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Abstract 

 

Using citrate synthase from the hyperthermophile Pyrococcus furiosus (PfCS) as our test molecule, 

we show through guanidine hydrochloride-induced unfolding that the dimer separates into folded, 

but inactive, monomers before individual subunit unfolding takes place.  Given that forces across 

the dimer interface are vital for thermostability, a robust computational method was derived that 

uses the University of Houston Brownian Dynamics (UHBD) program to calculate both the 

hydrophobic and electrostatic contribution to the dimerisation energy at 100°C.  The results from 

computational and experimental determination of the lowered stability of interface mutants were 

correlated, being both of the same order of magnitude and placing the mutant proteins in the same 

order of stability.  This computational method, optimised for hyperthermophilic molecules and 

tested in the laboratory, after further testing on other examples, could be of widespread use in the 

prediction of thermostabilising mutations in other oligomeric proteins for which dissociation is the 

first step in unfolding.  

 

Key words: analytical ultracentrifugation, fluorescence, UHBD, dimerisation energy, oligomeric 

stability, citrate synthase, archaeon 
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Introduction 

 

Understanding the means by which the thermal stabilities of homologous proteins can differ greatly, 

yet the proteins retain similar activities at their temperature optima, would enable the design of 

thermostable molecules from mesophilic counterparts, which would be valuable in the expansion of 

industrial biotechnology.  In general, no single feature has been identified as being responsible for 

protein thermostability (Vielle and Zeikus 2001, Sterner and Liebl 2001).  Rather, protein 

thermostability is thought to arise from a combination of mechanisms, such as reduction in the 

number of thermolabile amino acids, shortening of flexible loops, improved packing of the 

hydrophobic core making thermostable enzymes smaller than mesophilic counterparts, an increase 

in oligomeric state and, in particular, increased ion pairs, both buried (Matsui and Harata 2007) and 

solvent-accessible (Torrez et al. 2003, Stickler et al. 2006).  Not all these features are found in every 

case, but the importance of ion pairs, particularly when incorporated into more extensive networks 

of ionic interactions, has become evident from a number of genome-scale studies (Karshikoff and 

Ladenstein 2001, Chakravarty and Varadarajan 2002, Robinson-Rechavi et al. 2006); moreover, the 

electrostatic contribution to stability has been shown to become increasingly favourable at higher 

temperatures (Elcock 1998, Xiao and Honig 1999).  Engineering any of these putative stabilising 

features into proteins and achieving increased stability has not been straightforward, although there 

have been successes (Eijsink et al. 2004). 

 

A number of computational methods have been devised to probe the contribution of electrostatic 

interactions to the thermostabilisation of macromolecules, and there have been many reviews on the 

subject (Baker et al. 2003, Koehl 2005, Baker 2005).  One method that has successfully predicted 

the significant stabilisation of mutated proteins over the wild-type, optimises the energy of charge-

charge interactions over the whole surface using a genetic algorithm (Strickler et al. 2006, Gribenko 

et al. 2009). However, the most popular methods are based on a solution of the Poisson-Boltzmann 

equation where, to reduce the computational burden and enable these calculations to be applied to 

macromolecules, the solvent is treated implicitly (Baker 2004).  Early studies were purely 

theoretical, but experimental verification followed.  Spector et al. (2000) predicted improved 

stability of a 41-amino acid protein by replacing a single solvent-exposed amino acid with a non-

natural hydrophobic side chain of similar size and shape.  In calculating the contribution of surface 

amino acids to stability using three different proteins, Torrez et al. (2003) were able to achieve an 

average correlation between calculation and experiment of 0.86.  The contribution of ion pairs to 

thermal stability is generally calculated by finding the difference between the solutions of the 

Poisson-Boltzmann equation for the folded and unfolded states of a protein, to take into account 

that mutations may also stabilise the denatured state and thus have little effect on the equilibrium 
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between the two states (Elcock 1998).  However, in almost all cases these approaches were applied 

to small, monomeric proteins. 

