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We present the pathways for strontium ion migration in SrTiO3, which are based on an exploration of the 
potential energy landscape through a combination of classical and quantum mechanical techniques. Sr ion 
migration is enhanced by interaction with an anion vacancy: In the bulk material, Sr cations migrate linearly 
between adjacent lattice sites, through the center of a square formed by four oxygen ions; however, the activation 
barrier is substantially reduced, and the path curved, in the presence of an oxygen vacancy. The contribution of 
partial Schottky disorder in the SrO sublattice to ion migration explains the wide spread of experimental results 
to date, with direct implications for diffusion processes at highly doped surfaces and interfaces of SrTiO3 as well 
as other perovskite materials. 
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Ternary ABO3 metal oxides adopting the perovskite crystal 
structure are known for their rich physical properties ranging 
from electrically semiconducting to superconducting behavior, 
in addition to being prototypal ferroelectric ceramics.1–3 

SrTiO3 is a perovskite material that exhibits a combination of 
electronic and ionic conductivity, both of which are determined 
by the underlying defect chemistry of the material.4 These 
unique properties are intimately related to the high-mobility 
electron gas formed at SrTiO3 interfaces5,6 and surfaces,7,8 

and to its application as a photocatalyst.9 Recently, SrTiO3 has 
been the subject of a study for random access memory, where 
ion mobility is critical for achieving resistance-switching 
behavior.10,11 

In SrTiO3, oxygen loss is associated with a chemical 
reduction of titanium, and the oxygen ion diffusion process has 
attracted significant attention:12–14 In the bulk material, oxygen 
diffusion is a vacancy mediated low-energy process (Eact ∼ 
1 eV, excluding the defect formation energy), following a 
curved path around the neighboring titanium cation, rather than 
a linear 〈110〉 direct path, between two oxygen lattice sites.15–17 

Cation migration is also known to occur,18,19 but the process is 
not fully understood. In this Rapid Communication, we present 
a computational investigation of the energy landscape for Sr 
migration: While the pathway between two Sr sites is linear in 
the bulk material, the presence of an oxygen vacancy effects a 
curved path along with a reduction of 0.76 eV in the activation 
energy for ion migration. 

The stable room-temperature phase of SrTiO3 is the 
cubic perovskite structure. At lower temperatures, perovskite 
materials typically undergo a series of phase transitions, 
which involve rotations and tilting of the TiO6 octahedra 
producing tetragonal, possibly orthorhombic, and eventually 
rhombohedral crystal structures.20–24 This sequence is pre­
dicted by our ab initio calculations using energy minimization 
techniques. However, only the tetragonal phase is in fact 
observed experimentally below 105 K, whereas the exact 
nature of the lower-temperature phenomena is still under 
debate. The nature of all such transitions has been well 

PACS number(s): 66.30.Lw, 61.72.J−, 77.84.Bw 

studied for another perovskite material—BaTiO3.25–28 The 
nature of the low-temperature behavior and stabilization of 
the tetragonal structure of SrTiO3 is beyond the scope of 
the current investigation. The structural changes involved in 
these phase transitions are very small and will have only a 
minor effect on the relatively high-energy defect formation and 
migration processes. Hence in this study, we choose to model 
the minimum energy rhomohedral perovskite phase of SrTiO3, 
as shown in Fig. 1, where no imaginary phonon modes were 
present—as confirmed explicitly through density functional 
perturbation theory calculations—which avoid the spurious 
effects of a partial phase transition on defect formation or ion 
transport. 

