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Metabolism of meta-bromobenzoic acid by the blocked mutant Ralstonia eutrophus B9 affords an 

enantiopure dearomatised halodiene-diol which we demonstrate is a versatile chiron for organic 

synthesis. The presence of the halogen leads to reactivity that is distinct to that observed for the 10 

non-halogenated analogue and also serves as a synthetic handle for further functionalization. 

Introduction 

The dearomatising dihydroxylation of an aromatic substrate 

by a microorganism was first reported by Gibson over 40 

years ago.1 It was subsequently recognised that the resultant 15 

diene diols were useful starting materials for synthesis owing 

to their densely-packed, differentiated functionality. Indeed, 

their synthetic value is enhanced further by the fact that 

substituted arenes give rise to enantiopure diols in most 

instances. The production and utilisation of these arene-20 

derived diols has become established methodology and the 

field has been the subject of several excellent reviews.2 

 Thus far, over 400 arene cis-diol products have been 

reported. The vast majority of these are produced by 

organisms expressing toluene dioxygenase (TDO), 25 

naphthalene dioxygenase (NDO) and biphenyl dioxygenase 

(BPDO) enzymes. These metabolise substituted arene 

substrates in a regio- and stereoselective fashion. A reliable 

predictive model has been reported for such transformations3 

and the sense of enantioinduction is conserved across 30 

organisms and substrates (Scheme 1a, ortho-meta 

oxygenation). In contrast, organisms expressing benzoate 

dioxygenase (BZDO) enzymes oxidise benzoic acids in a 

process that exhibits not only different regioselectivity, but 

also the opposite sense of enantioinduction. For example, R. 35 

eutrophus B9,4 P. putida U1035 and P. putida KTSY01 

(pSYM01)6 oxidise benzoic acid to benzoate 1,2-cis 

dihydrodiol 4 (Scheme 1b, ipso-ortho oxygenation). 

 
Scheme 1 Regio- and stereoselectivity of dioxygenases. 40 

Diol acid 4 has seen several diverse applications in organic 

synthesis to date. In 1995, Widdowson et al. reported the 

production of 4 with P. putida U103.7 The absolute 

stereochemistry of 4 was determined by means of X-ray 

crystallographic analysis of a para-bromobenzoyl derivative. 45 

The ability of derivatives of 4 to participate in [4+2] 

cycloadditions with various dienophiles was also 

demonstrated. In 2001, Myers et al. described multiple 

approaches for elaborating 4, demonstrating that each position 

on the ring could be functionalised in a selective fashion 50 

through judicious choice of reaction sequence.8 They also 

described in detail a large-scale preparation of 4. That the 

derivatives described therein are of synthetic utility was first 

shown by the report in 2004 of the synthesis of carbocyclic 

analogues of topiramate.9 In this work, Parker et al. described 55 

a route to analogues of this anticonvulsant agent, requiring 

between 3 and 4 steps from one of Myers’ chirons; the authors 

also describe the first use of 4 to access a carbohydrate target, 

carba-β-L-fructopyranose. Also in 2004, Mihovilovic et al. 

reported intramolecular Diels–Alder reactions of derivatives 60 

of 4 bearing tethered dienophiles.10 In 2005, Myers et al. 

disclosed the total synthesis of natural and unnatural 

tetracycline antibiotics11 via a synthetic sequence 

commencing from a derivative of 4 they had described four 

years previously.8 It is noteworthy that whilst the first 65 

stereocentre in the target tetracyclines was set in the arene 

dihydroxylation step, all subsequent stereocentres were 

installed under substrate control; all stereochemical 

information in the final products is thus of ultimate enzymatic 

origin. In 2010, the Mihovilovic group published a full 70 

paper12 on intramolecular Diels–Alder reactions with 4 and, 

most recently, the chemistry of 4 has been augmented by our 

report that simple derivatives of 4 are amenable to 

complexation to form tricarbonyliron(0)diene complexes.13 

We have been able to demonstrate that such complexation 75 

permits the synthesis of otherwise inaccessible moieties. Most 

notably a diene possessing the ortho,meta pattern of 

oxygenation found in 2 but antipodal to 2 may be accessed 

from 4 by means of such organoiron complexes.14 

 The unique synthetic versatility of 4 has thus been 80 

demonstrated. However, we sought to enhance further the 

utility of the BZDO-mediated benzoate dihydroxylation by 

use of substituted benzoate substrates. The viability of 

metabolising substituted benzoates by this approach has been 

established previously. Studies on Ralstonia eutrophus B9† 85 

have shown that a variety of mono- and disubstituted 

benzoates are acceptable substrates. It was noted that turnover 



 

2  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

rates decreased in accordance with the steric demand of a 

substituent, with the ortho position being least tolerant of 

substitution (only ortho-fluorobenzoate underwent 

dioxygenation) and the meta position being the most 

tolerant.4,15 Many other organisms expressing BZDOs have 5 

been evaluated for their ability to process substituted 

benzoates,16 as have organisms expressing TADO17 (toluate 

dioxygenase), TERDOS18 (terephthalate dioxygenase), 

IPADO19 (isophthalate dioxygenase). To our knowledge, 

however, there is just one example to date of the use in 10 

synthesis of an arene dihydrodiol derived from a substituted 

benzoate: Banwell’s use of a metabolite derived from meta-

ethyltoluene in an approach to vinblastine20 (Scheme 2). 

 
Scheme 2 Banwell’s access to arene diol 7 via meta-ethylbenzoic acid. 15 

In the present study, we opted to exploit arene diols derived 

from the metabolism of meta-bromobenzoic acid by R. 

eutrophus B9 (Scheme 3). We anticipated a twofold effect due 

to incorporation of a bromine in the products. Firstly, this 

halide would modulate the electron density of the diene such 20 

that it would exhibit reactivities distinct from those of the 

parent system 4. Secondly, a bromodiene would be amenable 

to diverse cross-coupling reactions to permit further 

functionalization in a manner that would not be possible for 

unsubstituted diene 4. 25 

 
Scheme 3 Arene diol metabolites of meta-bromobenzoic acid. 

As is the case for any meta-substituted benzoate, metabolism 

of 8 may give rise to two regioisomeric diols, 9 and 10, 

reflecting the possibility of the substrate being accommodated 30 

in two possible orientations in the BZDO active site. In the 

specific case of substrate 8, literature precedent was 

ambiguous. In their original report on R. eutrophus B9,4 

Reiner and Hegeman describe the isolation of both 3- and 5-

substituted arene diols from the metabolism of meta-35 

substituted benzoates, but product ratios were not quantified. 

