

Citation for published version:
Lillehagen, T 2011, Compilation and Automatic Parallelisation of Functional Code for Data-Parallel Architectures.
Department of Computer Science Technical Report Series, no. CSBU-2011-01, Department of Computer
Science, University of Bath, Bath, U. K.

Publication date:
2011

Link to publication

© The Author

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161908406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/compilation-and-automatic-parallelisation-of-functional-code-for-dataparallel-architectures(df1a79b0-e1ed-48ef-b534-5e9f2060f400).html

Department of
Computer Science

Technical Report

Undergraduate Dissertation: Compilation and Automatic Par-
allelisation of Functional Code for Data-Parallel Architec-
tures

Tommy Lillehagen

Technical Report 2011-01 July 2011
ISSN 1740-9497

Copyright c©July 2011 by the authors.

Contact Address:
Department of Computer Science
University of Bath
Bath, BA2 7AY
United Kingdom
URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

Compilation and Automatic Parallelisation of
Functional Code for Data-Parallel Architectures

Tommy Lillehagen
B.Sc. (Hons) Computer Science

University of Bath

May 2011

is dissertation may be made available for consultation within the University Library
and may be photocopied or lent to other libraries for the purposes of consultation.

Tommy Lillehagen

Compilation and Automatic Parallelisation of Functional
Code for Data-Parallel Architectures

Submitted by: Tommy Lillehagen

C

Attention is drawn to the fact that copyright of this dissertation rests with its author. e
Intellectual Property Rights of the products produced as part of the project belong to
the author unless otherwise speciĕed below, in accordance with the University of Bath’s
policy on intellectual property (see http://www.bath.ac.uk/ordinances/22.pdf).

is copy of the dissertation has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with its author and that no quotation
from the dissertation and no information derived from it may be published without the
prior written consent of the author.

D

is dissertation is submitted to the University of Bath in accordance with the require-
ments of the degree of Bachelor of Science in the Department of Computer Science. No
portion of the work in this dissertation has been submitted in support of an applica-
tion for any other degree or qualiĕcation of this or any other university or institution of
learning. Except where speciĕcally acknowledged, it is the work of the author.

Tommy Lillehagen

i

Abstract

Over recent years, there has been a stagnation of the increase in CPU clock speed, and
consequently, it has become increasingly popular to offload general-purpose computing
problems to graphics processors to try to exploit the massively data-parallel processing
capabilities of these devices.

is project presents the design of a functional programming language and the im-
plementation of a prototype compiler which aims to produce code that exploits the
powerful processing capabilities of data-parallel hardware components, such as CUDA-
enabled graphics processors. One of the long-term goals is to provide programmerswith
a tool that simpliĕes the development of algorithms for parallel architectures.

Previous work in the area of automatic parallelisation of code is predominantly con-
cerned with the exploitation of task parallelism in functional languages, such as Lisp
and Haskell, and data parallelism in imperative languages, such as Fortran. In the cases
where data-parallelism has been exploited in functional languages, e.g., in Data Parallel
Haskell, this has mostly been done by introducing library support for CUDA, OpenCL
and other data-parallel frameworks.

e main focus in the course of this project has been directed towards the optim-
isation techniques that can be applied to seemingly sequential, functional-style code to
prepare it for automatic parallelisation. e preeminent transformation in this context
is the conversion of augmenting recursion and tail recursion into iteration which, con-
sequently, can enable the translation of iterative constructs into parallel loops, given that
there are no loop-carried dependences.

e compiler strives to identify natural mapping and reduction constructs in se-
quential code. Furthermore, a dynamic performance model is employed to ensure that
only beneĕcial sections of the code are parallelised. It is concluded from the initial res-
ults, that tenfold to hundredfold speedups can be achieved from the parallelisation of
sequential representations of naturally data-parallel constructs, depending on the point
of comparison.

