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ABSTRACT 

Botulinum neurotoxins (BoNTs) cause flaccid paralysis by inhibiting 

neurotransmission at cholinergic nerve terminals. BoNTs consist of three essential 

domains for toxicity: the cell binding domain (Hc), the translocation domain (Hn) and 

the catalytic domain (LC). A functional derivative (LHn) of the parent neurotoxin B 

composed of Hn and LC domains was recombinantly produced and characterised. 

LHn/B crystallographic structure at 2.8Å resolution is reported. The catalytic activity 

of LHn/B towards recombinant human VAMP was analysed by substrate cleavage 

assay and showed a higher specificity for VAMP-1,-2 compared to VAMP-3. LHn/B 

also showed measurable activity in living spinal cord neurons. Despite lacking the Hc 

(cell-targeting) domain, LHn/B retained the capacity to internalize and cleave 

intracellular VAMP-1 and -2 when added to the cells at high concentration. These 

activities of the LHn/B fragment demonstrate the utility of engineered botulinum 

neurotoxin fragments as analytical tools to study the mechanisms of action of BoNT 

neurotoxins and of SNARE proteins. 

 

Keywords: Botulinum neurotoxin, Protein engineering, SNARE, Crystal structure 
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INTRODUCTION 

Botulinum neurotoxins (BoNTs) modulate cholinergic nerve terminals to cause a 

severe fatal illness, botulism. They are the most potent known protein toxins. There are 

seven serotypically distinct forms of BoNT, labelled A-G, expressed by various 

Clostridium strains. They are composed of a 150 kDa di-chain molecule that follows the 

AB bacterial toxin motif with intracellular targets. Upon binding and internalisation in 

neuronal cells the toxin blocks neurotransmitter release, leading to flaccid paralysis and 

potentially death. Despite their high toxicity, various preparations of BoNTs are available 

commercially for the treatment of muscular overactivity where at safe doses they can be 

used as therapeutic and cosmetic agents (Barnes et al., 2007; Moore et al., 2007). 

BoNTs are synthesised as single polypeptides cleaved by clostridial or host 

proteases to its active form. The C-terminal heavy chain composes the binding (Hc) and 

translocation (Hn) domains of 50 kDa each, and is linked by a single disulfide bridge to the 

catalytic light chain (LC), a zinc endopeptidase. A loop from Hn wraps around the LC. The 

loop is called the belt region and is common to all BoNTs for which structural information 

is available. It is believed to play an essential chaperone role in the molecules' toxicity 

(Brünger et al., 2007; Galloux et al., 2008). BoNTs bind specifically to the nerve terminals 

and are endocytosed into a vesicle where the acidic environment provokes conformational 

changes. This allows the Hn domain to mediate translocation of LC via pore formation 

across the endosomal membrane into the cytosol (Koriazova and Montal, 2003; Fischer et 

al., 2007). The protease domain is then free to cleave one of the soluble N-ethyl-maleimide-

sensitive fusion protein attachment receptor (SNARE) proteins. These proteins form a 

complex essential in the docking and fusion of synaptic vesicle (Sudhof et al., 2009). 
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Impairing the function of the SNARE complex causes inhibition of neurotransmission and 

hence paralysis. 

The proteolytic activity of each BoNT serotype targets one of the SNARE proteins 

at a distinct site. BoNT/A and E cleave the pre-synaptic membrane protein SNAP-25 

(synaptosomal associated protein of 25 kDa), whereas serotypes B, D, F and G are 

responsible for the cleavage of the vesicle associated membrane protein (VAMP), also 

known as synaptobrevin and cellubrevin. Unlike the other serotypes BoNT/C can 

proteolyse two SNARE proteins, both SNAP-25 and syntaxin. Substrate recognition has 

been a point of attention since it relies on an extended set of exosites located downstream 

and upstream of the scissile bond (Breidenbach and Brünger, 2004; Chen et al., 2007, 2008; 

Sikorra et al., 2008; Agarwal et al., 2009). Crystallographic evidence of SNAP-25 bound to 

LC/A highlighted this complex interaction with the substrate wrapping around LC 

(Breidenbach and Brünger, 2004). More recently, several mutation and kinetic studies with 

VAMP-2 illustrated the important regions for proteolysis of the VAMP specific Clostridial 

toxins (Chen et al., 2008; Sikorra et al., 2008). Alongside the structure of LC/F in complex 

with peptide inhibitors (Agarwal et al., 2009), this suggests a common mode of an extended 

substrate binding, each presenting with a different set of enzyme-substrate interactions. 