Subsequently, Knackmuss and Reineke quantified product 

formation and found that 5-substituted diols analogous to 10 

were formed more rapidly than the corresponding 3-

substituted regioisomers analogous to 9.15a In both of the 40 

above studies, however, only meta-chloro- and meta-methyl 

benzoate were employed as substrates, not meta-

bromobenzoate 8. Reineke and co-workers’ subsequent 

study15c has been the only one thus far to specifically address 

the metabolism of meta-bromobenzoate 8 by R. eutrophus B9. 45 

Whilst the production of both 9 and 10 is described, the 

product ratio was not determined. In this same study, it is 

stated that when using meta-methylbenzoate, the 5-methyl 

analogue of 10 is “accessible only with difficulty”, whereas 

the 3-methyl analogue of 9 is “isolable in good yield”; such 50 

statements seem to contradict the earlier study.15a Thus, it was 

unclear at the outset what the regiochemical outcome of 

metabolism of 8 by R. eutrophus B9 would be. 

Results and Discussion 

We undertook the biooxidation of 8 in accordance with the 55 

procedure of Myers et al.,8 but on a 15 L scale. R. eutrophus 

B9 cells were induced with a small quantity of benzoate 

before addition of sodium meta-bromobenzoate solution 

portionwise over 48 h; disodium succinate solution was added 

as sole carbon source. The fermentation broth was then 60 

centrifuged to remove cellular material and the supernatant 

was concentrated under reduced pressure. The concentrate 

was acidified to pH 3.0 and extracted numerous times with 

ethyl acetate. Organic washings were dried, then concentrated 

under reduced pressure to give a crude mixture of 8, 9 and 10. 65 

NMR analysis indicated that unreacted 8 was the major 

constituent of the crude mixture. meta-Bromobenzoate 8 had 

been introduced to the fermentation vessel at a rate 

comparable to that used previously8 in the non-halogenated 

case, but R. eutrophus B9 metabolised the brominated 70 

substrate much more slowly, as expected, leading to 

accumulation of unreacted 8. Formation of 3-bromo product 9 

was found to have predominated (>10:1) over the 5-bromo 

isomer 10. 

 Purification of this crude material was effected by repeated 75 

trituration with dichloromethane; this served to remove both 

the starting material 8 and also the traces of 5-bromo product 

10. After 7 triturations, NMR analysis showed the residual 

quantity of 8 to be negligible. By this means, pure 3-bromo 

product 9 was obtained in a yield of 65 mg per litre of 80 

fermentation broth, approximately two orders of magnitude 

lower than those reported for the unsubstituted benzoate.8 

 With access to 9 secured we sought to verify the absolute 

stereochemistry through X-ray analysis of a crystalline 

derivative. The configuration of 4 was originally determined 85 

by Widdowson et al. through formation of the corresponding 

para-bromobenzoylmethyl ester and subsequent X-ray 

analysis;7 the same approach was adopted to determine the 

configuration of 7.20 However, as 9 already incorporates a 

heavy atom, we opted instead to target a crystalline 90 

cycloadduct. Esterification of 9 by means of (trimethylsilyl) 

diazomethane to give 11 was followed by diol protection as 

acetonide 12. Upon treatment with 4-phenyl-1,2,4-triazoline-

3,5-dione, 12 underwent [4+2] cycloaddition to afford 

crystalline adduct 13 (Scheme 4).21 95 

 
Scheme 4 Formation of crystalline derivative. 
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Single crystals of 13 suitable for X-ray structure 

determination were obtained from diffusion of petroleum 

ether into a solution of 13 in ethyl acetate. The structure of 13 

is depicted in Figure 1 and confirms the absolute 

stereochemistry as (1S,2S). Thus, the sense of 5 

enantioinduction in the formation of 9 is the same as in the 

formation of 4 and 7, as expected. 

 
Fig. 1 Solid state structure of 13. Ellipsoids are represented at 50% 

probability. H atoms are shown as spheres of arbitrary radius. 10 

That the sole cycloadduct formed (13) is that in which the 

dienophile approaches anti to the acetonide is in keeping with 

Widdowson’s precedent.7 Aside from that report, all literature 

examples of heterodienophile cycloadditions with arene diol 

derived acetonides involve substrates with the ortho-meta 15 

pattern of oxygenation (c.f. 2). Here also, every report 

describes dienophile addition anti to the acetonide.22,23 In 

such substrates the original arene substituent is attached to the 

diene. In contrast, in 12 (which has the ipso-ortho pattern of 

oxygenation, c.f. 4), the original arene substituent is attached 20 

to an sp3 centre and will not be coplanar with the diene. If the 

substituent is of sufficient steric bulk, approach of the 

dienophile to both diene faces may be hindered. Exclusive 

formation of 13 in this instance is indicative of the steric bulk 

of the acetonide being the controlling factor in determining 25 

regioselectivity of cycloaddition, not steric bulk of the ester. 

 The above considerations are also relevant in the context of 

Diels–Alder dimerisation. Arene diol derived acetonides with 

the ortho-meta pattern of oxygenation (c.f. 2) are known to 

undergo spontaneous dimerization in many instances; this has 30 

been reported with halodienes, e.g. R = Br,23j,24a-c Cl23j,24b,c 

and also with many other substituents on the diene (R = 

CF3,
23b,j,24c R = C2H3,

23j,24c,d R = CN,24e R = COOMe,24f R = 

COOEt,23w R = COOCH2CCH,23w R = SiMe2H,24g,h R = 

SiMe2C2H3
24g,h and R = Me24i). In each instance, the 35 

dimerisation is reportedly totally selective for formation of the 

adduct which is anti both with respect to the diene and also 

the dienophile. (The only reported exception to this trend is 

dimerisation of the acetonide of the parent unsubstituted diene 

2, R = H25 – a minor cycloadduct deriving from syn diene 40 

addition and anti dienophile addition has also been 

reported22,26). The behaviour of the bromodiene acetonide 12 

reported here is in marked contrast to the above cases, in that 

we have observed no dimerisation of 12 upon prolonged 

storage at room temperature or below. Dimerisation of the 45 

non-brominated analogue of 12 has also not been reported. 