 

In larger proteins, thermal unfolding may not be reversible since unfolding may be followed by 

irreversible aggregation (Eijsink et al. 2004, and references therein), and in these cases it is the 

stability of the native state relative to the intermediate state that is required, rather than to a 

completely unfolded form of the protein.  This is the case for our test enzyme, citrate synthase 

(PfCS), from the hyperthermophilic archaeon, Pyrococcus furiosus, which grows optimally at 

100C.  The crystal structure of the dimeric enzyme has been determined, showing that the active 

site contains residues from both monomers; for example, R353 from one monomer extends into the 

active site of the other subunit (Fig. 1) and serves to bind the α-β phosphates of acetyl-CoA (Russell 

et al. 1997).  Electrostatic interactions across the dimer interface have been implicated in the 

enzyme’s thermostability and thermoactivity (Russell et al. 1997), and this conclusion has been 

tested experimentally by site-directed mutagenesis (Arnott et al. 2000).  A previous study of the 

contribution of electrostatics to the stability of citrate synthase (CS) (Kumar and Nussinov 2004)  

compared the hyperthermophilic PfCS with a psychrophilic CS and a mesophilic CS.  This work 

was purely computational and compared amino acids with their hydrophobic isosteres rather than 

experimentally-accessible amino acids.  Moreover, although the study focussed on psychrophilicity, 

the calculation parameters (dielectric constants, atomic radii) were fixed at the values corresponding 

to 25°C, not the optimal growth temperature for any of the organisms considered, and most distant 

from P. furiosus.   

 

In the current work, we show that for the dimeric PfCS, the first stage in denaturation is the 

reversible separation of the monomers, forming an inactive but folded monomer conformation.  

Having identified the first stage in unfolding for this enzyme system, in our subsequent 

computational analysis we compare the energy of the dimer with that of the two folded individual 

monomers, thereby avoiding the difficulties inherent in estimating the structure of an unfolded 

conformation.  

 

To improve correlation with experiment, the parameters used in the experimental studies were 

incorporated into the computational analyses, permitting a direct comparison of the two approaches 

in the study of the contribution of the inter-subunit ionic interactions to the thermostability of PfCS.  

The method was tested by calculating dimerisation energies for the wild-type enzyme and also for 

two mutated PfCS proteins, where one of the residues responsible for the inter-subunit electrostatic 

interactions yet distant from the active site, Asp113 (Fig. 1), was changed to a residue capable only 

of hydrogen bonding (D113S) and to one incapable of any polar interaction (D113A).  Agreement 
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between the experimentally-measured and computationally-derived stabilities of these proteins 

shows that this is a robust method for the prediction of thermostabilising mutations in PfCS.  

 

 

Materials and Methods 

 

Expression and purification of citrate synthase 

Citrate synthases from P. furiosus wild-type, and mutants D113S and D113A, were produced as 

described by Arnott et al. (2000).  Briefly, the wild-type and mutant CS genes were inserted into the 

Escherichia coli expression vector pREC7/NdeI and expressed under the control of the recA 

promoter by induction with nalidixic acid.  Soluble, active expressed proteins were purified from 

cell extracts as described by James et al. (1994) by a combination of heat treatment and affinity 

chromatography using a Matrex Red Gel A affinity column.   

 

Citrate synthase assay 

Citrate synthase activity was measured spectrophotometrically at 55°C by the method of Srere et al. 

(1963).  The standard reaction mixture contained 0.2 mM oxaloacetic acid, 0.15 mM acetyl-

coenzyme A, and 0.2 mM 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB) in 50 mM EPPS buffer, pH 8 

(at 55°C), containing 100 mM KCl and 2 mM EDTA.   

 

Guanidine hydrochloride-induced unfolding 

Stock solutions of 8 M guanidine hydrochloride (GdnHCl) were prepared as described by Pace and 

Scholtz (1998) and the concentration was determined by refractive index measurements.  Twenty to 

thirty different denaturant concentrations were used to define each denaturation curve and were 

prepared by adding a standard volume of protein solution to a mixture of denaturant stock solution 

and buffer (50 mM sodium phosphate, pH 7, 2 mM EDTA) to obtain a protein concentration of 10 

µg/ml and the required concentrations of denaturant.  The solutions were then incubated at 50°C for 

up to 18 h to allow equilibrium to be reached. 

 

Fluorescence measurements were carried out at 50°C using a Perkin Elmer 50B spectrofluorimeter 

with excitation wavelength 278 nm and emission wavelength 340 nm.  Catalytic activity 

measurements were carried out at 55°C using the standard assay described above. 

 

Analytical ultracentrifugation 

Sedimentation equilibrium was performed in a Beckman Optima XL-A analytical ultracentrifuge 

(Palo Alto, USA) with an An-60 Ti 4-hole rotor.  PfCS stock solution was diluted in buffer to give 
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nine samples for sedimentation equilibrium analysis.  Four samples were diluted in 50 mM 

phosphate buffer, pH 7, 2 mM EDTA, and the remaining five samples were diluted in the phosphate 

buffer containing 2.4 M GdnHCl.  The samples were loaded into 12 mm path length, charcoal-filled 

epon 6-channel centrepieces and run at speeds of 18,000 rpm and 24,000 rpm at 4°C.  A series of 

scans was taken 3 h apart until equilibrium was ascertained using the program WINMATCH 

(http://www.rasmb.bbri.org/rasmb/windows/uconn_uaf/).  The final data were the average of 10 

scans acquired at a wavelength of 280 nm with a radial step size of 0.001 cm.  