Trypsinization of BoNT/A led to the discovery of an active fragment composed of 

the LC and Hn domains only, termed LHn/A (Shone et al., 1985). This fragment was later 

recombinantly expressed and showed catalytic properties similar to the parent toxin. This 

fragment was active on cells when added at high concentration (Chaddock et al., 2002). A 

more recent study again confirmed the ability of LHn/A to become internalized and act on 

the intracellular substrate despite lacking the binding domain (Hc) (Fischer et al., 2008). 

Furthermore, the crystal structure of LHn/A demonstrated that the structures of LC and Hn 
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are not destabilized by deletion of the Hc domain. This makes these proteins attractive 

candidates as scaffolds for the design of novel biological therapeutics (Chaddock and 

Marks, 2006; Foster, 2009; Masuyer et al., 2009). 

Crystal structures of the full length BoNT/A (Lacy et al., 1998), B (Swaminathan 

and Eswaramoorthy, 2000), and E (Kumaran et al., 2009) have been determined, along with 

the LC of all serotypes (Agarwal et al., 2004, 2005; Segelke et al., 2004; Arndt et al., 2005, 

2006; Jin et al., 2007). All the holotoxin structures available present single domains with 

similar folds. Nevertheless, inter-domain contacts were different in the E serotype 

compared to serotypes A and B. This indicates that BoNTs may be structurally more 

diverse than expected. A further illustration of this is the belt region from the Hn domain, 

for which limited information is available. Even though Hn is highly conserved between 

serotypes, the belt presents the most variation in primary sequence (Lacy and Stevens, 

1999). Indications given from the holotoxin structures have highlighted the essential 

functional role it may play, and also proved useful in giving clues on substrate binding 

(Breidenbach and Brünger, 2004). In this context, LHn fragments represent a useful tool to 

further investigate the flexibility of the BoNT molecules in giving essential information on 

the interaction between the functional Hn and LC domains.  

Here we report the crystal structure of the LHn fragment from serotype B botulinum 

neurotoxin at 2.8 Å. It demonstrates the stability of the translocation domain in association 

with the catalytic light chain. The metalloprotease activity of the parent toxin is conserved 

and presents differences in VAMP substrate specificity. If applied at suitably high 

concentrations, this active protease can be translocated inside neuronal cells despite the 

lack of a specific binding domain. It confirms the relevance of LHn/B as a functional 



 6 

molecule and highlights the use of LHn as a tool for deciphering the mechanism of 

botulinum neurotoxin’s action. 

 

MATERIALS AND METHODS 

 

LHn/B cloning, expression and purification – The synthetic gene encoding 880 

amino acids of LHn/B was cloned into modified pET vector (Novagen, UK) with a C-

terminal 6 x His-tag and transformed into E. coli BL21 expression cells. The LHn/B gene 

was engineered to encode for Factor Xa cleavage site (IEGR) between the LC and Hn 

domain between positions 449-452. Expression cultures of LHn/B were grown in 1L 

terrific broth at 220 rpm, 37°C until OD600 reads 0.5-0.6. Then cultures were incubated at 

16°C and induced with IPTG (1mM). Cells were harvested after 18 h, and stored at -80°C 

until further use.  

