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Abstract: A perturbation theory is developed that treats a localised
mode embedded within a continuum of states. The method is applied to a
model rectangular hollow-core photonic crystal fibre structure, where the
basic modes are derived from an ideal, scalar model and the perturbation
terms include vector effects and structural difference between the ideal and
realistic structures. An expression for the attenuation of the fundamental
mode due to interactions with cladding modes is derived, and results are
presented for a rectangular photonic crystal fibre structure. Attenuations
calculated in this way are in good agreement with numerical simulations.
The origin of the guidance in our model structure is explained through this
quantitative analysis. Further perspectives are obtained through investigat-
ing the influence of fibre parameters on the attenuation.
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1. Introduction

In Ref. [1], an analytic method was developed for an ideal, scalar model of a rectangular hollow-
core photonic crystal fibre (PCF). It was found that the fundamental mode is perfectly confined
over a wide range of frequencies, providing a baseline from which we aim to explain the broad-
band guidance observed in a class of Kagome-like PCFs. Our aim in this paper is to extend the
analysis of Ref. [1] in order to calculate the attenuation of the fundamental mode in a realistic
fibre structure.

For the ideal, scalar model it has been found that a perfectly localised fundamental mode
exists both in photonic bands and in bandgaps. With a vector governing equation, we find that
the bandgaps vanish and that there are cladding modes with the same propagation constant as
the fundamental mode for all frequencies. These cladding modes are glass-guided [1] and have
a weak coupling with the fundamental mode owing to the mismatch of the spatial frequencies
of the modal fields.

The key point of this work is the use of perturbation theory to include the effects of the vec-
tor terms in the governing equation and the structural difference (the high-index intersections)
between the ideal and realistic model structures. The method used will need to treat the case of
a localised state (the fundamental mode) embedded within a continuum of states (the cladding
modes). This problem recalls a case in condensed matter physics. When a localised impurity
orbital is embedded in an electron gas, the sharply defined impurity level broadens into a reso-
nance. The width of the resonance is related to the strength of coupling between the localised
and continuum states. Anderson [2] analysed this case with the use of Green’s function methods
and found that the effect of the interaction can be discussed in terms of an imaginary component
of the energy of the localised state. This controls the width of the resonance and can be related
to the lifetime of an electron initially localised on the impurity. In our case the interaction of
the localised and cladding modes has the effect of broadening the fundamental mode into a
resonance. The resonance width can be related to an imaginary part of the propagation constant
and therefore this leads directly to a measure of the attenuation of the fundamental mode which
is caused by the perturbation.

The content of this paper is organised as follows. In Section 2, the perturbation theory is
developed to simulate guidance in a realistic model PCF structure. An approximate method
to calculate the attenuation due to the interaction of the fundamental and cladding modes is
presented. Section 3 gives the results of the perturbation calculations, based on the theory de-
veloped in Section 2 and the analysis presented in Ref. [1]. It gives the origin and quantitative
explanation of the leakage in our model PCF structure. The effects of the fibre parameters are
also investigated. Section 4 is the conclusion.

2. Perturbation theory for the realistic model

2.1. Formulation of perturbation theory for the vector governing equation

We begin our derivation by rewriting the governing equation in a compact form. The scalar
governing equation of Eq. (2) in Ref. [1] can be expressed as

L0hn = β 2
0nhn, (1)

where L0 denotes ∇2
t +n2

i k2
0, and n2

i is the dielectric function for the ideal model structure. Here,
β 2

0n and hn are the eigenvalues and eigenstates of the operator L0, corresponding to the square
of the propagation constants and their associated fields, respectively. The subscript n labels the
modes including their polarisation. The vector governing equation corresponding to Eq. (1) in
Ref. [1] can be written as

L0H+δL(H) = β 2H, (2)
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where the eigenvalue β 2 and eigenvector H now respectively denote the square of the propaga-
tion constant and field for the realistic system. The perturbation term, δL(H), is a linear vector
function of H. In our particular model structure, δL(H) takes the form

δL(H) =−�∇t ×H
�×∇t lnn2

r +Δn2k2
0H, (3)

where n2
r is the dielectric function for the realistic model PCF and Δn2 = n2

r − n2
i . Note that

this definition of Δn2 is different from that in Ref. [1]; in this paper Δn2 is non-zero only at the
intersections of the glass strips (where it takes the value n2

a −n2
g, where na and ng are refractive

indices for air and glass respectively) and is zero elsewhere. The right-hand side of Eq. (3)
consists of two parts: the first is the vector term in the governing equation; the second comes
from the difference of the dielectric constant between the realistic and ideal model structures.
We refer to them as the ‘vector term’ and ‘high-index term’, respectively.