 

The sedimentation coefficient of the protein in the presence of 0 and 2.4 M GdnHCl was 

determined by sedimentation velocity.  Protein samples in the phosphate buffer at 0 and 2.4 M 

GdnHCl were loaded into 12 mm path length, charcoal-filled epon double sector centrepieces and 

centrifuged at 4°C in a Beckman Coulter Optima XL-I analytical ultracentrifuge (Palo Alto, USA) 

using an An-50 Ti 8-hole rotor.  Interference optics were used; the laser delay was adjusted prior to 

the run to obtain high-quality interference fringes.  A series of 200 scans, 2.5 minutes apart, was 

acquired at 50,000 rpm.   

 

The partial specific volume (  



v ) of PfCS, calculated from its amino acid composition using the 

program SEDNTERP (Laue et al. 1992; http://www.jphilo.mailway.com/), was 0.742 ml/g in the 

phosphate buffer at 4°C and 0.730 ml/g in the presence of 2.4 M GdnHCl.  SEDNTERP was also 

used to compute buffer densities (1.00481 g/ml (phosphate buffer); 1.06506 g/ml (phosphate buffer 

with 2.4 M GdnHCl)) and viscosities (0.01599 Poise (phosphate buffer); 0.01794 Poise (phosphate 

buffer with 2.4 M GdnHCl)) at 4°C.  

 

Computational methods 

The wild-type PfCS structure was obtained from the PDB (Berman et al. 2000) (PDB ID: 1AJ8).  

The WHAT IF web interface (Rodriguez et al. 1998) was used to add hydrogen atoms and to assign 

the protonation state of the histidine residues based on their potential to form hydrogen bonds 

(Nielsen et al. 1999; Nielsen and Vried 2001). 

 

The calculations were performed with the UHBD package (Madura et al. 1995), following the 

method of Elcock and McCammon (1997), which combines a solvent-accessible surface area 

(SASA) term to describe hydration of non-polar groups with continuum electrostatics to describe 

the polar groups.  The PARSE parameter files of atomic radii and partial charges were adjusted to 

incorporate increasing atomic radii with temperature, having separate files for calculations at 25, 50, 

75 and 100°C (the files were a generous gift from A.H. Elcock, University of Iowa, IA, USA).  

Similarly, the value of the solvent dielectric was decreased with temperature, from 78.8 at 25°C, to 
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69.9 at 50°C, 62.3 at 75°C and 55.6 at 100°C (CRC Press Handbook 1973).  This was necessary to 

reproduce the increased contribution of electrostatic interactions to stability at higher temperatures.  

An accurate value for the protein dielectric constant is difficult to obtain; those quoted in the 

literature vary between 4 (interior) and 20 (surface) (Warshel et al. 2006), so for these whole protein 

calculations the protein dielectric constant was set at 12 across all temperatures.  The proteins were 

placed within a 200
3
 grid with a grid spacing of 0.5 Å.  The ionic strength was chosen to be 50 mM, 

comparable to that used in experimental measurements of ΔΔG*; changing this parameter changed 

the magnitude of the energies obtained, but did not change their order.  The remaining parameters 

were: maxits 500 (number of iterations), nmap 1.4 (probe radius for accessible surface), nsph 300 

(number of surface points per atom for surface calculation), rion 2 (ion exclusion radius), and bcfl 

2.0 (boundary condition 2). 

 

To calculate the hydrophobic contribution to the dimerisation energy, the solvent accessible surface 

area (SASA) of each atom was determined in UHBD, multiplied by a different temperature-

dependent radius scaling factor (RSF) depending on whether the atom was polar, aliphatic or 

aromatic, and then finally summed to give a total value for each structure (Elcock and McCammon 

1997). 

 

Mutant structures were generated using O (Jones et al. 1991), with the changed amino acids being 

modelled in all available rotamer conformations, for each of which a separate energy calculation 

was carried out.  The final dimerisation energy of the protein was calculated as the Boltzmann-

weighted average of the contributions from all the individual rotamers.   

 

Results 

 

Guanidine hydrochloride-induced changes in fluorescence and activity 

Initial studies of the GdnHCl-induced unfolding of wild-type PfCS, monitored by changes in 

fluorescence emission at 340 nm, revealed a single-transition unfolding curve (Fig. 2), consistent 

with a two-state unfolding mechanism.  However, activity measurements indicated that the enzyme 

was completely inactivated at low concentrations of GdnHCl prior to the onset of a significant 

change in the fluorescence emission (Fig. 2).   

