

Citation for published version:
ffitch, J 2011, 'Running Csound in parallel' Paper presented at Linux Audio Conference 2011, National University
of Ireland, Maynooth, 6/05/11 - 8/05/11, pp. 17-22.

Publication date:
2011

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161908502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/running-csound-in-parallel(1acfb345-8c52-46cf-807a-cd791d464776).html

Running Csound in Parallel

John ffitch
Department of Computer Science

University of Bath
Bath BA2 7AY

United Kingdom
jpff@cs.bath.ac.uk

Abstract

One of the largest challenges facing computer sci-
entists is how to harness multi-core processors into
coherent and useful tools. We consider one approach
to shared-memory parallelism, based on thirty year
old ideas from the LISP community, and describe
its application to one “legacy” audio programming
system, Csound. The paper concludes with an as-
sessment of the current state of implementation.

Parallelism, HiPAC, Csound
In the history of computing we have already

seen rather often a mismatch between the avail-
able hardware and the state of software devel-
opment. The current incarnation is currently as
bad as it ever has been. While Moore’s Law on
the number of transistors on a chip still seems
to be accurate, the commonly believed corol-
lary, that processors get faster in the dame way,
has been shown not to be the case.

Instead we are seeing more processors rather
than faster ones. The challenge now is to find
ways of using multiple cores effectively to im-
prove the performance of a single program. This
paper addresses this issue from a historical per-
spective and show how 1980s technology can
be used, in particular to providing a faster
Csound[Boulanger, 2000].

1 The Hardware Imperative

Computing has always had a hardware and a
software aspect. It may be usual to view this as
a harmonious marriage, but in reality there are
a number of tensions in the relationship. Some-
times these conflicts are positive and stimulate
innovation, so example the major improvements
in compilation following RISC technology.

Usually software follows the hardware, driven
by the technological imperative in the words of
Robert S. Barton. When I worked with him
the late 1970s it was also parallelism that was
the cause, as we struggled to provide software to
control massively parallel functional computers.
I believe that there are many lessons to learn

from that attempt to develop parallelism into a
usable structure.

2 A Brief History of Parallelism

...and a biased one. Most of my involvement
with parallelism has come from a functional or
LISP style. For example we proposed a paral-
lel functional machine forty years ago, but this
widened following the Barton machine to more
LISP-based systems, such as the Bath Concur-
rent LISP Machine [Fitch and Marti, 1984], and
later the developments of simulation to object-
based parallelism [Padget et al., 1991]. Much
of this work is based on the thesis that users
cannot be expected (or trusted) to modify their
thinking for parallel execution, and the respon-
sibility needs to be taken by the software trans-
lation system that converts the program or spec-
ification into an executable form. In particu-
lar the compiler analysis can be extended to in-
form the structure. The particular LISP form of
this was described by Marti [1980b; 1980a], and
advocated in [Fitch, 1989b] and [Fitch, 1989a].
At the heart of this methodology is determin-
ing when different elements of a program (func-
tion or object-method) do not interact with each
other.

The other aspect of parallelism that needs to
be considered is not just if two entities can be
run at the same time, but is it worthwhile. All
too frequently the overheads of setting up the
parallel section is greater that the benefit. The
problem is in the general case, to know the cost
of a computation is do the computation. This
has led a number of compilation systems that
perform testing runs of the program in order to
estimate the performance. An alternative is to
make a compile time estimate [Fitch and Marti,
1989]. Later, in section 5.5, we will make some
use of both these techniques.

Parallelism has been an issue in computing
for many years, and seems to re-emerge every
twenty years as important. It is contended that

we need to be mindful of what worked and what
did not (and why) from the past.

3 Ab Initio Parallelism

Considering just the area of audio processing
there is a body of existing code, albeit synthe-
sis tools, analysis, mastering etc.. The obvious
alternative to adapting these to a parallel ma-
chine would be to start again, and redesign the
whole corpus with an eye on parallelism ab ini-
tio. The problem with this approach is the vol-
ume of software, and the commitment by users
to these programs. The field of computer music
has already suffered from software loss without
inducing a whole new wave. For this reason the
work advocated here has the preservation of the
syntax and semantics of existing systems at its
heart. This is indeed in line with the longstand-
ing policy of Csound, never to break existing
pieces.