The full vector solution H can be expressed by using the scalar solutions as basis functions:
H = ∑n anhn, where an are expansion coefficients and H includes hn in both the x and y polari-
sations. Substituting this into Eq. (2) gives

L0�∑
n

anhn
�
+δL

�
∑
n

anhn
�
= β 2 ∑

n
anhn. (4)

By multiplying h∗
m on both sides of Eq. (4) and using the ortho-normalisation formula

� �
h∗

m ·
hndA = δmn within one supercell, we find

∑
n
(L0

mn +δLmn)an = β 2am, (5)

where
L0

mn = δmnβ 2
0m (6)

and
δLmn =

� �
h∗

m ·δL(hn)dA. (7)

Equation (5) is a perturbation matrix equation, where interactions between modes of the
ideal, scalar structure are expressed via the matrix elements. Substituting Eq. (3) into Eq. (6),
the vector and high-index perturbation terms respectively become

δLa
mn =−

� �
hm ·

�
�
∇t × (hn)

�×∇t lnn2
r

�
dA (8)

and
δLb

mn =
� �

hm · (Δn2k2
0)hn dA. (9)

The integrals are over one supercell, but in practice the integral in Eq. (9) is only over the
intersections of the glass strips.

In Ref. [1], the fields hm and hn have been analytically expressed using trigonometric func-
tions. Moreover, the separation of the scalar fields along the x and y axes reduces the area
integrals in Eqs. (8) and (9) to one dimensional integrals. This makes the calculation of the
matrix elements very straightforward and efficient. The details of the derivation are provided in
Ref. [3].

The perturbation terms δLmn in Eq. (5) can be classified into three types. The first are diag-
onal elements δLmm. These terms can be included in L0 and cause a shift of the propagation
constant for each mode. However, this effect does not lead to any interaction with other modes
and therefore does not contribute to the loss. The diagonal terms of Eq. (5) can be rewritten as

L0
mm +δLmm = β

′2
0m, (10)
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where β ′
0m is the shifted propagation constant of the mode m, including both vector and high-

index terms. As we shall see, these diagonal terms are substantially larger than the off-diagonal
matrix elements. When considering cladding modes that have propagation constants close to
the fundamental mode, it is these shifted eigenvalues that will be analysed. It is also these shifts
that remove the bandgaps that are present in a scalar solution of the ideal model structure.

The second type of matrix element, δL′
mn, contains δLm0n and δLnm0 , where m0 denotes m0x

or m0y, representing the x or y polarised fundamental mode, and n labels a cladding mode. Cou-
pling of this type leads to light leaking from the fundamental mode into the cladding, giving rise
to confinement loss. The third type, δL′′

mn, represents interactions between different cladding
modes. In principle these is a fourth type of matrix element δLm0xm0y and δLm0ym0x which rep-
resent coupling between the two polarisations of the fundamental mode. In practice, however,
these terms are zero due to symmetry.

2.2. Attenuation due to mode interactions

If we solve Eq. (5) directly this gives only a real propagation constant and therefore can not
address attenuation. We therefore will use a Green’s function method from which attenuation
can be derived. As mentioned in the introduction, this is similar to the problem for an impurity
embedded in an electron gas; in our case the fundamental mode is the ‘impurity’ and the contin-
uum of cladding modes is the ‘electron gas’. We follow Anderson’s method [2], extending this
to include vector effects. It is important to note that an analytic treatment is impossible if all the
perturbation terms are considered. If, however, we neglect the interaction terms δL′′ between
different cladding modes, an analytic analysis can be performed. This approximation should be
applicable because the attenuation is mainly caused by the interaction between the fundamen-
tal mode and cladding modes. The cladding-cladding terms are likely to be less important in
affecting the overall magnitude of the attenuation.