We ascribe this inertness to dimerisation to the fact that such 

acetonides with the ipso-ortho pattern of oxygenation (c.f. 4) 

present sterically demanding substituents on both sides of the 

diene, hence retarding the formation of all possible isomeric 50 

dimers. 

 We next examined the susceptibility of the bromodiene to 

oxidative elaboration. Neither 11 nor 12 gave tractable 

products upon attempted epoxidation with mCPBA, in 

contrast to the corresponding non-halogenated dienes.8 55 

However, osmium tetroxide-mediated dihydroxylation of 12 

proceeded smoothly to afford diol 14 as the sole regio- and 

diastereoisomer (Scheme 5). Such selectivity is also in 

contrast to the non-halogenated series, wherein the 

corresponding diene 15 undergoes dihydroxylation to afford a 60 

5:1 mixture of regioisomers favouring the other olefin.8 The 

installation of the free diol functionality in 14 on the β-face 

was confirmed by NOESY NMR experiments.‡ Reductive 

elaboration of bromodiene 12 also proceeded in a markedly 

different fashion to the non-halogenated analogue 15. 65 

Whereas LiAlH4-mediated reduction of the ester in 15 to give 

16 is reportedly7,10,12 high-yielding (Scheme 6a), the 

corresponding reduction of bromodiene 12 affords the primary 

alcohol 17 in only 11% yield. We ascribe this low yield partly 

to the concomitant formation of appreciable amounts of 70 

debrominated product 16, which we have isolated (Scheme 

6b). 

 
Scheme 5 Dihydroxylation on the β-face. Selected NOESY correlations 

in 14 shown with double-headed arrows. 75 

 
Scheme 6 Reductive transformations. 

The complexation of arene diols of type 2 with a 

tricarbonyliron fragment has been extensively studied.27 We 

have reported previously13 on complexation of 18 (the methyl 80 

ester of 4) to afford 19 as the sole product, with iron 

complexed to the α-face (Scheme 7a). A later attempt14 to 

reverse the facial selectivity in this complexation by use of an 

acetonide 15 to block the α-face did indeed result in 

complexation of iron to the diene β-face, but the isolated 85 

product (20) was that in which acetonide migration had 

occurred (Scheme 7b). We were therefore keen to determine 

the outcome of complexation of bromodiene acetonide 12 as 

an iron carbonyl in order to shed light on the mechanism of 

formation of 20. In the event, treatment of 12 with 90 

nonacarbonyldiiron in THF afforded isomeric complexes 21 

and 22, in which 21 was the major isomer (Scheme 7c). The 
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structure of 21 was determined unambiguously by X-ray 

crystallography (Figure 2). (The minor isomer 22, which was 

appreciably less stable than 21, could not be crystallised 

successfully; its structure was assigned by 2D NMR 

experiments‡ and by comparison with 21.) In this instance, the 5 

sole products are those in which acetonide migration has not 

occurred. This may be explained by the fact that in 12, the 

carbon to which an acetonide oxygen would be bonded upon 

rearrangement already bears the bromine substituent. We had 

previously concluded that the formation of 20 arose via 10 

“clockwise” migration of the acetonide, rather than 

“anticlockwise” migration of the ester.14 The absence of any 

such rearrangement in the case of bromodiene 12 is in keeping 

with this conclusion. The presence of the bromine in 12 also 

retards the rate of complexation with respect to unsubstituted 15 

analogue 15 – identical reaction conditions result in 

consumption of all of 15, but recovery of 60% unreacted 12 

(Scheme 7). 

 20 

Scheme 7 Iron complex formation for various related dienes. 

 
Fig. 2 Solid state structure of 21. Of two independent molecules in the 

unit cell, only one is shown for clarity. Ellipsoids are represented at 50% 

probability. H atoms are shown as spheres of arbitrary radius. 25 

The above transformations of bromodiene 12 represent cases 

in which the presence of the halogen modulates the reactivity 

of the system with respect to the unsubstituted diene case. 

However, we wished to exploit further the value inherent in 

the bromine substituent by using transformations that would 30 

not be possible for the unsubstituted case. A dienyl bromide is 

suggestive of applications in cross-coupling chemistry and in 

the more common ortho,meta arene dihydrodiol series, both 2 

(R = Br)24a,28 and 2 (R = I)28a,h,n,29 have indeed been exploited 

in this context. To date, such cross-couplings have not been 35 

reported for derivatives of 4. 

 We first examined a Suzuki-Miyaura coupling30 of 

protected bromodiene 12 with para-tolylboronic acid. Union 

of these fragments under palladium catalysis was indeed 

achieved, although it was found that the reaction conditions 40 

also effected ester hydrolysis. The free acid 23, recovered 

from the aqueous phase, was re-subjected to esterification 

with (trimethylsilyl)diazomethane to afford the originally 

targeted methyl ester 24, albeit in moderate yield (Scheme 8). 

A much more straightforward cross-coupling was the 45 

Sonogashira31 reaction of 12 with (triisopropylsilyl)acetylene, 

which afforded the dienyne 25 in near-quantitative yield 

(Scheme 8). 

 
Scheme 8 Cross-couplings of the bromodiene. 50 

Dienyne 25 is a useful intermediate for further 

functionalization. Desilylation with TBAF affords terminal 

acetylene 26, which is amenable to the Huisgen32 copper-

catalysed azide-alkyne cycloaddition protocol. We have 

demonstrated this through the reaction of 26 with benzyl azide 55 

to afford triazole 27 (Scheme 9). 

 
Scheme 9 Azide-alkyne “click” cycloaddition. 

Conclusions 

We have demonstrated the versatility of a halobenzoate-60 

derived ipso,ortho-oxygenated arene dihydrodiol in various 

synthetic contexts and shown that the presence of the halogen 

fundamentally alters the course of the reaction in many 

instances. The formation of cross-coupling products 23-27 is 

especially significant, as these structures are arene 65 

dihydrodiol derivatives that would not be accessible by direct 

metabolism of the corresponding arene precursors. Thus, for 
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example, accessing 23 by biotransformation of biaryl 

carboxylic acid 28 would not be expected to succeed as the 

steric bulk of the tolyl substituent would likely preclude 

docking of 28 in the R. eutrophus B9 BZDO active site. 

Compound 23 is nevertheless accessible, by means of the 5 

indirect route described in this work (Scheme 10). 