Similarly dependence on user annotation is
not the way forward. Skilled programmers are
not noted for being good at the use of annota-
tions, and we really should not expect our users,
most of whom are musicians rather than pro-
grammers, to take this responsibility.

It should however be recognised that there
have been attempts to recreate audio process-
ing in parallel. Notably there was the 170
Transputer system that extended Csound into
real-time [Bailey et al., 1990], which had hard-
ware related problems of heat. A different ap-
proach was taken in [Kirk and Hunt, 1996]
which streamed data through a distributed net-
work of DSP processing units, to create Mi-
das. Both of these have finer-grained distribu-
tion that the system presented here.

4 High Performance Computing

The mainstream projects in parallel process-
ing are currently focused on HPC (High Per-
formance Computing) which has come to mean
matrix operations, using systems like MPI
[Gropp et al., 1996]. The major interest is in
partitioning of the matrix in suitable sizes for
cache sizes, distribution between multicores and
packet sizes for non-shared memories. Most of
this is not directly applicable in audio process-
ing, where low latency is such an important re-
quirement.

This mismatch led to the promotion of High
Performance Audio Computing in [Dobson
et al., 2008], to draw attention to the differ-
ences, and in particular the latency. The other

point about which I am concerned is that most
of our users have commodity computers, usu-
ally with two or more cores, but not a cluster.
The parallelism attempt in this paper is for the
majority community rather than the privileged
HPC users.

5 Towards a Parallel Csound

Csound [Vercoe, 1993] has a long and venerable
history. It was written in the 1980s, and despite
a significant rewrite ten years ago it remains
grounded in the programming style of that pe-
riod. As a member of the Music V family the
system separates the orchestra from the score;
that is it distinguishes the description of the
sound from the sequence of notes. It also has a
control rate, usually slower than the sampling
rate, at which new events start, old one finish
or control signals are sensed. Instruments are
numbered by integers1, and these labels play an
important part in the Csound semantics. Dur-
ing any control cycle the individual instrument
instances are calculated in increasing numerical
order. Thus if one instrument is controlling an-
other one, it will control the current cycle if it
is lower numbered than the target, or the next
cycle if higher. The main control loop can be
described as

until end of events do
deal with notes ending
sort new events onto instance list
for each instrument in instance list

calculate instrument

In order to introduce parallelism into this pro-
gram the simplest suggestion is to make the
“for each” loop run instances in parallel. If
the instruments are truly independent then this
should work, but if they interact in any way
then the results may be wrong.

This is essentially the same problem that
Marti tackled in his thesis. We can use code
analysis techniques to determine which instru-
ments are independent. Concentrating initially
on variables, it is only global variables that are
of concern. We can determine for each instru-
ment the sets of global variables that are read,
written, or both read and written, the last case
corresponding to sole use, while many can read
a variable as long as it is not written.

There is a special case which needs to be con-
sidered; most instruments add into the output

1They can be named, but the names are mapped to
integers

bus, but this is not an operation that needs or-
dering (subject to rounding errors), although it
may need a mutex or spin-lock. The language
processing can insert any necessary protections
in these cases.

This thus gives a global design.

5.1 Design

The components in the design of parallel
Csound are first a language analysis phase that
can determine the non-local environment of
each instrument specification. This is then used
to organise the instance list into a DAG, where
the arcs represent the need to be evaluated be-
fore the descendents. Then the main control
operation becomes

until end of events do
deal with notes ending
add new events and reconstruct the DAG
until DAG empty

foreach processor
evaluate a root from DAG

wait until all processes finish

We now consider the components of this.

5.2 Compiler

The orchestra language of Csound is basically
simple, rather like an assembler with the op-
erations being a range of DSP functions. The
language processing in the usual Csound is sim-
ple, with a simple ad hoc lexer and hand-written
parsing. It was a wish of the Csound5 re-write
to produce a new parser, based on flex/bison, so
things like functions with more than one argu-
ment could be introduced. A draft such parser
was in construction while the major changes
were made, as described in [ffitch, 2005]. The
needs of parallelism added impetus to the new
parser project, and it was largely completed by
Yi, and is currently being subjected to extreme
testing. The new parser was extended to con-
struct the dependency information, and to add
necessary locks (see section 5.4).

