) ∆Gi

≠, org  aq (KJ∙mol-1) 

   

40 40 40 

25 41 39 

10 40 38 

0 40 38 

 

 

 

 
Table V: Thermodynamic parameters at 25°C determined from the temperature dependence of the 

measured partition coefficients (reflecting the bulk transfer of solute from the aqueous to the 
organic phase). 

Aqueous phase 40% v/v PEG 25% v/v PEG 10% v/v PEG Water 

 

ΔGK (KJ∙mol-1) -0.7 -1.2 -1.7 -2.0 

ΔHK (KJ∙mol-1) -4.0 -0.9 +5.7 +9.1 

ΔSK (J∙mol-1∙K-1) -11 +1 +25 +37 

 

 

 

 
Table VI: Glycerol control experiments. 

RDC aqueous phase 40% v/v glycerol Water 

T (°C) 20 37a 20 37 

 

106∙kao (m∙s-1) 19 61 21 86 

106∙koa (m∙s-1) 12 29 13 34 

aAlbery & Hadgraft16 report kao = 66 x 10-6 m·s-1 and koa = 34 x 10-6 m·s-1 for systems in which the 
aqueous phases were 60% v/v glycerol. 

 



FIGURE LEGENDS 

Figure 1: Dependence of total transport resistance (P-1) on rotation speed (ω-½) for System B (see 

Table I) at four temperatures.  Each value of P-1 is the mean of at least 8 separate 

determinations; standard deviations were not greater than ± 5% of the mean.  The lines 

through the data and the values of the intercepts were determined by linear regression. 

Figure 2: Interfacial transfer rate constants, koa (organic → aqueous, panel [1]), and kao (aqueous → 

organic, panel [2]) for methyl nicotinate as a function of (i) PEG concentration in the 

aqueous phase, and (ii) temperature.  The values of the rate constants at 20°C, when PEG 

is absent, are from Albery et al.15  

Figure 3: Enthalpic (∆Hi
≠) and entropic (∆Si

≠) contributions to the free energy of activation at 25°C 

for interfacial transfer of methyl nicotinate (panel [1] organic → aqueous; panel [2] 

aqueous → organic) as a function of PEG concentration in the aqueous phase. 
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Figure 1: Dependence of total transport resistance (P-1) on rotation speed (ω-½) for System B (see 

Table I) at four temperatures.  Each value of P-1 is the mean of at least 8 separate 

determinations; standard deviations were not greater than ± 5% of the mean.  The lines 

through the data and the values of the intercepts were determined by linear regression. 
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Figure 2: Interfacial transfer rate constants, koa (organic → aqueous, panel [1]), and kao (aqueous → 
organic, panel [2]) for methyl nicotinate as a function of (i) PEG concentration in the 
aqueous phase, and (ii) temperature.  The values of the rate constants at 20°C, when PEG 
is absent, are from Albery et al.15  
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Figure 3: Enthalpic (∆Hi
≠) and entropic (∆Si

≠) contributions to the free energy of activation at 25°C 
for interfacial transfer of methyl nicotinate (panel [1] organic → aqueous; panel [2] 
aqueous → organic) as a function of PEG concentration (% v/v) in the aqueous phase. 

 