Classical interatomic potential calculations were used to 
explore the energy hypersurface for oxygen vacancy and cation 
migration (see examples in Fig. 2), with the energy barriers ob­
tained using an electronic structure approach. The combination 
of these two approaches allows for a comprehensive sampling 
of possible diffusion pathways, while providing quantitative 
estimates of the barriers for diffusion that represent the 
predominant contribution to observable rates. For the former 
calculations, a polarizable interatomic potential model29 was 
employed, which was recently developed to reproduce the 
structural, elastic, and dielectric properties of SrTiO3; all  
calculations were performed within the primary code GULP30 

and the auxiliary codes PREGULP31,32 and BUBBLE.33,34 More 
accurate quantum mechanical calculations were performed 
at the level of density functional theory (DFT) within the 
generalized gradient approximation (PBEsol functional35) in  
the code VASP.36–38 To obtain the barriers for ion migration, 
the transition states were probed via the nudged elastic band 
method in a pseudocubic 4×4×4 perovskite supercell of 320 
atoms, with 18 images.39 In SrTiO3, the occupied valence 
states at the top of the valence band are strongly localized on 
the oxygen sublattice, while the unoccupied conduction states 
are localized on Ti at the bottom of the conduction band, and 
Sr higher up. Due to the underestimated band gap at this level 
of DFT, anion polarization is overestimated, which will result 
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FIG. 1. (Color online) Representation of the rhombohedral 
perovskite phase of SrTiO3 as a 2×2×2 pseudocubic supercell. Note 
the small tilting of the TiO6 octahedra, which is not present in the 
high-temperature cubic perovskite structure. The titanium octahedra 
are shaded blue (gray), with oxygen atoms colored red (small balls). 

in an underestimation of the barrier height for oxygen ion 
migration; however, for Sr migration, this is counterbalanced 
by the increase in the self-interaction as the electrons displace 
toward the Sr ion at the saddle point, thus some overestimation 
for strontium may be expected. 

The pertinent migration pathways explored are summarized 
in Fig. 3. For oxygen ion migration, we observe a curved 
path, as shown in Fig. 2(a), which is consistent with the 
accepted model for perovskite materials.17,40–42 Curiously, we 
have observed that in the absence of structural relaxation, 
the saddle point is in fact a local minimum of the potential 
energy surface. On relaxation, the calculated migration energy 
of 0.53 eV is comparable to values ranging from 0.65 to 
1.35 eV, obtained using interatomic potential models,29 and 
to 0.65–1.27 eV based on experimental measurements.43,44 

From diffusion measurements in single-crystal samples of 
SrTiO3, the lower values were observed in samples with higher 
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dislocation densities,44 which strongly suggests that the upper 
values are more representative of the bulk material. 

For strontium ion migration in the perfect material, i.e., 
where there are no oxygen vacancies, migration follows a 
linear path between neighboring lattice sites as shown in 
Fig. 3(c). The local coordination environment at the saddle 
point consists of a Sr ion in a square planar configuration 
with respect to oxygen, which is illustrated in Fig. 4(a). The  
calculated activation energy is 3.68 eV for migration, which 
compares to values of 2.5–4.3 eV obtained from classical 
modeling.29 An experimental activation energy of 3.5 eV for Sr 
ion migration has been estimated from the correlation between 
Sr and O migration in 18O tracer diffusion measurements,18 

while 2.8 eV was reported based on impedance spectroscopy 
of donor-doped samples.45 Both our calculated results and 
the experimental data are inconsistent with an earlier reported 
value of 6.0 eV from diffusion measurements.19 

The dominant form of ionic disorder in SrTiO3 is known 
to be of the Schottky type, involving stoichiometric amounts 
of anion and cation vacancies.4,29 Furthermore, it has been 
shown that partial Schottky formation involving VSr and VO 

vacancies can be more easily achieved, as it avoids vacancies 
on the highly charged titanium sublattice,15,47 i.e., 

SrSr + OO → VSr 
′′ + VO + SrO(s). 