In the following derivation, we focus on the x polarised fundamental mode; the expressions
for the y polarisation are equivalent. Having dropped the δL′′ terms from Eq. (5), the Green’s
function is defined by

∑
v
(L0

mmδmv +δLmmδmv +δL′
mv)Gvn =−δmn. (11)

The equivalent diagonal Green’s function is defined by

(L0
mm +δLmm)G

0
mm =−1, (12)

and can be written as

G0
mm =

�
β 2 −β ′

0
2
m + iε

�−1
, (13)

where ε approaches zero from below. The two Green’s operators in Eqs. (11) and (12) are
related by the Dyson equation [4]

Gab = G0
aaδab +∑

p,q
G0

apδL′
pqGqb, (14)

where we note that for δL′
pq to be non-zero, either p or q must label a fundamental mode. When

the subscripts {ab} of Gab are chosen as {m0xm0x}, {m0ym0x} and {mm0x}, Eq. (14) becomes

Gm0xm0x = G0
m0xm0x

+G0
m0xm0x ∑

m
δL′

m0xmGmm0x , (15)

Gm0ym0x = G0
m0ym0y ∑

m
δL′

m0ymGmm0x , (16)
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and
Gmm0x = G0

mmδL′
mm0x

Gm0xm0x +G0
mmδL′

mm0y
Gm0ym0x , (17)

where we note that m labels cladding modes only. Substituting Eq. (17) into Eqs. (15) and (16),
we obtain

Gm0xm0x = G0
m0xm0x

+G0
m0xm0x

Gm0xm0xVm0xm0x +G0
m0xm0x

Gm0ym0xVm0xm0y , (18)

and

Gm0ym0x =
G0

m0ym0y
Gm0xm0xVm0ym0x

1−G0
m0ym0y

Vm0ym0y

, (19)

where Vab = ∑m δL′
amG0

mmδL′
mb; by using Eq. (13) it can be written as

Vab = ∑
m

δL′
amδL′

mb

β 2 −β ′
0

2
m + iε

. (20)

Substituting Eq. (19) into Eq. (18), we obtain an expression for Gm0xm0x :

Gm0xm0x =
G0

m0xm0x

1−G0
m0xm0x

Vm0xm0X −
G0

m0xm0x
G0

m0ym0y
Vm0xm0yVm0ym0x

1−G0
m0ym0y

Vm0ym0y

. (21)

Because of the symmetry of the two polarised fundamental modes, we have G0
m0xm0x

= G0
m0ym0y

;
we also note that Vm0xm0x =Vm0ym0y and Vm0xm0y =Vm0ym0x . Equation (21) then becomes

Gm0xm0x =

�

(G0
m0xm0x

)−1 −Vm0xm0x −
V 2

m0xm0y

(G0
m0xm0x

)−1 −Vm0xm0x

�−1

. (22)

In Eq. (22), the term containing V 2
m0xm0y

can be neglected because, as discussed below, the
magnitude of the matrix elements is small. Equations (13), (20), and (22) are then combined to
give

Gm0xm0x =

�

β 2 −β ′
0

2
m0x

+ iε −∑
m

δL′
m0xmδL′

mm0x

β 2 −β ′
0

2
m + iε

�−1

, (23)

where β ′
0m0x

is determined by Eq. (10) and denotes the shifted propagation constant of the x
polarised fundamental mode.

By comparing Eqs. (13) and (23), it can been seen that the perturbation term in Eq. (23) acts
as an additional shift in the square of the propagation constant of the fundamental mode, arising
from the interaction with the cladding modes. It is important to note that this perturbation term
is complex. The real part is relatively unimportant (causing a small shift in the propagation con-
stant), but the existence of an imaginary part leads directly to an attenuation of the fundamental
guided mode. By using the identity [5]

lim
y→0

1
x+ iy

= P
1
x
− iπδ (x), (24)

where P is the principal value and δ (x) is a Dirac delta function, the imaginary part of the
perturbation terms in Eq. (23) can be expressed as