 
Scheme 10 

Current efforts in our laboratory are focused on optimising the 

production process for 9 and incorporating this versatile 10 

chiron in the synthesis of more complex targets, including 

appropriate natural products. The results of these endeavours 

will be reported subsequently.  

Experimental 

General 15 

Reactions which required the use of anhydrous, inert 

atmosphere techniques were carried out under an atmosphere 

of nitrogen. Nonacarbonyldiiron was dispensed in a glovebox. 

Solvents were dried and degassed by passing through 

anhydrous alumina columns using an Innovative Technology 20 

Inc. PS-400-7 solvent purification system. Petrol refers to 

petroleum ether, bp 40-60 °C. TLCs were performed using 

aluminium-backed plates precoated with Alugram®SIL G/UV 

and visualized by UV light (254 nm) and/or KMnO4 followed 

by gentle warming. Flash column chromatography was carried 25 

out using Davisil LC 60Å silica gel (35-70 micron) purchased 

from Fisher Scientifics. IR spectra were recorded on Perkin-

Elmer 1600 FT IR spectrometer with absorbances quoted as ν 

in cm-1. NMR spectra were run in CDCl3 (unless otherwise 

specified) on Brüker Avance 250, 300. 400 or 500 MHz 30 

instruments at 298 K. Mass spectra were recorded with a 

micrOTOF electrospray time-of-flight (ESI-TOF) mass 

spectrometer (Brüker Daltonik).  

 

Biotransformation of meta-bromobenzoic acid 35 

This was performed in accordance with a literature 

procedure,8 substituting meta-bromobenzoate for benzoate in 

the biotransformation step. A sterile pipette tip was streaked 

across the surface of a frozen glycerol stock solution of R. 

eutrophus B9 cells to produce small shards (approx. 10 mg). 40 

The frozen shards were added to a sterile 250 mL Erlenmeyer 

flask containing 100 mL of Hutner’s mineral base medium8,33 

and aqueous sodium succinate solution (500 μL of a 1.5 M 

solution). The flask was shaken at 250 rpm for 48 h at 30 °C. 

The culture was then transferred to a 20 L plastic carboy and 45 

additional medium was added to give a total volume of 15 L. 

Air was continuously sparged through the culture. Sodium 

succinate solution (50 mL) was added and the culture was 

incubated for 48 h. The temperature was maintained at 30 °C 

by means of immersed Nalgene® 380 food grade tubing, 50 

through which was passed heated water. Subsequently, 

sodium benzoate solution (5 mL of a 1.0 M solution) was 

added to initiate BZDO expression. After 3 h, sodium meta-

bromobenzoate (50 mL of a 1.0 M solution) and sodium 

succinate (25 mL of a 1.5 M solution) were added. Over the 55 

next 48 h, sodium meta-bromobenzoate solution (1.0 M) and 

sodium succinate solution (1.5 M) were added portionwise. In 

total 60.3g (270 mmol) sodium meta-bromobenzoate and 

48.6g (300 mmol) sodium succinate were introduced. The 

culture was incubated for a further 72 h, then the fermentation 60 

broth was centrifuged at 6000 rpm for 25 min and the 

supernatant liquid decanted. The supernatant was concentrated 

under reduced pressure (rotary evaporator bath temperature 

<40 °C) to a total volume of 1.5 L. The concentrated 

supernatant was then carefully acidified to pH 3.0 with 65 

concentrated hydrochloric acid. The acidified solution was 

then extracted with ethyl acetate (20 × 1 L). After each two 

extractions, the aqueous phase was re-acidified to pH 3.0. 

Each organic extract was dried over MgSO4 and filtered. 

Combined filtrates were concentrated under reduced pressure 70 

to give 51.4 g of crude material, of which unreacted meta-

bromobenzoic acid was the major constituent. This material 

was repeatedly triturated with copious quantities of 

dichloromethane, resulting in dissolution of most of the 

material. (Toluene was also determined to be a suitable 75 

triturant.) After 7 such triturations and drying under vacuum, 

the residual solid material was shown by NMR to be pure 

(1S,6S)-5-bromo-1,6-dihydroxycyclohexa-2,4-dienecarboxylic 

acid 9, a brown powder; 979 mg (4.17 mmol), 1.5%, 65 mg 

dm-3. [α]D
25 -0.16º (c 0.1, CHCl3); δH (300 MHz, CD3OD)15c 80 

6.30 (1H, dd, J = 6.0, 1.0 Hz CBr=CH), 5.89 (1H, dd, J = 9.5, 

6.0 Hz, CBr=CH-CH), 5.75 (1H, d, J = 9.5 Hz, 

CBr=CH-CH=CH), 4.69 (1H, d, J = 1.0 Hz, HO-CH); δc (75 

MHz, CD3OD) 177.3 (C=O), 130.6 (CBr), 128.5 

(CBr=CH-CH=CH), 127.0 (CBr=CH-CH), 126.7 (CBr=CH), 85 

77.6 (C-COOH), 74.6 (HO-CH); vmax (film) 3220, 1698, 1417, 

1358, 1229, 1091, 1028, 992, 671 cm-1; HRMS (ESI–) m/z 

calcd for (C7H8BrO4–CO2–H2O–H)–, 170.9446, 172.9425; 

found 170.9446, 172.9422. 

 90 

(1S,6S)-Methyl 5-bromo-1,6-dihydroxycyclohexa-2,4-diene-
carboxylate (11) 

To a stirred solution of 9 (61 mg, 0.260 mmol, 1 equiv) in 

MeOH / benzene (1:1, 32 mL) at room temperature was added 

dropwise (trimethylsilyl)diazomethane (1.5 mL, 2.0 M in 95 

hexanes) until the yellow colour persisted and effervescence 

ceased. The solution was stirred for 2 h then concentrated 

under reduced pressure to give crude (1S,6S)-methyl 5-bromo-

1,6 dihydroxycyclohexa-2,4-diene carboxylate 11 (61 mg, 94 

%) as a brown oil, sufficiently pure to be used without further 100 

purification: Rf 0.73 (50% EtOAc–petrol); [α]D
25 -40º (c 

0.175, CH2Cl2); δH (250 MHz) 6.38 (1H, ddd, J = 6.0, 2.5, 0.5 

Hz, CBr=CH), 5.99 (1H, dd, J = 9.5, 6.0 Hz CBr=CH-CH), 

5.76 (1H, d, J = 9.5 Hz, CBr=CH-CH=CH), 4.79 (1H, br s, 

C(OH)H), 3.89 (3H, s, CH3); δc (75 MHz, CD3OD) 175.5 105 

(C=O),  130.3 (CBr), 127.9, 127.3, 126.8, 78.0 (C-COOMe), 

74.6 (C(OH)H), 53.9 (O-CH3); vmax (film) 3451, 2953, 1734, 

1643, 1572, 1255, 1105, 1034, 940, 809, 695 cm-1; HRMS 
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(ESI+) m/z calcd for (C8H9BrO4+Na)+, 270.9582, 272.9561; 

found 270.9576, 272.9559. 