 

Reversibility of the unfolding transitions was examined by a 20-fold dilution in phosphate buffer of 

the PfCS that had been fully unfolded in 6M GdnHCl.  Complete recovery of activity was observed 

after incubation for 1 h at 50°C, whereas the fluorescence signal (F340) reached 70% of the initial 

value.  The incomplete recovery in the fluorescence signal is probably due to the need to use higher 
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concentrations of protein (50 μg/ml) in order to detect a signal following dilution. 

 

Analytical ultracentrifugation analysis  

The effects of GndHCl on the wild-type PfCS were further analysed by analytical 

ultracentrifugation.  Sedimentation equilibrium data were fitted with a monomer-dimer self-

association model (encoded in the Beckman Coulter software module within the Origin data 

analysis programme).  The monomer mass was fixed at 43,290 Da (computed from the amino acid 

composition).  Fits (to the 25,000 rpm data) are shown in Figure 3.  In the phosphate buffer PfCS 

dimerises with Kd = 17 nM, whereas this is dramatically elevated to 131 µM upon addition of 2.4 M 

GdnHCl.  Therefore, at the concentrations used throughout this study, PfCS is a dimer in phosphate 

buffer and a monomer in the presence of GdnHCl.   

 

Sedimentation velocity data were analysed using the program SEDFIT (Schuck 2000; Schuck et al. 

2002).  Sedimentation boundaries were initially modelled as numerical finite element solutions of 

the Lamm equation using the c(s) analysis (Fig. 4).  Apparent sedimentation coefficients were 

further obtained via the non-interacting discrete species model that employs finite element analysis.  

The apparent sedimentation coefficients were then corrected to standard conditions of temperature 

and solvent before extrapolation to infinite dilution to obtain sedimentation coefficients independent 

of concentration,   



s20,w
0

.  In phosphate buffer, between 82 and 91% of PfCS (depending on loading 

concentration) sediments with   



s20,w
0

 = 5.41 S; upon addition of 2.4 M GdnHCl the major species 

(between 70 and 100%, again dependent on loading concentration) has   



s20,w
0

 = 3.10 S.  The 

sedimentation coefficients of the dimer (  



s20,w
0

 = 5.36 S) and monomer (  



s20,w
0

 = 3.16 S) of PfCS 

were calculated from the crystal structure (Berman et al. 2000, PDB ID: 1AJ8) using the SOMO 

module (Rai et al. 2005) of the program UltraScan II (Demeler 2005).  This supports the hypothesis 

that in phosphate buffer the major species is a dimer; in 2.4 M GdnHCl PfCS the major species is a 

monomer, whereas the minor peak/shoulder at a lower sedimentation coefficient is most probably 

partially-denatured monomer.   

 

Unfolding model for P. furiosus citrate synthase 

Citrate synthase requires a completely associated dimer for catalytic activity, as the active site spans 

the dimer interface, R353 from one monomer being required to bind co-factor in the other active 

site (Fig. 1).  However, the tryptophan residues of PfCS, responsible for the bulk of the 

fluorescence observed, are buried within the monomer structure, not on the dimer interface, as can 

also be seen in Figure 1; therefore, fluorescence changes happen only once the monomers unfold.  

Thus the intrinsic fluorescence, activity and ultracentrifugation data for PfCS are consistent with a 
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two-step sequential unfolding mechanism involving an initial dimer-to-monomer dissociation at 

low concentrations of denaturant (step I), followed by complete unfolding of the monomer at higher 

denaturant concentrations (step II).  This model can be summarised as: 

 

N2 ⇌ 2N ⇌ 2U 

Consequently, the unfolding data in Fig. 2 were analysed using a concentration-dependent 

dimer/monomer model for step I and a concentration-independent monomer model for step II, as 

described by Neet and Timm (1994) and Ásgeirsson et al. (2000).  For example, the fluoresence 

data (step II) were analysed using a non-linear, least squares programme to fit the entire unfolding 

curve to the equation (Pace, 1990) : 
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where Ff and mf, and Fu and mu, are the slope and intercept of the pre- and post-transition baselines, 

respectively, [D] is the concentration of GndHCl, ΔGu the the free energy of unfolding of the 

monomer, and m is a measure of the dependence of ΔG
u
 on denaturant concentration.  The activity 

data (step I) were similarly analysed, using a modified version of Equation 1, as fully described in 

Ásgeirsson et al. (2000).  The resulting lines of best fit are shown in Fig. 2 and the corresponding 

ΔG and m values in Table I.  The ΔG value for the wild-type enzyme corresponds reasonably with 

that calculated from the Kd of 17 nM determined by ultracentrifugal analysis (ΔG = 9.8 kcal/mol at 

4C). 