Δβ 2
m0x [Imag]

= π ∑
m

δL′
m0xmδL′

mm0x
δ
�

β 2 −β ′
0

2
m

�
. (25)
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Equation (25) is the key equation of this paper; it gives an analytic expression from which the
attenuation of the fundamental mode due to interaction with cladding modes can be derived.
It can be seen that the attenuation depends on two factors. One is the density of the cladding

states which is expressed through the term ∑m δ
�

β 2 − β ′
0

2
m

�
; the second is the perturbation

matrix elements δL′
m0xmδL′

mm0x
, where m0x and m are labels of the x polarised fundamental

mode and cladding modes, respectively. The values of both of these parts can be calculated
using Eqs. (8) to (10).

To complete our analysis of the attenuation we write

β 2
m0x [Cmplx]

= β ′
0

2
m0x [Real]

+ iΔβ 2
m0x [Imag]

. (26)

To first-order, the imaginary part of the propagation constant is then given by

βm0x [Imag] = Δβ 2
m0x [Imag]

/(2β ′
0m0x [Real]

). (27)

In a practical calculation of the attenuation, the Delta function in Eq. (25) needs to be broad-
ened. We use a Gaussian smoothing, and Eq. (25) then becomes

Δβ 2
m0x [Imag]

= π ∑
m

1√
2πσ

exp
�
−
��

β 2 −β ′
0

2
m

�
/σ
�2

2

�
δL′

m0xmδL′
mm0x

, (28)

where 1/σ
√

2π is a normalisation factor. The width corresponding to each mode is controlled
by σ ; a small value of σ represents slight smoothing and a sharp peak in the plots. The value
of σ will be determined through convergence tests in the following.

3. Results for the model PCF structure

3.1. Mode distribution and interaction

As discussed in Ref. [1], the model rectangular hollow-core PCF has a square cladding lattice,
and the central defect is created by moving outward the four glass strips that enclose the central
square air hole. We use a ‘standard’ structure in which the thickness of the glass strips and the
shift to create the central defect are set at 0.05Λ and 0.125Λ, respectively. In the remainder of
this paper, all quantities will be made dimensionless by using the pitch Λ of the cladding lattice
as the unit of length. We therefore use (βΛ)2 for the dimensionless propagation constant and
δL′Λ2 for the dimensionless perturbation matrix element.

Our investigation focuses on the cladding modes close to the air-line. In the previous paper,
scalar modes have been calculated for an ideal model structure which has a higher refractive
index at the intersections of the glass strips [1]. Solutions for the vector governing equation and
for the realistic structure (without the high-index intersections) have a shifted value of (βΛ)2,
which is determined by Eq. (10). These shifted modes are the basis states for our perturbation
theory. We calculate the diagonal shift for all the scalar modes of the ideal structure and then
consider only the shifted modes which are close to the air-line in the calculation of attenuation.

We start by considering an 8× 8 supercell with a normalised frequency k0Λ = 40; this was
analysed in detail in Ref. [1]. The calculation of the diagonal shift gives 64 basis states which
are air-guided modes (including the fundamental mode) and 48 basis states which are glass-
guided modes, that are located in the vicinity of the fundamental mode (within a distance of
(βΛ)2 less than 20). After the diagonal shift, the (βΛ)2 value for the fundamental guided mode
is 1587.463, which is 0.342 greater than the unperturbed value. The nearest air-guided and
glass-guided modes are separated from the fundamental mode by (βΛ)2 differences of 1.905
and 0.199, respectively.
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From Eqs. (8) and (9), the vector and high-index perturbation matrix elements can be cal-
culated. For the vector terms, the average diagonal shifts of (βΛ)2 are 0.604 and 222.707 for
the air-guided and glass-guided modes, respectively. By comparison, the off-diagonal elements
of the vector term are considerably smaller. Typical values are of order 10−1, 100 and 10−3 re-
spectively for air-air, glass-glass and air-glass interactions for the same polarised modes. For the
interaction between different polarisations, they are of order 10−5, 100 and 10−2 for the three
groups. The high-index terms exhibit a rather different pattern. The average diagonal shifts are
0.001 and 32.705 for the air-guided and glass-guided modes, which are significantly smaller
than for the vector term. For the off-diagonal elements of high-index term, typical values are
10−5, 100 and 10−2 for air-air, glass-glass and air-glass mode interactions with the same po-
larisation; the interactions between differently polarised modes are identically zero. In general,
we conclude that, apart from the diagonal term, the magnitude of the perturbation is relatively
small, which gives us confidence in the validity of our perturbation theory. This also justifies
our neglect of the second order terms in Eq. (22). In general the vector terms tend to be larger
than the high-index terms, but neither can be neglected in the perturbation calculation.