 

(3aS,7aS)-Methyl 7-bromo-2,2-dimethyl-3a,7a-dihydrobenzo-
[d][1,3]dioxole-3a-carboxylate (12) 5 

To diol 11 (84 mg, 0.337 mmol, 1 equiv) and para-

toluenesulfonic acid (2.0 mg, 0.01 mmol, 0.03 equiv) in 

acetone (30 mL) was added 2,2-dimethoxypropane  (600 μL, 

4.88 mmol, 14.5 equiv). The reaction mixture was stirred at 

room temperature for 48 h, transferred to a separating funnel, 10 

washed with saturated NaCl(aq) then extracted with EtOAc. 

The organic phase was dried over MgSO4 and filtered. The 

filtrate was concentrated under reduced pressure to give 

(3aS,7aS)-methyl 7-bromo-2,2-dimethyl-3a,7a-dihydrobenzo-

[d][1,3]dioxole-3a-carboxylate 12 (68 mg, 70%) a brown oil, 15 

sufficiently pure to be used without further purification: R f 

0.82 (25% EtOAc–petrol); [α]D
25 -192º (c 0.65, CH2Cl2); δH 

(250 MHz) 6.45 (1H, d, J = 6.0 Hz, CBr=CH), 5.97 (1H, dd, J 

= 9.0, 6.0 Hz, CBr=CH-CH), 5.90 (1H, d, J = 9.0 Hz, 

CBr=CH-CH=CH), 5.08 (1H, s, CH-O-), 3.81 (3H, s, O-CH3), 20 

1.47 (3H, s, C-CH3), 1.43 (3H, s, C-CH3); δc (75 MHz) 171.3 

(C=O), 125.9 (CBr), 124.2, 124.1, 123.3, 108.5 (-O-C-O-), 

81.8 (C-C=O), 78.5 (CH-O), 53.2 (-OCH3), 26.9 (-C-CH3), 

25.5 (-C-CH3); vmax (film) 2971, 1775, 1706, 1602, 1358, 

1240, 1211, 1159, 1009, 957, 758, 723, 687 cm-1; HRMS 25 

(ESI+) m/z calcd for (C11H13BrO4+Na)+, 310.9895, 312.9874; 

found 310.9886, 312.9873. 

 

(3aS,4R,10R,10aS)-Methyl 10-bromo-2,2-dimethyl-6,8-dioxo-
7-phenyl-4,6,7,8,10,10a-hexahydro-3aH-4,10-etheno[1,3]-30 

dioxolo[4,5-d][1,2,4]triazolo[1,2-a]pyridazine-3a-carboxylate 
13 

To a solution of diene 12 (49 mg, 0.17 mmol, 1 equiv) in 

acetone (4.0 mL) at room temperature was added in a 

dropwise fashion a solution of 4-phenyl-1,2,4-triazoline-3,5-35 

dione in acetone, until a faint red colour of the dione 

persisted. After 1 h, the reaction mixture was concentrated 

under reduced pressure to give (3aS,4R,10R,10aS)-methyl 10-

bromo-2,2-dimethyl-6,8-dioxo-7-phenyl-4,6,7,8,10,10a-

hexahydro-3aH-4,10-etheno[1,3]dioxolo[4,5-d][1,2,4]-40 

triazolo[1,2-a]pyridazine-3a-carboxylate 13 (86 mg, 93% 

yield) as a white crystalline solid: m.p. 172-174 °C 

(EtOAc:Petrol); Rf 0.54 (50% EtOAc–petrol); [α]D
25 -11.5º (c 

0.78, CH2Cl2); δH (300 MHz) 7.44-7.37 (5H, m, Ar-H), 6.62 

(1H, dt, J = 10.0, 1.5 Hz, CBr-CH=CH), 6.37 (1H, dd, J = 45 

10.0, 7.0 Hz, CBr-CH=CH), 5.39 (1H, dd, J = 7.0, 1.5 Hz, 

N-CH-C-COO-), 5.33 (1H, d, J = 1.5 Hz, CBr-CH-O), 3.93 

(3H, s, -OCH3), 1.42 (3H, s, C-CH3), 1.36 (3H, s, C-CH3); δc 

(75 MHz) 169.7 (O-C=O), 154.3 (N-C=O), 154.0 (N-C=O), 

135.4, 130.7, 129.2, 128.8, 127.6, 125.8, 114.3 (-O-C-O-), 50 

84.2, 82.9, 67.7, 53.9, 53.8, 26.2, 26.1; vmax (film) 2993, 1786, 

1721, 1559, 1501, 1457, 1400, 1260, 1214, 1149, 1088, 974, 

880, 754  cm-1; HRMS (ESI+) m/z calcd for 

(C19H18BrN3O6+H)+, 464.0457, 466.0437; found 464.0449, 

466.0429.  55 

 

(3aS,4R,5R,7aS)-Methyl 7-bromo-4,5-dihydroxy-2,2-
dimethyl-3a,4,5,7a-tetrahydrobenzo[d][1,3]dioxole-3a-
carboxylate (14) 