Cells were resuspended in 50 mM HEPES, pH 7.2, 0.2 M NaCl (buffer A) and lysed 

at 20,000 psi with a homogenizer (Constant Systems Ltd). Lysate was centrifuged for 45 

minutes at 12,000 rpm. Soluble fraction was loaded onto a Ni
2+

-charged chelating 

sepharose column (GE Healthcare). LHn/B eluted at 100 mM imidazole (dissolved in 

buffer A) and dialysed overnight at 4°C against buffer A. Activation of purified LHn/B is 

achieved by Factor Xa (New England BioLabs) treatment. The cleaved fusion protein was 

supplemented with ammonium sulfate to 1 M and loaded onto a Toyopearl Phenyl-350M 

column, equilibrated with 50 mM HEPES, pH 7.2, 1.0 M ammonium sulfate. LHn/B eluted 

at 0.7 M ammonium sulfate (in buffer) and dialysed overnight against buffer A at 4°C. The 

sample was finally concentrated using Vivaspin 50000 MWCO concentrator to 9 mg/mL 

and stored at -20°C. All concentrations were determined by A280 measurement. 
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Crystallization and structure determination – Crystals were grown in 15% 

PEG3350, 0.1 M BisTrisPropane pH 6.5, 0.2 M sodium sulfate. Diffraction data were 

collected at the Diamond Light Source, UK, beamline IO3. A complete dataset to 2.8 Å 

was collected from a single crystal at 100K (25% glycerol as cryoprotectant) using a 

Quantum-4 CCD detector (ADSC Systems, CA). The data were processed and scaled in 

orthorhombic space group P21212 using MOSFLM and SCALA (CCP4, 1994; Leslie, 

2006) (Table 1). Initial phases were obtained by molecular replacement using PHASER 

(McCoy et al., 2007) with the coordinates of a model based on the LHn fragment of the 

BoNT/B structure (PDB code 1EPW, Swaminathan and Eswaramoorthy, 2000). 

Crystallographic refinement was carried out using REFMAC5 (version 5.5) (Vagin et al., 

2004). Manual adjustments and model fitting was done using COOT (version 0.6.1) 

(Emsley and Cowtan, 2004). Water molecules were added at positions where Fo–Fc 

electron density peaks exceeded 3σ and potential H-bonds could be made. The structure 

was validated using MOLPROBITY (Davis et al., 2007). Structure figures were drawn with 

PyMOL (DeLano Scientific LLC). 

Enzymatic assay – LHn/B and BoNT/B (Metabiologics, US) were diluted to 0.1 

g/ml in buffer containing 50 mM HEPES pH 7.2, 20 M ZnCl2, 1 g/l BSA, 10 mM 

DTT, and incubated at 37°C for 30 minutes. Recombinant VAMP-1 (2-96), -2 (1-94) and -3 

(2-77) substrates were expressed with a C-terminal GFP tag and purified. VAMP-GFP 

substrates were serial diluted and incubated with the test enzyme at 37°C for 1 hour. 

Reactions were stopped by adding 2x reducing sample buffer. Samples were then loaded on 

to a 4-12 % Bis-Tris gel (Invitrogen) along with BSA standards and visualized by staining 

with Simply Blue Safestain (Invitrogen). Assay results were quantified by densitometry 

(Syngene Bioimaging). 
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Embryonic spinal cord neuron (eSCN) assay – Spinal cords dissected from 14–15 

day old foetal Sprague Dawley rats were cultured for 21 days using a modification of 

previously described method (Chaddock et al., 2002). eSCN were treated with serial 

dilutions of LHn/B and BoNT/B, and incubated at 37 °C with 10% CO2 for 24 hours. Cells 

were lysed by removing all media and adding sample buffer (25% NuPAGE buffer, 10 mM 

DTT). After 20 minutes, samples were transferred into microcentrifuge tubes and heated at 

95°C for 5 minutes. All samples were run on 12 % Bis-Tris gels (Invitrogen) and proteins 

were transferred onto nitrocellulose membranes (Invitrogen) using standard protocols. 

VAMP cleavage was monitored by measuring the disappearance of the specific VAMP 

immunoreactive bands compared to an internal control protein (GAPDH). Specific binding 

of VAMP-1, -2 and -3 primary antibodies (Abcam #ab3346, #ab3347 and #ab43080) was 

visualised using peroxidase-conjugated secondary antibodies and an enhanced 

chemiluminescent (ECL) detection system (Thermo), analysis was performed by 

densitometry (Syngene Bioimaging). 