3.2. Attenuation calculations

In order to use Eqs. (27) and (28) to calculate the attenuation, both the size of supercell and an
appropriate σ value should first be determined. For high precision, we want σ sufficiently small
so that only those states close to the fundamental mode are included. However, we also need
an adequate number of these cladding states for computational accuracy. In this case, the size
of supercell should be as large as possible. However, a problem arises if the supercell becomes
too large. As discussed in the previous paper, modes are found by searching for identical field
values at the centres of neighbouring supercells [1]. When the size of supercell is enlarged,
the transfer matrices must pass through more air and glass layers. For some modes, the fields
are confined only within a subset of layers and decay exponentially in others. To find these
modes in a large supercell requires very high floating-point accuracy. For supercells exceeding
32× 32 in size, even quadruple precision is insufficient. In the determination of σ values, we
have therefore chosen a set of supercells no larger than 32×32.

Since our investigation concerns the properties of the fundamental mode, the (βΛ)2 value on
the right-hand side of Eq. (28) should be chosen to be that of the fundamental mode. However,
to investigate convergence of the calculations it is convenient to plot the imaginary part of
Δ(βΛ)2 for the fundamental mode as a function of (βΛ)2. In general, we find that the air-
guided modes have much higher density of states than the glass-guided modes; we therefore
consider the air-guided and glass-guided modes separately. A larger σ is required for the glass-
guided modes to give a smooth density of states. Plots of the imaginary part of Δ(βΛ)2 for the
fundamental mode are shown in Fig. 1 as a function of the smoothing width σ and the size of
the supercell.

For the air-guided modes, we find that the smallest value of σ that provides well converged
results is 0.3. In this case the difference between 28×28 and 32×32 supercells is less than 1%
over the whole range shown in Fig. 1. The glass-guided modes show a broader distribution over
a wide range of (βΛ)2, as shown in the right of Fig. 1. It is found that the smallest acceptable
value of σ is 10 for the largest supercell we have used. In this case the difference between
28×28 and 32×32 supercells is less than 2% over the range shown in Fig. 1.

Figure 1 shows an important result that the imaginary part of Δ(βΛ)2 at the propagation con-
stant of the fundamental guided mode is non-zero only for the glass-guided modes. The density
of states of air-guided modes is zero at this propagation constant and so these modes do not con-
tribute to the attenuation. We conclude that interaction with the glass-guided modes determines
attenuation in the high-transmission region. This should also be valid for other members of the
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Fig. 1. Variation of the imaginary part of Δ(βΛ)2 for the fundamental mode with smoothing
width σ for different sizes of supercells calculated using Eq. (28). The left and right panels
show contributions from air-guided and glass-guided cladding modes, respectively. The
black arrows at (βΛ)2 = 1587.463 indicate the location of the shifted fundamental guided
mode.

class of PCFs that guide light due to weak coupling of modes, and thus provides quantitative
support for the conclusions drawn for Kagome [6–8] and square-lattice [9] hollow-core PCFs.

3.3. Frequency dependence of the attenuation

Having developed a method to calculate the imaginary part of β , we now use it to analyse the
dependence of the attenuation on frequency and fibre structure. At the sample frequency of
k0Λ = 40, the imaginary part of βΛ for the fundamental mode is calculated to be 1.58×10−6,
indicating a low level of leakage.