A simple example of the analysis for a sim-
ple orchestra (figure 1) can be seen in figure 2,
listing the variables read, written and exclu-
sive. The additional field is to indicate when
the analysis has to assume that it might read
or write anything.. In our simple example in-
strument 1 is independent of both instruments
2 and 3 (apart from the out opcode. On the
other hand instrument 2 must run to comple-
tion before instrument 3, as it gives a value to
a global read by instrument 3. Any number of

instrument 3 instances can run at the same time
but instances of instrument 2 need some care,
as we must maintain the same order as a single
threaded system.

This dependency analysis is maintained, and
used in the DAG.

5.3 DAG

In the main loop to determine the execution of
the instrument instances the decisions are de-
termined by maintaining a DAG, the roots of
which are the instruments that are available. In
the case of our example the raw picture this is
shown in figure 3. This DAG is consumed on
each control cycle. Näıvely one must retain the
original structure before consumption as it will
be needed on the next cycle. This is complicated
by the addition and deletion of notes. We inves-
tigated DAG updating algorithms but dynamic
graphs is a complex area [Holm et al., 2001] and
we are led to reject the allure of O(log(log(n))
algorithms; this complexity led us instead to a
recreation of the DAG when there are changes.
This is a summary of many experiments, and is
one of the major bottlenecks in the system.

The whole dispatcher is very similar to a in-
struction scheduling algorithm such as [Much-
nick and Gibbons, 2004] augmented by some
VLIW concepts; it is in effect a bin-packing
problem.

5.4 Locking and Barriers

The actually parallel execution is achieved with
the POSIX pthreads library. One thread is des-
ignated as the main thread, and it is is that
one that does the analysis and setup. There
is a barrier set at the start of each control cy-
cle so after the setup all threads are equal and
try to get work from the DAG. This is con-
trolled by a mutex so as not to compromise the
structure. When an instrument-cycle finishes

instr 1
a1 oscil p4, p5, 1

out a1
endin
instr 2
gk oscil p4, p5, 1

endin
instr 3
a1 oscil gk, p5, 1

out a1
endin

Figure 1: A simple Orchestra.

Instr1: [r:{}; w:{}; easy]
Instr2: [r:{}; w:{gk}; easy]
Instr3: [r:{gk}; w:{}; easy]

Figure 2: Analysis of simple orchestra.

there is a further entry to the DAG via a mutex
to remove the task and possibly release others.
When there is no work the threads proceed to
the barrier at the end. The master thread re-
asserts itself to prepare the next cycle. The mu-
tex can be either POSIX mutexs or spinlocks,
and we have experimented with both.

The other use of mutex/locks is in global vari-
able updating. If a variable is added into, with
a statement like

gk1 = gk1 + 1
then there is no need for exclusive use of the
variable except during the updating. The com-
piler creates locks for each such occurrence and
introduces calls to private opcodes (not avail-
able to users) to take and release the lock.
There are other similar types of use that are
not yet under the compiler control but could be
(see section 5.6).

5.5 Load Balancing

A major problem in any non-synchronous par-
allel execution system is balancing the load be-
tween the active processes. Ideally we would
like the load to be equal but this is not always
possible. Also if the granularity of the tasks
is too small then the overhead of starting and
stopping a thread dominates the useful work.
The initial system assumes that all instruments
take about the same time, and that time is much
larger than the setup time.

There is code written and tested but not yet

21

3

Figure 3: Partial Ordering from Analysis.

Opcode init Audio Control
table.a 93 23.063 43.998
table.k 93 0 45
butterlp 9 29.005 4 5.478
butterhi 19 30.000 35
butterbp 20 30 71
bilbar 371.5 1856.028 86
ags 497 917.921 79475.155
oscil.kk 69 12 47
oscili.kk 69 21 49
reverb 6963.5 77 158

Table 1: Costs of a few opcodes.

deployed to collect instances together to ensure
larger granularity. This needs raw data as to
the costs of the individual unit generators. This
data can come from static analysis(as in [Fitch
and Marti, 1989]), or from running the program
in a testing mode. In the case of Csound the
basic generators are often constant in time, or
we may assume some kind of average behaviour.
We have been using valgrind on one system (ac-
tually Linux i386) to count instructions. With
a little care we can separate the three compo-
nents of cost; initialisation, instructions in each
k-cycle and those obeyed on each audio sample.
In the case of some of these opcodes the calcu-
lation do not take account of the time ranges
due to data dependence, but we hope an aver-
age time is sufficient. These numbers, a small
selection of which are shown in table 1, can be
used for load balancing.