The reaction energy for partial Schottky formation has been 
estimated to be as low as 1.7 eV per defect,29 while the 
calculated energy of association is less than 0.1 eV due to 
the high dielectric screening. The question arises then as to the 
effect of this Schottky disorder on the thermodynamics of ion 
self-diffusion. The pathways for ion diffusion in the presence 
of point defects, which have been investigated, are summarized 
in Fig. 3. While for isolated ion diffusion, oxygen ions will 
diffuse at a much faster rate than strontium ions, remarkably, 
interaction between the point defects results in an opposing 
effect. For oxygen ion diffusion, interaction with a strontium 
vacancy results in a retarding effect, while strontium ion 
mobility through an oxygen vacancy is significantly enhanced. 
The activation energies increase from 0.53 to 0.89 eV (O ion) 
and decrease from 3.68 to 2.92 eV (Sr ion), respectively. The 
latter decrease agrees well with the spread in experimentally 
determined migration barriers. 

FIG. 2. (Color online) Isosurface and contours for key sections of the energy hypersurface for (a) oxygen ion migration in SrTiO2.875 

and (b) strontium ion migration in Sr0.875TiO3. Fractional coordinates refer to the pseudocubic supercell of rhombohedral perovskite phase 
of SrTiO3 for the hypersurface and the 2×2×2 supercell of the cubic phase for the ionic coordinates of the spheres—red (small, light gray) 
oxygen, gray (small, dark gray) titanium, and green (large) strontium. Vacancies are highlighted by use of greater transparency. 
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FIG. 3. (Color online) Schematic of the low-energy pathways predicted for Sr and O ion diffusion in SrTiO3. The barrier heights were 
determined by first-principles calculations using the nudged elastic band method. 

The structural configuration of the saddle point identified 
for Sr migration in the presence of an oxygen vacancy 
is shown in Fig. 4(b): In contrast to the square planar 
configuration for isolated ion migration, for this case, the Sr 
ion is displaced towards the vacancy site and the transition 
state is stabilized both by the increased Sr-O bond length, as 
well as through interaction with four additional oxygen ions 
in the vacancy plane (at a separation of ∼2.9 Å). Hence, a 
curved path is stabilized, which can allow for more rapid Sr 

FIG. 4. (Color online) The local geometry associated with the 
transition state for Sr ion migration in (a) a bulk lattice and (b) in 
the presence of an oxygen vacancy, which have calculated activation 
energies for migration of 3.68 and 2.92 eV, respectively. 

ion migration. The frequency of ion “jumps” is determined 
by the standard rate equation, which has an exponential 
dependence on the free-energy barrier for ion migration. The 
change of 0.8 eV for Sr migration will therefore influence 
ion mobility by several orders of magnitude at standard 
temperatures. 

Due to the high dielectric screening of SrTiO3, in the  
addition to the entropic barrier, association of the oppositely 
charged defects into bound complexes is not a source of con­
cern. For example, an association energy of 0.05–0.01 eV has 
been calculated between strontium and oxygen vacancies,29 

which compares to 1.80 eV in In2O3.32 In fact, the presence 
of additional oxygen vacancies does not affect the activation 
barrier for strontium mobility: In the vicinity of two oxygen 
vacancies, the activation energy is changed by less than 
0.05 eV, irrespective of the relative vacancy orientation, and 
the migration path is largely unchanged from that of Fig. 4(b). 

In conclusion, we have shown that Schottky disorder in 
SrTiO3 can significantly affect ion transport, with a decrease 
in the barrier to Sr ion migration of 0.78 eV, which explains 
a spread in the experimentally determined migration barriers. 
Meanwhile, oxygen ion transport is retarded in the presence 
of a strontium vacancy, with an increase in the migration 
energy of 0.36 eV. The formation of charge accumulation 
layers at surface and interfaces of SrTiO3 is associated with 
increased concentrations of point defects,47 which would result 
in more frequent interactions and collisions between migrating 
ions and would also explain the scatter of experimentally 
determined activation energies for oxygen migration. The 
same situation could be observed for the case of extrinsic 
doping, where there will be a sensitive balance between 
electronic and ionic disorder.48–50 

Thus, we have demonstrated that while complexation 
of oppositely charged defect centers is not anticipated in 
SrTiO3 or other perovskite materials with high dielectric 
constants, the presence of stoichiometric defects can affect 
the fundamental thermodynamic quantities associated with 
ion transport. The interactions between point defects have a 
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