Figure 2(a) shows the attenuation over a range of normalised frequencies from k0Λ = 26 to
46 at a spacing of 0.2. Similar to that observed in Kagome and square-lattice hollow-core PCFs,
the attenuation for rectangular hollow-core PCFs varies dramatically as a function of frequency.
In the selected range, it generally shows a decreasing trend with increasing frequency. This
feature can also be seen via three peaks at k0Λ = 28.0, 33.2 and 37.4, for which the imaginary
βΛ declines from 5.1×10−5 to 1.3×10−5.

To test the validity of our perturbation calculation we have used the boundary element method
[10–12] to calculate the attenuation. We use a model rectangular hollow-core PCF, a schematic
of the fibre structure is shown in the inset of Fig. 2(a). All the structural parameters are the
same as those used in the perturbation calculations, except for the details at the edge of the
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Fig. 2. Imaginary part of the propagation constant of the fundamental mode over a range
of frequencies in the first transmission window. (a) Comparison between perturbation and
boundary element methods. The inset shows the schematic model PCF structure calculated
by the boundary element method. (b) The effect of the perturbation terms, where the red
line indicates the full perturbation result; the green and blue lines are results that include
only the vector and high-index perturbation terms, respectively.

cladding, where the boundary element method requires an enclosed glass jacket rather than
a supercell geometry. Details of the boundary element calculations are given in Ref. [3]. The
comparison in Fig. 2(a) shows that results for the attenuation are in good agreement in their
order of magnitude and they exhibit a similar variation with frequency. Although the details
do not match well, this is to be expected because the calculated structures are not identical.
Leakages for Kagome and square-lattice hollow-core PCFs were measured experimentally in
the same high-transmission window, although the resonance frequencies differ because of the
fibre structures. In these experiments, the confinement losses varied from about 0.5 dB/m to 1.5
dB/m in Kagome PCFs (with pitch Λ=10.9 μm) [6], and from 1 dB/m to 4 dB/m in square-
lattice hollow-core PCFs (with pitch Λ = 17μm) [9] over a continuous range of frequencies. In
our model structure, the typical level of the imaginary part of βΛ is between 10−6 and 10−5.
The corresponding confinement loss varies from 0.58 dB/m to 5.8 dB/m (if we choose the pitch
Λ = 15μm), in good agreement with the experimentally measured values.

Figure 2(b) shows the separate attenuations calculated using only the vector or high-index
perturbation terms. This comparison shows that the vector terms are the dominant effect in the
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attenuation, including the high-loss peaks. The influence of the high-index terms remains at a
relatively low level, and only for the lowest losses is their effect comparable to that of the vector
terms. This feature indicates that the coupling of the modes arising from the air-glass interface
in much more significant than that from the intersections of the glass strips.

For frequencies close to a resonance of the glass strips, the confinement loss of PCFs signif-
icantly increases [7, 8]. Assuming that the fundamental guided mode is located on the air-line,

i.e. β = k0, the resonance condition is given by k0Λ
�

n2
g −n2

a · t/Λ = jπ [7], where ng and

na are the refractive indices for the glass and air, respectively, t is the thickness of the glass
strips, and j is an integer. In the vicinity of a resonance the attenuation is found to increase; in
Kagome hollow-core PCFs, a high loss region of width 200 nm separates the high transmission
windows [7]. In our model structure, the value of t/Λ is 0.05; the lowest normalised resonance
frequency is therefore k0Λ = 56.2. The attenuations shown in Fig. 2 are located within the first
high-transmission window (i.e. between j = 0 and 1). In the following calculations, we focus
on the guidance only within this window.

Near to the resonance frequency, our calculated attenuation values become negative and
therefore unphysical. In this case, the choice of considering only the glass-guided modes is
not sufficient to calculate the attenuation. A number of modes are located very close to the
fundamental guided mode. Their fields occupy both the air and the glass regions, showing that
they are ‘precursors’ to the set of higher-order glass-guided modes that are about to be trapped.
These characteristics lead to a strong coupling with the fundamental guided mode, giving rise
to contributions to attenuation that are not included in our model.

3.4. Effect of the fibre structure

The confinement loss can also be calculated as a function of the thickness of the glass strips. In
this investigation, the centres of each air and glass region are unchanged, and the thicknesses
of all the glass strips are kept the same.