 

RESULTS AND DISCUSSION 

 

Structure of LHn/B – The crystal structure of LHn/B has been determined at 2.8 Å 

resolution. The structure was refined to a final Rfree = 28.2%, and Rcryst = 24.1% (Table 1, 

Fig. 1a), with 97.8% of amino acids in the Ramachandran plot allowed region. 

The structure presents the two domains interacting tightly in a di-chain complex. 

The successful activation of LHn/B by Factor Xa at the engineered site was confirmed by 

SDS–PAGE analysis and the crystal structure, which shows a clear evidence of the 

cleavage by a break in electron density between LC and Hn (Suppl. Fig. S1). This region is 
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likely to be particularly important for BoNT activity and Hn-mediated delivery of LC in the 

cytosol. The resulting LC C-terminus and the disulfide bridge (A Cys 437– B Cys 461) 

between LC and Hn are stabilised through an anti-parallel -sheet arrangement.  

The overall structure of LHn/B (Fig. 1a) resembles BoNT/B without the binding 

domain, and superposition of LHn/B with its parent toxin gives an overall root mean square 

deviation of 0.95 Å for 837 C

-atoms (Fig. 1b). The absence of the 50 kDa binding domain 

in LHn/B did not produce any major conformational change compared with the structure of 

full length BoNT/B. 

LC is a metalloprotease with the catalytic zinc ion coordinated by the conserved 

tetrahedral arrangement of His 229, His 233, Glu 267 and a water molecule hydrogen 

bonded to Glu 230. While LC is fairly conserved among BoNTs, its activity is regulated by 

a complex substrate binding mechanism relying on dispersed exosites, away from the 

catalytic site, and in the case of BoNT/A the movement of flexible loop regions 

(Breidenbach and Brünger, 2004). The unstructured regions seen in LHn/B follow the same 

arrangements as seen in the full length toxin (Fig. 1). Residues 208-218, downstream of the 

active site, could not be modelled due to the lack of electron density. This may be the result 

of the loop's flexibility, even though the holotoxin structure shows it to be stabilised by 

interactions with helices 17 and 19 of Hn (Swaminathan and Eswaramoorthy, 2000). 

Three long anti-parallel helices structure the Hn domain. The newly accessible 

solvent area left open by the lack of binding domain represents 1880 Å
2
 and shows weak 

electrostatic potential (Suppl. Fig. S2). The interface between Hn and Hc of the holotoxin is 

based on 12 potential hydrogen bonds and some weaker van der Waals’ contacts between 

loop 916-920 of Hc and helix 20 of Hn, as well as between the short linker helix of Hc 
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subdomains and loop 610-615 (Hn) (Swaminathan and Eswaramoorthy, 2000). The loop 

between residues 626-630 and the last 10 C-terminal residues (including the poly-His tag) 

of LHn/B could not be modelled due to lack of electron density. Strong inter-helical 

interactions allow Hn to keep its long helical conformation as illustrated by the perfect 

superposition of LHn/B with BoNT/B (Fig. 1b). The belt of Hn surrounding LC appears to 

be important for aspects of BoNT activity. The LHn/B structure demonstrates that the 

stability of this fold is based on strong interactions with LC and is similar to that seen in the 

holotoxin structure. 

The crystallographic studies of LHn, serotypes A and B, highlight the exceptional 

structural stability of these fragments when compared to their parent holotoxins. LHn/A has 

been shown to conserve not only the structure, but also the catalytic property of BoNT/A, 

as well as a potential for intracellular activity (Chaddock et al., 2002; Fischer et al., 2008; 

Masuyer et al., 2009). Analysing the functionality of these fragments can therefore help 

understand the relationship between BoNT domains. 