To a solution of 11 (14.0 mg, 0.048 mmol, 1 equiv) and NMO 60 

(6.6 mg, 0.048 mmol, 1 equiv) in acetone/H2O 4:1 (3 mL) was 

added OsO4 (10 μL, 2.5 wt% in tBuOH, 2 mol%). The 

reaction mixture was stirred at room temperature for 24 h, 

then diluted with Na2S2O3(aq) and extracted with EtOAc. The 

organic extracts were dried over MgSO4 and filtered. The 65 

filtrate was concentrated under reduced pressure and purified 

by column chromatography (40% EtOAc–petrol) to give 

(3aS,4R,5R,7aS)-methyl 7-bromo-4,5-dihydroxy-2,2-dimethyl-

3a,4,5,7a-tetrahydrobenzo[d][1,3]dioxole-3a-carboxylate 14 

(11 mg, 80%) as a colourless oil: Rf 0.32 (40% EtOAc–70 

petrol); [α]D
25 -5.5º (c 0.55, CH2Cl2); δH (500 MHz) 6.23 (1H, 

d, J = 2.5 Hz, CBr=CH), 5.08 (1H, d, J = 0.5 Hz, CBr-CH-O), 

4.42 (1H, br s, CHCH(OH)CH(OH)), 4.32 (1H, br s, 

CHCH(OH)CH(OH)), 3.87 (3H, s, -OCH3), 2.80 (1H, br 

s, -OH), 2.76 (1H, br s, -OH), 1.46 (3H, s, C-CH3) 1.41 (3H, 75 

s, C-CH3); δc (75 MHz) 170.8 (C=O), 130.9 (CBr=CH), 121.2 

(CBr), 111.3 (-O-C-O-), 83.5 (C-COOCH3), 77.1 

(CBr-CH-O-C), 69.9 (C-OH), 66.2 (C-OH), 52.2 (O-CH3), 

26.4 (C-CH3), 25.8 (C-CH3); vmax (film) 3405, 1734, 1647, 

1373, 1236, 1098, 1062, 620 cm-1; HRMS (ESI+) m/z calcd 80 

for (C11H15BrO5+Na)+, 344.9950, 346.9929; found 344.9948, 

346.9935. 

 

((3aR,7aS)-7-Bromo-2,2-dimethyl-3a,7a-dihydrobenzo-
[d][1,3]dioxol-3a-yl)methanol 17 85 

To ester 12 (68.9 mg, 0.235 mmol, 1 equiv) was added lithium 

aluminium hydride (9.0 mg, 0.237 mmol, 1 equiv) as a 

solution in diethyl ether (25 mL). The reaction mixture was 

stirred at room temperature for 1 h, then cooled to 0 °C. 

Excess EtOAc was added dropwise by syringe to quench 90 

unreacted reductant, then the reaction mixture was cautiously 

added to a saturated aqueous solution of sodium potassium 

tartrate (Rochelle’s salt). The reaction mixture was stirred 

vigorously for 1 h, then the phases were separated. The 

organic phase was dried over MgSO4 then filtered. The filtrate 95 

was concentrated under reduced pressure and purified by 

chromatography (30% EtOAc–petrol) to afford  ((3aR,7aS)-7-

bromo-2,2-dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxol-3a-

yl)methanol (17) (7.0 mg 11%) as a colourless oil. 

Debrominated product ((3aR,7aS)-2,2-dimethyl-3a,7a-100 

dihydrobenzo[d][1,3]dioxol-3a-yl)methanol (16) was also 

isolated. Alcohol 17: Rf 0.45; (30% EtOAc–petrol); 

[α]D
25 -10º (c 0.2, CH2Cl2); δH (300 MHz) 6.42 (1H, dd, J = 

6.0, 0.5 Hz, BrC=CH), 5.90 (1H, dd, J = 9.5, 6.0 Hz, 

BrC=CH-CH), 5.78 (1H, dd, J = 9.5, 0.5 Hz, 105 

BrC=CH-CH=CH), 4.91 (1H, s, CH-O-), 3.61 (1H, d, J = 11.5 

Hz, -CHH-OH), 3.44 (1H, dd, J = 11.5, 7.0 Hz, -CHH-OH), 

1.85 (1H, br s, -OH), 1.49 (3H, s, CH3), 1.39 (3H, s, CH3); δc 

(75 MHz) 127.9, 126.4, 123.4, 123.3, 107.9 (-O-C-O-), 82.9 

(C-CH2OH), 77.7 (CH-O-C), 64.7 (-CH2OH), 27.0 (CH3), 110 

26.9 (CH3); vmax (film) 3413, 2918, 2956, 2852, 1465, 1383, 

1222, 1943, 750 cm-1; HRMS (ESI+) m/z calcd for 

(C10H11BrO3+Na)+, 282.9946: 284.9925; found 282.9932, 
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284.9922. 

 

(4S)-Tricarbonyl(η4-(3aS,7aS)-methyl 7-bromo-2,2-dimethyl-

3a,7a-dihydrobenzo[d][1,3]dioxole-3a-carboxylate)iron(0) 
(21) and (4R)-Tricarbonyl(η4-(3aS,7aS)-methyl 7-bromo-2,2-5 

dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-carboxylate)-

iron(0) (22) 

To a flask containing 12 (185 mg, 0.59 mmol, 1 equiv) in a 

glovebox was added nonacarbonyldiiron (440 mg, 1.21 mmol, 

2 equiv). THF (40 mL) was added and the reaction mixture 10 

was stirred at room temperature for 7 d. The reaction mixture 

was then concentrated under reduced pressure (Care! Toxic 

pentacarbonyliron distilled over at this point) and purified by 

column chromatography (10% EtOAc–petrol) to give (4S)-

tricarbonyl(η4-(3aS,7aS)-methyl 7-bromo-2,2-dimethyl-3a,7a-15 

dihydrobenzo[d][1,3]dioxole-3a-carboxylate)iron(0) 21 as fine 

brown needles (43 mg, 17%) and (4R)-tricarbonyl(η4-

(3aS,7aS)-methyl 7-bromo-2,2-dimethyl-3a,7a-dihydrobenzo-

[d][1,3]dioxole-3a-carboxylate)iron(0) 22 as a brown oil (36 

mg, 14%). Unreacted 12 (100 mg, 60%) was also isolated. 20 

Complex 21: m.p. 95-97 °C (EtOAc:petrol); Rf 0.32 (10% 

EtOAc–petrol); [α]D
25 -10º (c 0.2, CH2Cl2); δH (300 MHz) 

5.95 (1H, dt, J = 4.5, 1.5 Hz, CBr=CH), 5.47 (1H, dd, J = 6.5, 

4.5 Hz, CBr=CH-CH=), 5.36 (1H, d, J = 1.5 Hz, CH-O-), 3.88 

(3H, s, O-CH3), 3.06 (1H, dd, J = 6.5, 1.0 Hz, 25 

CBr=CH-CH=CH), 1.45 (3H, s, C-CH3), 1.23 (3H, s, C-CH3); 