Fig. 3. Imaginary part of the propagation constant as a function of the glass strip thickness
in the first transmission window when k0Λ = 40. The full, vector and high-index perturba-
tion results are shown in red, green and blue, respectively.

Figure 3 shows the attenuation of the fundamental guided mode versus the thickness of the
glass strips at k0Λ = 40. Similar peaks to those observed in Fig. 2 appear at t/Λ = 0.030, 0.037
and 0.044; a comparison between the two plots shows that reducing the thickness of the glass
struts leads to a shift of the attenuation feature towards a lower wavelength. For example, the
highest frequency peak for t/Λ = 0.05 is at k0Λ = 37.4; for the structure with t/Λ = 0.044,
it moves to k0Λ = 40.0. However, the overall appearance of the attenuation features remains
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unchanged.
We now consider the effect of the size of the central defect; the full width of the central air

hole is labelled D. The frequency k0Λ and the thickness of glass strips t/Λ are fixed at 40 and
0.05, respectively. The central defect is made by simultaneously moving the four glass strips
nearest to the centre by a distance of between 0.03Λ and 0.185Λ.

Fig. 4. (a) Dependence of attenuation on the size of the central defect. Full, vector and high-
index perturbation results are shown in red, green and blue, respectively. (b) Attenuations
for the two sizes of central defect as a function of frequency. The red and green lines
respectively correspond to D = 1.20Λ and D = 1.11Λ.

Figure 4(a) presents attenuations for different sizes of central defect. The values of the imag-
inary βΛ vary more smoothly than those for the strut thickness, from 2.7×10−7 to 4.7×10−6.
The plots show a low-attenuation region, from D= 1.1Λ to 1.15Λ, surrounded by two relatively
high-loss areas. The minimum value of the imaginary βΛ is about 2.8×10−7 (i.e. a loss of 0.16
dB/m for Λ = 15μm) at 1.11Λ. In this case, both the vector and the high-index perturbations
are simultaneously suppressed.

For a more detailed view of this low-loss region, the attenuation for a central defect size of
1.11Λ has been plotted as a function of frequency. The results in Fig. 4(b) show a comparison
of the attenuation with the formerly used central defect of D = 1.20Λ. They exhibit a very
similar variation with frequency, but for the smaller core size, the attenuation characteristic is
shifted towards a lower wavelength. This is similar to what happens for the thinner glass strips.
A comparison of the magnitude in Fig. 4(b) shows that, for a larger central defect, the average
value of the leakage is relatively smaller.
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4. Conclusion

The key technical development of this study is the finding that a perturbation method is effective
in the investigation of a class of PCFs which govern light due to the weak coupling of the
fundamental mode and cladding modes. We have derived an expression for the attenuation
which allows for rapid calculations and which is in good agreement with large-scale numerical
calculations.

Our quantitative analysis for rectangular hollow-core PCFs has shown that the fibre leakage
arises from the interaction between the fundamental mode and the cladding modes, and physi-
cally relates to the density of states of the cladding modes weighted by the magnitude of their
coupling with the fundamental mode. In high-transmission windows, the contribution of the
air-guided modes to attenuation is found to be very small. Although the glass-guided modes
may closely match the fundamental mode in terms of their propagation constants, the large
difference in the spatial frequencies of their fields greatly suppresses the leakage of light.

In our model structure, a smaller central defect or thinner glass struts play a similar role in
pushing the attenuation to a shorter wavelength. Although these variations, for example the use
of a larger central defect, can reduce the attenuation at a specific frequency, they are not effective
for other frequencies and would not greatly affect the overall magnitude of the attenuation in a
whole transmission window.

Our investigation shows that the most of the confinement loss comes from the coupling be-
tween the fundamental mode and the cladding modes situated in the glass layers closest to the
central air defect. To effectively reduce the attenuation of the fundamental mode in Kagome-
like PCFs, an optimised design of the core-surround is important. A suppressed mode coupling
may be achieved by modulating the field profile of the fundamental mode across the glass strips
nearest to the central defect. This understanding also provides theoretical support for the recent
experiment in a Kagome PCF with a hypocycloid shaped air core [13], for which the attenua-
tion is significantly lower than that in a standard Kagome PCF with a circular shaped central
air defect.
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