Proteolytic activity of LHn/B – The ability of LHn/B to retain its proteolytic activity 

was tested by looking at the cleavage of VAMP-1, -2 and -3. The three substrates were 

recombinantly produced as GFP-tagged constructs and were successfully hydrolysed by 

LHn/B (Fig. 2a). The cleavage site was checked for each substrate by N-terminal 

sequencing (Alta Bioscience, UK) and confirmed to be at the expected position, 

corresponding to the site of BoNT/B action (Fig. 2a). 

A quantitative analysis of VAMP cleavage was performed by testing a range of 

different substrate concentrations at a fixed concentration of LHn/B (0.01 g/ml). The 

plotted results were fitted according to a Michaelis-Menten equation. Substrate cleavage 

showed a higher maximal velocity (Vmax) for VAMP-1 and -2, (157±12 and 150±27 
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pmol/hour/g enzyme respectively) than it did for VAMP-3 (27.9±3.5 pmol/hour/g 

enzyme). Similar results were obtained with the BoNT/B control (unpublished results). A 

precise calculation of Km is difficult due to the nature of the assay, making the visualisation 

of low product levels hard to quantify. However determinations of Km only varied between 

3.2 and 12 M. It is likely that these apparent differences are within the errors of the 

estimations. Extensive work on the requirements for VAMP cleavage by Clostridial toxins 

have demonstrated that residues 60-87 of VAMP-2 were sufficient for efficient cleavage by 

BoNT, with residues within close distance of the scissile bond influencing the catalytic rate 

of reaction whereas several exosites on both sides of the bond were involved in binding 

(Chen et al., 2008). The primary sequences of the three VAMP tested (Fig. 2b) show that 

the scissile bond area is generally very conserved, apart for a minor difference at position 

P2 in VAMP-1 (VAMP-1/S – VAMP-2-3/T). This high degree of sequence conservation 

may explain the low variation in Km observed between the three substrates. The sequence 

alignment presents only one noticeable difference between VAMP-1 and -2 compared to 

VAMP-3 that lies near to the previously identified BoNT binding regions (VAMP-1-2/ Ala 

39, 37 respectively compared to VAMP-3/ Asn 20). Further work is necessary to determine 

if this change accounts for the Vmax difference observed for these substrates. Another 

obvious difference in VAMP-3 compared to VAMP-1 and -2 is the N-terminal region 

which is considerably shorter and lacking the proline-rich region seen in VAMP-1 and -2. 

However, LC/B was proved to efficiently cleave a construct from VAMP-2 lacking 

residues 1-59 (Chen et al., 2008). The C-terminal transmembrane regions of the VAMP 

proteins were not included in these recombinant substrates. These regions were replaced by 

a GFP-tag and are unlikely to affect substrate binding. 
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Activity of LHn/B on spinal cord neurons – Studies with BoNT/A have shown that 

Hn is necessary for the transport of LC into cells (Koriazova and Montal, 2003). LHn/B is 

similarly composed of the catalytic light chain with its translocating partner domain. The 

function of Hn in absence of the BoNT binding domain was investigated on embryonic 

spinal cord neurons (eSCN) and compared to the holotoxin's effect. VAMP cleavage was 

monitored by Western blotting eSCN lysates after incubation with each protein. The blots 

were quantified by densitometry and the proportion of uncleaved VAMP remaining after 

treatment was plotted (Fig. 3).  

The response followed dose-dependent sigmoidal curves for BoNT/B on VAMP-1 

and -2, with sub-picomolar EC50. High concentrations of LHn/B also showed a sigmoidal 

dose-dependent response with EC50 of 15 and 170 nM on VAMP-2 and -1, respectively. 

This suggests that the binding domain of BoNT/B confers the toxin a more than 10
5
-fold 

better efficiency in reaching its intracellular substrate. This is analogous to the phenomenon 

seen with BoNT/A and LHn/A where a 10
5
 fold difference in concentration was observed 

on the inhibition of neurosecretion in similar cells (Chaddock et al., 2002). It is expected 

that intracellular VAMP cleavage observed here would also result in a similar inhibition of 

neurotransmission, thus representing a reliable model to assay VAMP-specific BoNTs. 