5.6 Current Status

The implementation of the above design, and
many of its refinements are the work of Wil-
son[2009]. His initial implementation was on
OSX and tested with a twin-core processor.
The version currently visible on Sourceforge is
a cleaned up version, with some of the experi-
mental options removed and a more systematic
use of mutexs and barriers.

The parser is enhanced to generate the depen-
dency information and to insert small exclusion
zones around global variable updates. The in-
strument dispatch loop has been rewritten along
the lines in section 5, with the necessary DAG
manipulations. There is code for load balanc-
ing but until the raw data is complete it is not
deployed, but it has been tested.

Some opcodes, notably the out family have
local spin locks, as they are in effect adding
into a global variable. There are similar struc-

Sound ksmps 1 2 3 4 5
Xanadu 1 31.202 39.291 42.318 43.043 48.304
Xanadu 10 18.836 19.901 20.289 21.386 22.485
Xanadu 100 16.023 17.413 16.999 16.545 15.884
Xanadu 300 17.159 16.137 15.141 15.723 14.905
Xanadu 900 16.004 15.099 13.778 14.364 14.167

CloudStrata 1 173.757 191.421 211.295 214.516 261.238
CloudStrata 10 89.406 80.998 94.023 110.170 98.187
CloudStrata 100 85.966 86.114 81.909 83.258 85.631
CloudStrata 300 87.153 76.045 79.353 78.399 74.684
CloudStrata 900 82.612 76.434 64.368 76.217 74.747

trapped 1 20.931 63.492 81.654 107.982 139.334
trapped 10 3.348 7.724 9.500 12.165 14.937
trapped 100 1.388 1.810 1.928 2.167 2.612
trapped 300 1.319 1.181 1.205 1.386 1.403
trapped 900 1.236 1.025 1.085 1.091 1.112

Table 2: Performance figures; time in seconds.

tures in Csound that have not been suitably re-
engineered, such as the zak global area and the
software busses, which remain to be done.

The number of threads to be used is con-
trolled by a command-line option. The design is
not for massive parallelism, and the expectation
is that the maximum number of threads will be
about the same as the number of cores.

The limitations of the new parser, which is
still being tested, and the missing locks and
dependencies mean that the parallel version of
Csound is not the main distributed one, but it
is available for the adventurous.

6 Performance

All the above is of little point if there is no per-
formance gain. It should be noted that we are
concerned here with time to completion, and
not overall efficiency. The need for parallelism
here is to provide greater real-time performance
and quicker composition.

The initial Wilson system reported modest
gains on his dual core machine; 10% to 15% on
a few examples with a top gain of 35%. The
developed system has not seen such dramatic
gains but they are there.

Running a range of tests on a Core-7 quad-
core with hyper-threads it was possible to pro-
vide a wide range of results, varying the number
of threads and the control rate. These are pre-
sented in figure 2 with the fastest time being in
bold face. As the control rate decreases, corre-

sponding to an increase in ksmps, the potential
gain increases. This suggests that the current
system is using too small a granularity and the
collecting of instruments into larger groups will
give a performance gain. It is clearly not always
a winning strategy, but with the more complex
scores there is a gain when ksmps is 100. Alter-
natively one might advise large values of ksmps,
but that introduces quantisation issues and pos-
sibly zipped noise.

The performance figures are perhaps a little
disappointing, but they do show that it is possi-
ble to get speed improvements, and more work
on the load balance could be useful.

7 Conclusions

A system for parallel execution of the “legacy”
code in Csound has been presented, that works
at the granularity of the instrument. The indi-
cations of overheads for this scheme suggest that
we need to collect instruments into groups to
increase granularity. The overall design, using
compiler technology to identify the paces where
parallelism cannot be deployed. The real cost of
the system is in the recreation of the DAG and
its consumption, and all too often this overhead
swamps the gain from parallelism.