 

The effect of GdnHCl on the activity and intrinsic fluorescence of the PfCS mutants D113A and 

D113S was also investigated.  The data were analysed as described above and the corresponding 

ΔG and m values are also shown in Table I.  Myers et al (1995) provide evidence that the amount of 

surface exposed to solvent upon unfolding is a main structural determinant of an m value, and the 

observation that the m values for the N to U transition are larger than those for N2 to 2N is 

consistent with this.  However, the significantly larger mu value of PfCS D113S than that of PfCS 

D113A was unexpected and is unexplained, although others have noted similar effects on single 

amino acid changes in a protein, for instance mutations in Staphylococcus aureus nuclease were 

shown to cause variation in m values over a three-fold range (Shortle 1995). In this study, Shortle 

ascribes these changes in m to changes in the relative stabilities of the native and denatured states 

and acknowledges that little information is available on the range of structures taken up by 

I           II 
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denatured proteins. To avoid the necessity of modelling the denatured states in analysis of the N to 

U transition, this work has concentrated on the preceding N2 to 2N dissociation.   

 

 

Computation analysis of thermostability 

The fluorescence, activity and analytical ultracentrifugation results showed that the PfCS dimer 

separated into two folded monomers before polypeptide unfolding. Thus the thermostability of 

PfCS is critically dependent on interactions that stabilise the dimer, and this is reflected in the 

energy of dimerisation, which is the difference between the energy of the folded dimer and that of 

the two folded monomers separately. Knowing that this first stage in unfolding is reversible meant 

that monomer structures derived from the crystal structure of the dimer could be used in the energy 

calculations rather than the unfolded conformations.  In developing the computational method, 

initial calculations focussed on the wild-type PfCS, calculating the electrostatic and hydrophobic 

contributions to the dimerisation energy across a range of temperatures from 25°C to 100°C, 

mesophilic to hyperthermophilic.  Results of these calculations are given in Table II The calculated 

values of the electrostatic and hydrophobic contributions to the dimerisation energy of the wild-type 

and mutant proteins at 100°C are given in Table III, together with the experimentally-determined 

G
*
 values for thermal inactivation measured at the same temperature.  The dimerisation energy 

values for the D113S PfCS mutant are a Boltzmann-weighted average of those obtained for all three 

possible rotamers (a,b,c) of a serine residue.  

 

 

Discussion 

 

Oligomer stabilisation in hyperthermophilic proteins 

In this work we show through comparison of fluorescence and ultracentrifugation analysis that 

citrate synthase is one of the significant proportion of oligomeric proteins for which denaturation 

begins with reversible dissociation of monomers before the final irreversible unfolding step.  A 

recent review (Rumfeldt et al. 2008) suggests that this is a common result for dimeric proteins, 

although examples of three-state unfolding involving dimeric intermediates and two-state unfolding 

have been described.  In an earlier study of structures of citrate synthases from organisms with a 

range of growth temperature optima from psychrophilic to hyperthermophilic, the extent of 

electrostatic interactions across the dimerisation interface was shown to correlate with increased 

thermostability (Bell et al. 2002).  A recent comparison of 123 dimeric thermo- and hyperthermo-

stable enzyme structures with mesophilic counterparts has shown an increase in ion pairs in the 

thermophilic interfaces, although no correlation was found between the number of interfacial ion 
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pairs and the temperature optima (Maugini et al. 2009).  However, within the citrate synthase 

family of structures this is the case; the hyperthermophilic PfCS has the largest electrostatic 

network, one of the key residues of which is D113.  Mutation of this residue has already been 

shown to reduce thermostability as measured by resistance to irreversible thermal inactivation 

(Arnott et al. 2000).   

 

The ΔGd (N2 ⇌ 2N) values obtained here for the D113S and D113A mutated proteins are lower 

than that of wild type PfCS (Table I), corroborating the importance of electrostatic interactions in 

the inter-subunit bondingG. Thus, for thermophilic oligomeric structures such as the citrate 

synthase dimer, electrostatic interactions are an important factor in thermostability.  

 

Calculation of the electrostatic contribution of individual amino acids to thermostability 

Calculation of the free energies of salt bridges in interfaces has been an area of active research, 

particularly in the area of protein-protein complexes, whether transient or permanent.  Albeck et al. 
 

(2000) used the continuum electrostatic approach as implemented in DELPHI to calculate the 

difference in energy between a protein-protein complex and the two isolated proteins, investigating 

two salt bridges and two hydrogen bonds.  The residues were individually mutated to Ala 

experimentally and computationally but, although the calculations of the effect of removal of the 

salt bridges correlated well with experimental results, the hydrogen bond removal was less 

satisfactory.  