The mechanism of entry of LHn/B into eSCN is unknown but is likely to rely on a 

non-specific process. Fisher et al. (2008) reported LHn/A’s ability to translocate LC over a 

wide pH range compared to the native toxin, therefore increasing the likelihood of 

translocation. On the other hand, the possibility of a low affinity receptor for LHn/B in this 

cell type should not be excluded. The effect observed here is enhanced by the high LHn/B 

concentration and the sensitivity of the system used for testing. However, further 
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experimental evidence is required to fully understand the mechanism of internalization by 

the LHn molecule. 

BoNT/B and LHn/B both showed higher apparent efficiency in cleaving VAMP-2 

compared to VAMP-1 in eSCN (Fig. 3). However we do not fully understand the 

significance of this observation. Differences in the immunoreactivity, abundance and sub-

cellular localization of these two SNAREs may play roles in accounting for this 

observation. VAMP-2 is known to be the most abundant protein in synaptic vesicles 

(Takamori et al., 2006). One possibility is that VAMP-2 might compete with VAMP-1 for 

binding to the LC. We also monitored VAMP-3 in treated eSCN lysates and did not detect 

any evidence for VAMP-3 cleavage (results not shown). The role of VAMP-3 (also called 

cellubrevin) has been previously investigated in non-neuronal cells using Clostridial tetanus 

toxin (McMahon et al., 1996). This report has highlighted its importance in the recycling of 

the plasma membrane, early endosome pathways, epithelial cell migration and adhesion 

(Proux-Gillardeaux et al., 2005). Despite VAMP-3 homology with VAMP-1 and -2 (Fig. 

2b), there is no strong evidence for a direct role of VAMP-3 in neurosecretion. The lower 

specificity of LHn/B for this substrate demonstrated in the cell-free assay, along with the 

lack of intracellular proteolysis in eSCN, suggests that the toxin may have evolved to 

specifically target SNAREs directly mediating neurotransmission. 

 

CONCLUSION 

 

Botulinum neurotoxins are complex molecules that present a deadly machinery able 

to specifically inhibit synaptic transmission of cholinergic motorneurons. Each of the 

toxin’s domains is essential for optimal potency and understanding their mechanism will 

allow to better harness this activity towards novel applications (Foster, 2009). New 
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approaches for the study of these molecules are required to determine the full extent of their 

potential. In the present study, the LHn/B fragment consisting the catalytic and 

translocation domains of BoNT/B, is shown to retain its native structure after deletion of 

the Hc domain. The functionality of the fragment was also demonstrated in vitro with its 

ability to cleave several VAMP substrates. Similar to wild type BoNT/B, LHn/B showed 

higher specificity for VAMP-1, and -2 compared to VAMP-3. Furthermore, LHn/B retained 

an ability to cleave intracellular VAMP in spinal cord neurons, indicating an intrinsic 

capacity of Hn to transport its catalytic partner within the cytosol. A detailed understanding 

of the processes involved in internalization and translocation into the cytoplasm is not yet 

available and requires further analysis, which may in turn give some indication on the 

translocation mechanism in the corresponding holotoxins. 

LHn/B does not have the BoNT cell binding domain. The extent to which it can 

interact with and become internalized by other cell types represents an area for further 

study. This may reveal LHn/B as a useful pharmacological tool in the study of VAMP-

mediated secretion events. 

LHn fragments studied so far constitute stable soluble proteins that conserve the 

functionality of their parent holotoxin but lack the neuron specific targeting conferred by 

the binding domains of full-length BoNT. These fragments provide additional tools for 

understanding the structure-function relationship of BoNT domains in the intoxication 

process, and offer a new strategy for therapeutic and vaccine development (Chaddock and 

Marks, 2006). Determining the structure of other LHn serotypes will help refine our 

knowledge and explain the variations in activities seen between the botulinum neurotoxin 

serotypes. 
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FIGURE LEGENDS 

Figure 1: LHn/B structure 

(A). Ribbon diagram representation of LHn/B structure (Hn in blue, LC in cyan). Zinc ion 

is shown as an orange sphere.  