The remaining work that is needed before this
can enter the main stream is partially the com-
pletion of the new parser, which is nearly done,
and dealing with the other places in Csound
where data is global. As well as the busses men-

tioned earlier there are global uses of tables. In
the earlier versions of Csound tables were im-
mutable, but recent changes has nullified this.
The load balancing data needs to be collected.
Currently this is a tedious process with much
human intervention, and it needs to be scripted,
not only to create the initial state but to make
adding new opcodes into the parallel version.

Despite the problems identified in this paper
parallel Csound is possible via this methodol-
ogy. I believe that the level of granularity is
the correct one, and with more attention to the
DAG construction and load balancing it offers
real gains for many users. It does not require
specialist hardware, and can make use of cur-
rent and projected commodity systems.

8 Acknowledgements

My thanks go to the many people who have
contributed to the work here, In particular Jed
Marti for the initial ideas, Arthur Norman for
years of discussions, Steven Yi for the new
parser and Chris Wilson for bringing it to real-
ity; and the Csound developer community who
encouraged me to continue.

References

N. Bailey, A. Purvis, P.D. Manning, and
I. Bowler. 1990. Concurrent csound: Parallel
execution for high-speed direct synthesis. In
Proceedings ICMC90, Glasgow. ICMA.

Richard Boulanger, editor. 2000. The Csound
Book: Tutorials in Software Synthesis and
Sound Design. MIT Press, February.

Richard Dobson, John ffitch, and Russell
Bradford. 2008. High Performance Audio
Computing – A Position Paper. In Pro-
ceedings of the 2008 ICMC, pages 213–216,
SARC, Belfast. ICMA and SARC.

John ffitch. 2005. The Design of Csound5. In
LAC2005, pages 37–41, Karlsruhe, Germany,
April. Zentrum für Kunst und Medientech-
nologie.

J. P. Fitch and J. B. Marti. 1984. The Bath
Concurrent LISP machine. In Proceedings
of EUROCAL 1983, volume 162 of Lecture
Notes in Computer Science, pages 78–90.

J. P. Fitch and J. B. Marti. 1989. The static
estimation of runtime. Technical Report 89–
18, University of Bath Computing Group.

J. P. Fitch. 1989a. Can REDUCE be run
in parallel? In Proceedings of ISSAC89,

Portland, Oregon, pages 155–162. SIGSAM,
ACM, July.

J. P. Fitch. 1989b. Compiling for parallelism.
In J. Della-Dora and J. P. Fitch, editors, Par-
allelism and Computer Algebra, pages 19–32.
Academic Press.

William Gropp, Ewing Lusk, Nathan Doss,
and Anthony Skjellum. 1996. A high-
performance, portable implementation of the
MPI message passing interface standard. Par-
allel Comput., 22:789–828, September.

Jacob Holm, Kristian de Lichtenberg, and
Mikkel Thorup. 2001. Poly-logarithmic deter-
ministic fully-dynamic algorithms for connec-
tivity, minimum spanning tree, 2-edge, and
biconnectivity. J. ACM, 48(4):723–760.

Ross Kirk and Andy Hunt. 1996. MIDAS–
MILAN: An Open Distributed Processing
System for Audio Signal Processing. J. Audio
Eng. Soc., 44(3):119–129, March.

Jed B. Marti. 1980a. Compilation techniques
for a control-flow concurrent lisp system. In
LFP ’80: Proceedings of the 1980 ACM con-
ference on LISP and functional programming,
pages 203–207, New York, NY, USA. ACM.

Jed B. Marti. 1980b. A concurrent processing
system for LISP. Ph.D. thesis, University of
Utah, Salt Lake City.

Steven S. Muchnick and Phillip B. Gibbons.
2004. Efficient instruction scheduling for a
pipelined architecture. SIGPLAN Notices,
39(4):167–174.

J. A. Padget, R. Bradford, and J. P. Fitch.
1991. Concurrent object-oriented program-
ming in LISP. Computer Journal, 34:311–
319.

Barry Vercoe, 1993. Csound — A Manual for
the Audio Processing System and Supporting
Programs with Tutorials. Media Lab, M.I.T.

Christopher Wilson. 2009. Csound Paral-
lelism. Technical Report CSBU-2009-07, De-
partment of Computer Science, University of
Bath.