 

Since then there has been an explosion of new computational methods developed to predict the 

pathway and the strength of protein-protein interactions (reviewed in Potapov et al. 2009), many of 

which are web-based and freely available.  These algorithms are knowledge-based, deriving 

parameters from a large training set of interactions that are then validated by applying them to an 

even larger test set.  According to Potapov et al. (2009), there are significant drawbacks to all these 

methods.  Although they predict the correct trend of mutations, the values obtained underestimate 

experimental results, giving, of necessity, an averaged value.  Also, although predictions of the 

effect of mutation to alanine were shown to have a correlation coefficient of 0.5 with experiment, 

mutation to other residues is significantly less accurate, the correlation falling to 0.38.  Thus they 

conclude that there is still a need for more computationally-intensive but more realistic energy 

calculations for individual interactions.  Another important drawback to the use of these methods 

for calculation of the effect of mutation on free energy at elevated temperatures, is that none have 

been trained on thermostable or hyperthermostable structures 
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Similarly, there have been many descriptions of the use of UHBD and other programs such as 

DELPHI to calculate the contribution of electrostatic interactions to thermal stability, some of 

which were followed by comparisons with experiment (e.g. Torrez et al. 2003; Spector et al. 2000),  

but these calculations were carried out for temperatures around 25°C, while thermal denaturation 

takes place experimentally at a significantly higher temperature.  For instance, one such study,  an 

earlier computational study of the same CS enzyme (Kumar and Nussinov 2004), used room 

temperature and zero ionic strength as parameters, conditions that are not appropriate for 

thermophilic or hyperthermophilic enzymes.   

 

Our work uses the method of Elcock and McCammon (1997) to scale the parameters such as 

solvent dielectric constant and atomic radii to values more appropriate for 100°C conditions.  

Consequently, our results for the PfCS wild-type (Table II) calculated that the hydrophobic 

contribution to dimerisation is stabilising at all temperatures, but that the electrostatic contribution 

is destabilising at mesophilic (25°C) and moderately thermophilic (50°C) temperatures, only 

becoming stabilising at hyperthermophilic temperatures.  This is in agreement with current theory 

that stabilisation through salt bridges is important only in proteins from hyperthermophiles (Elcock 

1998; Karshikoff and Ladenstein 2001), and indicates that the use of scaled parameters aids 

accurate prediction at high temperatures.  

 

The absolute values obtained by this method for the dimerisation energy were inversely correlated 

with the protein dielectric constant used in the calculation (data not shown). Using a protein 

dielectric of 4, the electrostatic dimerisation energies were 100kcal/mol higher than those using 12, 

and with a value of 20 they were 20kcal/mol more negative. However, whichever value was used, 

the trends within the energy values obtained were always in the same direction, e.g. with increasing 

temperature the electrostatic contribution became more negative. Using a protein dielectric constant 

of 12 gave the results shown in Table II, where electrostatic interactions become stabilising at 

higher temperatures, and this value was used in all calculations presented. However this uncertainty 

in the protein dielectric constant means that the absolute values of dimerisation energy obtained 

cannot be significant, it is the relative values that should be compared to those in the experimental 

results. Thus the absolute value of the experimental wild type Gd given in Table I measured at 

50°C is not the same as the dimerisation energy at that temperature in Table II, although an 

agreement could have been achieved by using a non-standard value for the protein dielectric 

constant.  

 

Trends in computed values were compared favourably with other experimental data when this 

model was used to calculate pKa in enzyme active sites (Nielsen & McCammon 2003) and the free 
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energies of individual amino acids at elevated temperature (Elcock & McCammon 1997). Potapov 

et al (2009) surveyed six methods for calculations of G on mutation and obtained at best 

correlation of 0.59 between experimental and computational values, although all methods showed a 

correct trend in predictions. This work shows that prediction of trends in G values can be 

extended to high temperatures.  