(B). Superposition of LHn/B with BoNT/B (in grey, PDB code 1EPW, Swaminathan and 

Eswaramoorthy, 2000). Overall root mean square deviation was calculated with Swiss PDB 

viewer and was 0.95 Å for 837 C

-atoms. 

 

Figure 2: VAMP cleavage assay 

(A). Enzymatic assay. Cleavage of VAMPs by LHn/B. Results were obtained by 

densitometry analysis and plotted. Non-linear fit was done with GraFit following 

Michaelis-Menten equation. Results for VAMP-1: Km= 12±3, Vmax= 157±12; VAMP-2: 

Km= 6.0±4.3, Vmax= 150±27; VAMP-3: Km= 3.2 ±1.4, Vmax= 27.9±3.5 (Km in M, 

Vmax in pmol/hour/g enzyme). 

(B). CLUSTALW alignment (EBI) of human VAMP-1,-2 and -3. Regions important for 

VAMP-2 cleavage by BoNTs are coloured in grey (Chen et al., 2008; Sikorra et al., 2008), 

numbers correspond to VAMP-2 residues. The C-terminal transmembrane domain is 

indicated. 

 

Figure 3: Spinal cord neuron assay 

(A). Western blot analysis of VAMP-2 from cell lysates after treatment with decreasing 

concentrations of LHn/B and BoNT/B.  
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(B). Analysis of intracellular cleavage of VAMP-1 (circles and squares) and -2 (triangles 

and diamonds) after treatment with LHn/B and BoNT/B respectively. Results were 

obtained by densitometry analysis and plotted. Non-linear fit was done with GraFit.  
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Table 1. X-ray data collection and refinement statistics 

 

A. Data collection statistics 

Space group P21212 

Number of molecules/asymmetric unit 1 

Cell dimensions a = 66.9, b =113.5, c =149.1Å 

Resolution range (Å) 50-2.8 

Rsymm
a
 (%) 12.1 (51.4) 

I/I (outer shell) 10.3 (3.5) 

Completeness (outer shell) % 99.8 (100.0) 

Total no. of reflections  165,586 

Unique no. of reflections 28,644 

Redundancy 5.8 (5.8) 

Wilson B-factor (Å
2
) 57.6 

B. Refinement statistics  

Resolution range (Å) 50-2.8 

Rcryst
b
 (%) 24.0 

Rfree
c
 (%) 28.2 

Number of non-H atoms  

Protein 6828 

Metal  1 zinc ion 

Water molecules 31 

Average temperature factor (B-factor) (Å
2
) 

Protein atoms- Chain A = 32.6, B = 40.8  

(water molucules = 22.1) 

RMSD in bond lengths (Å) 0.006 

RMSD in bond angles (°) 0.86 

 

a
Rsymm = Σh Σi |I(h) – Ii(h)| / Σh ΣiIi(h), where Ii(h) and I(h) are the i

th
 and the mean measurements of 

the intensity of reflection h, respectively. 

b
Rcryst = Σh |Fo| – |Fc| / ΣhFo, where Fo and Fc are the observed and calculated structure factor 

amplitudes of reflection h, respectively. 

c
Rfree is equal to Rcryst for a randomly selected 5.0% subset of reflections not used in the refinement.
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Figure 1: LHn/B structure 
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Figure 2: VAMP cleavage assay 
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Figure 3: Spinal cord neuron assay 
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SUPPLEMENTARY INFORMATION (Masuyer et al.) 

 

(A) (B)  

 
 

Fig. S1. (a) Structure of LHn/B: LC (Cyan)-Hn (Blue) interaction at the disulphide bridge – 

Factor Xa cleavage site for activation. 2|Fo|-|Fc| map at 1

(b) SDS-PAGE of purified LHn/B under non-reducing (1) and reducing conditions (2). 

 

 

 
Fig. S2. Structure of LHn/B: newly accessible solvent surface. Electrostatic potential 

calculated using APBS in PyMOL (Negative potential in red, Positive in blue). 
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