δc (75 MHz) 171.3 (-COOMe), 117.8 (-O-C-O-), 89.9 

(CBr=CH), 87.0 (C-COOMe), 86.7 (CH-O-), 83.6 (CBr=CH-

CH=), 70.2 (CBr), 54.0 (CBr=CH-CH=CH), 53.3 (O-CH3), 

28.1 (C-CH3), 27.3 (C-CH3); vmax (film) 2981, 2068, 2003, 30 

1730, 1437, 1375, 1261, 1214, 1162, 1062, 1027, 978, 865, 

752, 687, 636 cm-1; HRMS (ESI+) m/z calcd for 

(C14H13BrFeO7+Na)+, 450.9092, 452.9071; found 450.9106, 

452.9164.  Complex 22: Rf 0.26 (10% EtOAc–petrol); 

[α]D
25 -90º (c 0.6, CH2Cl2); δH (500 MHz) 5.76 (1H, d, J = 3.5 35 

Hz, CBr=CH), 5.15 (1H, dd, J = 6.0, 4.5 Hz, CBr=CH-CH=), 

4.60 (1H, s, CH-O-), 3.75 (3H, s, O-CH3), 2.97 (1H, d, J = 6.5 

Hz, CBr=CH-CH=CH), 1.71 (3H, s, C-CH3), 1.20 (3H, s, 

C-CH3); δc (75 MHz) 207.1 (Fe C=O), 173.3 (-COOMe), 

109.7 (-O-C-O-), 89.3 (CBr=CH), 85.4 (C-COOMe), 84.8 40 

(CH-O-), 80.5 (CBr=CH-CH=), 73.6 (CBr), 61.2 

(CBr=CH-CH=CH), 53.1 (O-CH3), 25.0 (C-CH3), 24.2 

(C-CH3); vmax (film) 2980, 2061, 1995, 1729, 1460, 1380, 

1252, 1207, 1168, 1070, 1030 cm-1; HRMS (ESI+) m/z calcd 

for (C14H13BrFeO7+Na)+, 450.9092, 452.9071; found 45 

450.9091, 452.9073. 

 

(3aS,7aR)-Methyl 2,2-dimethyl-7-(para-tolyl)-3a,7a-dihydro-

benzo[d][1,3]dioxole-3a-carboxylate 24 

Bromodiene 12 (25.0 mg, 0.096 mmol, 1 equiv), 50 

tetrakis(triphenylphosphine)palladium (2.0 mg, 0.002 mmol, 2 

mol %), para-tolylboronic acid (105 mg, 0.78 mmol, 8 equiv) 

and potassium carbonate (238 mg, 1.73 mmol, 18 equiv) were 

dissolved in DMF/H2O 5:1 (30 mL) and stirred at room 

temperature for 72 h. The reaction mixture was diluted with 55 

EtOAc and washed with water. The organic layer was devoid 

of product; thus, the aqueous layer was concentrated under 

reduced pressure to afford crude free acid cross-coupling 

product 23. The crude acid 23 was then dissolved in 

MeOH/benzene 1:1 (35 mL) and (trimethylsilyl)diazomethane 60 

(1.5 mL, 2.0 M in hexanes) was added dropwise with stirring 

until the yellow colour persisted and effervescence ceased. 

The solution was stirred for 2 h then concentrated under 

reduced pressure. Purification by column chromatography 

(10% EtOAc–petrol) gave (3aS,7aR)-methyl 2,2-dimethyl-7-65 

(para-tolyl)-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-

carboxylate (24) (8 mg, 30 % over two steps) as a colourless 

oil: Rf 0.36 (5% EtOAc–petrol); [α]D
25 -156º (c 0.3, CH2Cl2); 

δH (250 MHz) 7.50 (2H, d, J = 8.0 Hz, Ar-H), 7.18 (2H, d, J = 

8.0 Hz, Ar-H) 6.48 (1H, d, J = 6.0 Hz, Ar-C=CH), 6.23 (1H, 70 

dd, J = 9.5, 6.0 Hz, Ar-C=CH-CH), 5.83 (1H, d, J = 9.5 Hz, 

Ar-C=CH-CH=CH), 5.26 (1H, s, CH-O-C), 3.77 (3H, s, 

O-CH3), 2.36 (3H, s, Ar-CH3), 1.53 (3H, s, C-CH3), 1.42 (3H, 

s, C-CH3); δc (75 MHz) 171.8 (C=O), 138.2 (4°), 135.3 (4°), 

134.6 (4°), 129.4 (3° Ar), 125.8 (3° Ar), 124.8 75 

(Ar-C=CH-CH), 124.5 (Ar-C=CH-CH=CH), 119.7 

(Ar-C=CH), 107.6 (-O-C-O-), 81.2 (C-COOMe), 74.6 

(CH-O-), 53.1 (O-CH3), 27.1 (C-CH3), 25.4 (C-CH3), 21.4 

(Ar-CH3); vmax (film) 2973, 2937, 2888, 1741, 1469, 1381, 

1308, 1163, 1131, 1105, 951, 821 cm-1; HRMS (ESI+) m/z 80 

calcd for (C18H20O4+Na)+, 323.1259; found 323.1258.  

 

(3aS,7aR)-Methyl 2,2-dimethyl-7-((triisopropylsilyl)ethynyl)-

3a,7a-dihydrobenzo[d][1,3]dioxole-3a-carboxylate 25 

To a solution of bromodiene 12 (81 mg, 0.28 mmol, 1 equiv), 85 

tetrakis(triphenylphosphine)palladium (16 mg, 0.014 mmol, 5 

mol %), copper(I) iodide (3.7 mg, 0.0196 mmol, 7 mol %) 

dissolved in THF (20 mL), was added by syringe n-

butylamine (110 μL, 1.12 mmol, 4 equiv) and (triiso-

propyl)acetylene (100 μL, 0.45 mmol, 1.6 equiv). The 90 

reaction mixture was stirred at room temperature for 24 h, 

then diluted with EtOAc and washed with NH4Cl(aq) and 

NaCl(aq). The organic phase was dried over MgSO4 and 

filtered. The filtrate was concentrated under reduced pressure 

and purified by column chromatography (10% EtOAc–petrol) 95 

to give (3aS,7aR)-methyl 2,2-dimethyl-7-((triisopropyl-

silyl)ethynyl)-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-

carboxylate (25) (108 mg, 98%) as a yellow oil: Rf 0.45 (10% 

EtOAc–petrol); [α]D
25 -176º (c 0.89, CH2Cl2); δH (250 MHz) 