 

A major improvement with the method reported here is removal of the necessity of estimating an 

unfolded conformation of the protein to obtain meaningful energies of dissociation.  The 

fluorescence data show that the PfCS monomers have essentially the native fold, which is known 

from the crystal structure of the dimer, so the comparison of the energies of the dimer and monomer 

conformations is free from the uncertainty inherent in modelling an unfolded protein.  The 

calculated energy values shown in Table III are obtained by subtracting the energy of the two 

monomers from that of the dimer, and therefore are a measure of the difference in energy of these 

two states with the most negative being the most stable.  A similar approach has been used in 

hetero-protein complex calculations where the energy of the two proteins in isolation is subtracted 

from that of the complex (Albeck et al. 2000).  By presenting their energies with respect to the 

wild-type enzyme, the values for the mutants can be shown to correlate with the published G
*
 

values for thermal inactivation in Table III.  The experimentally-determined Gd (N2 ⇌ 2N) values 

measure the energy barrier to monomer separation, so the more stable species has a larger positive 

value, and the results in Table I show the mutants to be less stable than the wild-type by an amount 

similar in magnitude to those seen in Table III.  In making this comparison, it should be noted that 

irreversible thermal inactivation determines differences in activation energies (ΔΔG*) between 

wild-type and mutant enzymes, whereas ΔΔGd values are free energy differences between dimer 

and monomeric forms.  However, mutational alteration of the stability of the native folded enzyme 

will affect the values of both ΔΔG* and ΔΔGd in a similar manner.  

 

To calculate the energy of mutated proteins, the conformation of the altered amino acid must be 

estimated.  Earlier studies, such as that of Kumar & Nussinov (2004) on CS, calculated the 

electrostatic contribution with respect to hydrophobic isosteres, which are not experimentally 

accessible, so cannot be readily compared with experimental measurements.  This may have been 

due to the difficulty of estimating the relaxation of structures following mutation, and a drawback 

of grid-based methods such as UHBD and DELPHI is that they are critically dependent on the 

positions of atoms relative to the grid.  For point mutations, such as those introduced here, we have 

made the assumption that the overall structure is unaltered and that the mutated amino acid takes up 

one of the well-characterised rotamer conformations (Lovell et al. 2000), and can thus be modelled 
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into the structure of the wild-type protein.  Although this may not be valid for multiple mutations, 

for the single mutations used here a good correlation is observed with experiment (Table III).  

 

In Table III, the serine rotamers are presented in order of descending frequency of occurrence in 

protein structures (Lovell et al. 2000), showing that the third, least common form is in fact the most 

stable.  This is probably not the one that would have been chosen automatically since it is neither 

the most common in other structures (that is rotamer a), nor follows the direction of the D113 side 

chain (approximately in the direction of the b rotamer), but is the only one of the three that is able to 

form a hydrogen bond with H93 on the other monomer and thus restore some of the stabilisation 

across the dimer interface.  Thus, an unexpected outcome of this method was in conformer 

prediction; if the energies of all possible rotamers are calculated, the method can make a clear 

prediction of the most stable conformation of an altered amino acid, despite this not being the most 

common rotamer.  

 

 

Conclusion 

We have shown that the hyperthermostable PfCS dimer dissociates reversibly into two folded 

monomers prior to irreversible unfolding, and knowing this we have developed a robust method for 

calculating the contribution of individual amino acids to protein thermostability at high 

temperatures.  Using this method, with parameters appropriate for experimental conditions, we have 

calculated dimerisation energies of the hyperthermostable, homodimeric PfCS that correlate both 

with published experimental G
*
 values for thermal inactivation (Table III, Arnott et al. 2000), 

and with the Gd (N2 ⇌ 2N) measurements calculated from guanidine-induced inactivation (Table 

I).  Both computational and experimental approaches show the mutants to be less stable than the 

wild-type, the results being of the same order of magnitude and in the same order.  This approach, 

based on knowledge of the underlying mechanism of unfolding and the structure of the molecule, 

now needs to be tested on other systems to determine its wider applicability to the many other 

thermophilic or hyperthermophilic oligomeric proteins shown to unfold after dissociation of 

monomers.  
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Table I 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison of the effects of GdnHCl on the catalytic activity and fluorescence emission of wild-

type PfCS and mutants D113A and D113S.  Data were analysed by non-linear least square analysis 

using Origin software, to derive the free energy of dissociation of the dimer (ΔGd), the free energy 

of unfolding of the monomer (ΔGu), the associated m values, and standard deviations from the 

curve-fitting procedure.   

 

 

 

 

Table II  

 

Temperature  

(°C) 

Electrostatic 

contribution  

(kcal mol
-1

) 

Hydrophobic 

contribution  

(kcal mol
-1

) 

Total dimerisation 

energy  

(kcal mol
-1

) 

25 8.5 -52.6 -44.1 

50 1.9 -62.3 -60.4 

75 -7.3 -68.6 -75.9 

100 -12.6 -71.6 -84.2 

 

Electrostatic and hydrophobic contributions to the dimerisation energy of PfCS. Values over a 

range of temperatures were calculated by subtracting the energy values, calculated in UHBD, for 

the two PfCS monomers from the energy of the dimer. 

 ΔG 

(kcal mol
-1

) 

m 

(kcal mol
-1

M
-1

) 

ΔGd  (N2 ⇌ 2N) 

PfCS wt 14.7 ± 1.0 -2.55 ± 1.43 

PfCS D113A 12.4 ± 1.5 -2.42 ± 1.11 

PfCS D113S 12.3 ± 1.4 -2.68 ± 0.88 

ΔGu  (N ⇌ U) 

PfCS wt 18.7 ± 2.2 -4.18 ± 0.65 

PfCS D113A 17.5 ± 5.2 -4.76 ± 1.41 

PfCS D113S 29.9 ± 5.9 -8.30 ± 1.62 
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Table III 

 

 

 

Electrostatic 

contribution 

 

(kcal mol
-1

) 

Hydrophobic 

contribution  

 

(kcal mol
-1

) 

Total 

dimerisation 

energy  

(kcal mol
-1

) 

Difference in 

dimerisation 

energy 

(kcal mol
-1

) 

ΔΔG* 

 

 

(kcal mol
-1

) 

PfCS -12.6 -71.6 -84.2 0 0 

D113S -12.0 -71.5 -83.5 0.70 0.79 

D113Sa -9.4 -71.4    

D113Sb -7.7 -71.4    

D113Sc -12.1 -71.6    

D113A -9.8 -70.8 -80.6 3.6 1.1 

 

Electrostatic and hydrophobic contributions to the dimerisation energy of wild-type and mutant 

PfCSs.  Values given are the electrostatic and hydrophobic dimerisation energies, calculated by 

subtracting the energy values, calculated in UHBD, for the two PfCS monomers from the energy of 

the dimer.  Values for D113S are given by the Boltzmann-weighted average of those for the 

individual rotamers D113Sa, D113Sb and D113Sc.  All calculations were performed at a 

temperature of 100°C.  The differences in dimerisation energy were calculated by subtraction of the 

wild-type dimerisation energy from those of the mutants.  ΔΔG* values (ΔG*mutant – ΔG*wild-type) for 

irreversible thermal inactivation, included for comparison, are from Arnott et al. (2000). 
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Figure legends 

 

Fig. 1  

The Cα trace of PfCS, with the two monomers drawn in light and dark grey, and individual residues 

added in ball-and-stick representation.  The active sites are indicated by R353, which crosses from 

one monomer to complete the active site of the other, but are separate from the ion pair network in 

the dimer interface, one part of which is D113, the site of the D113S and D113A mutations.  All the 

tryptophan residues, drawn in white, are distant from the dimer interface.  Figure produced using 

MOLSCRIPT (Kraulis 1991). 
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Fig. 2 

GdnHCl-induced unfolding of PfCS at 50°C as determined by changes in relative activity () and 

fluorescence emission (▲).  The enzyme was equilibrated in 50 mM sodium phosphate, pH 7, 2 

mM EDTA, containing varying concentrations of GdnHCl, for up to 18 h at 50°C prior to 

measurements.  Fluorescence emission at 340 nm and citrate synthase activity were measured at 

50°C and the values normalised to the fraction of the value obtained with native, active protein (Fn).  

Data were fitted by non-linear least square analysis using Origin software. 
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Fig. 3 

Sedimentation equilibrium data fitted with a monomer-dimer self-association model for (A) PfCS in 

50 mM phosphate buffer, pH 7, 2 mM EDTA (Kd = 17 nM); loading concentrations were: 1.86 µM 

(), 3.01 µM (x), 3.94 µM (o), 5.34 µM (), and (B) 50 mM phosphate buffer, pH 7, 2 mM EDTA 

containing 2.4 M GdnHCl (Kd = 131 µM); loading concentrations were: 0.70 µM (),1.86 µM (x), 

3.25 µM (o), 4.64 µM (),5.92 µM (+)).  The data have been normalised in the radial dimension to 

permit ease of display.  Residuals of the fits to the data are shown beneath the exponential 

distributions.   
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Fig. 4 

c(s) distributions derived via SEDFIT from SV interference data for PfCS in (red) 50 mM 

phosphate buffer, pH 7, 2 mM EDTA at loading concentrations of 13.4 µM (dashed), 6.7 µM 

(dotted) and 4.2 µM (solid) and (blue) 50 mM phosphate buffer, pH 7, 2 mM EDTA containing 2.4 

M GdnHCl at loading concentrations of 21.0 µM (dashed), 12.6 µM (dotted), 10.6 µM (solid) and 

9.0 µM (dash-dotted)  The peak positions were used to guide subsequent non-interacting discrete 

species model analysis of the raw data from which apparent sedimentation coefficients were 

derived.   