6.37 (1H, d, J = 6.0 Hz, SiC≡C-C=CH), 6.12 (1H, dd, J = 9.5, 100 

6.0 Hz, SiC≡C-C=CH-CH), 5.85 (1H, dd, J = 9.5, 0.5 Hz, 

SiC≡C-C=CH-CH=CH), 4.91 (1H, d, J = 0.5 Hz, CH-O-), 

3.78 (3H, s, O-CH3), 1.45 (3H, s, C-CH3), 1.39 (3H, s, 

C-CH3), 1.08 (21H, br s, Si-CH and Si-CH-CH3); δc (75 MHz) 

171.7 (C=O), 129.0 (alkene C), 125.0 (alkene C), 124.4 105 

(alkene C), 120.7 (alkene C), 108.2 (-O-C-O-), 105.5 (alkyne 

C), 96.7 (alkyne C), 80.0 (C-COOMe), 75.6 (CH-O-), 53.0 

(O-CH3), 26.9 (C-CH3), 25.6 (C-CH3), 18.6 (Si-C-CH3), 11.3 

(Si-C-CH3); vmax (film) 2943, 2865, 2158, 2032, 1741, 1462, 

1381, 1243, 1039, 883, 677 cm-1; HRMS (ESI+) m/z calcd for 110 

(C22H34O4Si+Na)+, 413.2124; found 413.2127. 

 

(3aS,7aR)-Methyl 7-ethynyl-2,2-dimethyl-3a,7a-dihydro-

benzo[d][1,3]dioxole-3a-carboxylate 26 
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To a stirred solution of silylacetylene 25 (9.6 mg, 0.03 mmol, 

1 equiv) in THF (30 mL) at room temperature was added 

tetra-n-butylammonium fluoride (1.0 M solution in THF, 0.05 

mL, 0.05 mmol, 1.1 equiv). The reaction mixture was stirred 

for 24 h, then diluted with EtOAc and washed with NaCl (aq). 5 

The organic layer was dried over MgSO4 and filtered. The 

filtrate was concentrated under reduced pressure and purified 

by column chromatography (15% EtOAc–petrol) to give 

(3aS,7aR)-methyl 7-ethynyl-2,2-dimethyl-3a,7a-dihydro-

benzo[d][1,3]dioxole-3a-carboxylate (26) (4.4 mg, 0.015 10 

mmol, 76 %) as a pale white gum: Rf 0.24 (15% EtOAc–

petrol); [α]D
25 -184º (c 0.32, CH2Cl2); δH (400 MHz) 6.46 (1H, 

d, J = 6.0 Hz, HC≡C-C=CH), 6.14 (1H, dd, J = 9.5, 6.0 Hz, 

HC≡C-C=CH-CH), 5.90 (1H, d, J = 9.5 Hz, 

HC≡C-C=CH-CH=CH), 4.92 (1H, s, CH-O-), 3.80 (3H, s, 15 

O-CH3), 3.23 (1H, s, C≡CH), 1.48 (3H, s, C-CH3), 1.43 (3H, 

s, C-CH3); δc (75 MHz) 171.5 (C=O), 130.6 (HC≡C-C=CH), 

126.1 (HC≡C-C=CH-CH=CH), 123.8 (HC≡C-C=CH-CH), 

118.8 (HC≡C-C=), 108.1 (-O-C-O-), 82.6 (HC≡C), 81.8 

(HC≡C), 80.1 (C-COOMe), 75.0 (CH-O), 53.3 (O-CH3), 27.0 20 

(C-CH3), 25.4 (C-CH3); vmax (film) 2981, 2889, 1737, 1462, 

1382, 1251, 1152, 954, 807 cm-1; HRMS (ESI+) m/z calcd for 

(C13H14O4+Na)+, 257.0784; found 257.0751. 

 

(3aS,7aR)-Methyl 7-(1-benzyl-1H-1,2,3-triazol-4-yl)-2,2-25 

dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-carboxylate 
27 

To a stirred solution of terminal alkyne 26 (13.0 mg, 0.05 

mmol, 1 equiv) in EtOH/H2O 5:1 (25 mL) were added benzyl 

azide (7.9 mg, 0.06 mmol, 1.2 equiv), CuSO4 (1.1 mg, 1 mol 30 

%) and ascorbic acid (5.9 mg, 10 mol%). The solution was 

stirred at room temperature for 48 h, then diluted with NaCl (aq) 

and extracted with EtOAc. The organic layer was dried over 

MgSO4 and filtered. The filtrate was concentrated under 

reduced pressure and purified by column chromatography 35 

(10% to 50% EtOAc–petrol) to give unreacted 26 (7.8 mg, 

66%) and (3aS,7aR)-methyl 7-(1-benzyl-1H-1,2,3-triazol-4-

yl)-2,2-dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-

carboxylate (27) (6.3 mg, 34%) as a pale brown oil: Rf 0.48 

(50% EtOAc–petrol); [α]D
25 -40º (c 0.18, CH2Cl2); δH (300 40 

MHz) 7.62 (1H, s, HetAr-H), 7.37-7.29 (5H, m, Ph-H) 6.94 

(1H, d, J = 6.0 Hz, HetAr-C=CH-), 6.28 (1H, dd, J = 9.0, 6.0 

Hz, HetAr-C=CH-CH=), 5.92 (1H, d, J = 9.0 Hz, 

HetAr-C=CH-CH=CH), 5.61 (1H, d, J = 15.0 Hz, Ph-CHH-), 

5.49 (1H, d, J = 15.0 Hz, Ph-CHH-) 5.27 (1H, s, CH-O-), 3.78 45 

(3H, s, O-CH3), 1.48 (3H, s, C-CH3), 1.34 (3H, s, C-CH3); δc 

(75 MHz) 172.0 (C=O), 134.8, 129.3, 128.8, 128.1, 127.8, 

126.1, 124.9, 124.5, 121.0 (3º HetAr), 119.7 (HetAr-C=CH-), 

108.7 (-O-C-O-), 80.6 (C-COOMe), 74.2 (CH-O-), 54.3 

(Ph-CH2-), 53.2 (O-CH3), 27.1 (C-CH3), 25.8 (C-CH3); vmax 50 

(film) 2995, 2917, 1857, 1739, 1496, 1457, 1258, 1066, 887, 

799, 727 cm-1; HRMS (ESI+) m/z calcd for 

(C20H21N3O4+Na)+, 390.1429; found 390.1440.   
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