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Aims . 2
1.4 Objectives . 3
1.5 Document Structure . 4

2 Literature Review 5
2.1 Introduction . 5
2.2 e Compute Uniĕed Device Architecture 7

2.2.1 e reading Model . 7
2.2.2 e Memory Model . 8
2.2.3 NVIDIA CUDA C/C++ . 10
2.2.4 Challenges . 10

2.3 Languages and Libraries for Parallel Computing 10
2.3.1 Shared Libraries and APIs . 11
2.3.2 Programming Languages . 12

2.4 Compiler Transformation Techniques 16
2.4.1 Intermediate Representations 17
2.4.2 Commonly Applied Transformation 19
2.4.3 Tail Recursion Optimisation 20
2.4.4 Optimisation of Augmenting Recursion 21
2.4.5 Structural Recursion . 21
2.4.6 Dependence Analysis . 22
2.4.7 Loop Transformations . 24
2.4.8 Procedure Call Transformations 25

2.5 Performance Cost Analysis . 26
2.6 Data Layout and Memory Access Patterns 26
2.7 Summary . 26

3 Requirements Specification 28
3.1 General Overview . 28
3.2 Functional Requirements . 29
3.3 Non-Functional Requirements . 30
3.4 Testing and Resources . 31

4 High-Level Design 32
4.1 Overview . 32

iii

CONTENTS iv

4.2 Tools and Modules . 32
4.3 Language Design . 33
4.4 Soware Architecture . 33

4.4.1 Semantic Analysis . 35
4.4.2 Type Inference . 35
4.4.3 Optimisation . 35
4.4.4 Parallelisation . 35
4.4.5 Code Generation . 36
4.4.6 External Build Tools . 36

5 Detailed Design and Implementation 37
5.1 Overview . 38
5.2 Tokenisation and Parsing . 38

5.2.1 Lexical Analysis . 38
5.2.2 Syntactic Analysis . 38

5.3 Intermediate Representation . 40
5.3.1 Abstract Syntax Tree . 40
5.3.2 ree-Address Code . 40
5.3.3 Types . 41
5.3.4 Symbols and Environments 42
5.3.5 Change Propagation . 43

5.4 Feedback . 43
5.5 Type Inference . 44
5.6 Live Variable Analysis . 45
5.7 Dependence Analysis . 46
5.8 Elementary Compiler Transformations 47
5.9 Interprocedural Optimisations . 49

5.9.1 Procedure Cloning . 50
5.9.2 Procedure Inlining . 50
5.9.3 Optimisation of Augmenting Recursion 51
5.9.4 Tail-Call Elimination . 53

5.10 Loop Optimisations . 53
5.10.1 Loop Fusion . 54
5.10.2 Loop Restructuring . 54
5.10.3 Loop Idiom Recognition . 55

5.11 Automatic Parallelisation . 55
5.12 Code Generation . 57

5.12.1 Sequential C Code Generation 57
5.12.2 CUDA C/C++ Code Generation 58

6 System Testing and Results 60
6.1 Introduction . 60
6.2 Unit Testing . 60
6.3 Black-Box Testing . 61
6.4 Results . 65

7 Conclusion 70
7.1 Summary . 70
7.2 Results . 72

7.2.1 Black-Box Testing . 72

CONTENTS v

7.2.2 Performance Testing . 72
7.3 Critical Evaluation . 74
7.4 Further Work . 74

Bibliography 78

A Language Specification 83
A.1 Syntax . 83

A.1.1 Tokens . 83
A.1.2 Grammar . 84

A.2 Operator Precedence . 85
A.3 Special-Purpose Functions . 85
A.4 Type System . 87
A.5 Function Deĕnitions . 87
A.6 Code Blocks . 88
A.7 Lists and List Operations . 88

A.7.1 List Composition . 88
A.7.2 List Preĕxation . 88
A.7.3 Pattern Matching . 88

B Algorithms and Correctness 90
B.1 Optimisation of Augmenting Recursion 90

B.1.1 Univariate Functions . 92
B.1.2 Exploitation of Associativity and Commutativity 92
B.1.3 Multivariate Functions . 94
B.1.4 Structural Recursion . 94
B.1.5 Mutual Recursion and Multi-Statement Bodies 95

C Language Models 97
C.1 Type Model . 97
C.2 Performance Model . 100

D Implementation 102
D.1 Usage Information . 102
D.2 Source Code Hierarchy . 102
D.3 Code Excerpts . 105

D.3.1 optimisation/general.py . 105
D.3.2 optimisation/interproc.py . 107
D.3.3 optimisation/recursion.py . 109
D.3.4 semantics/tree.py . 110
D.3.5 semantics/types.py . 117

Algorithms

5.1 Live Variable Analysis . 45
5.2 Loop-Carried Dependence Analysis 46
5.3 ree-Address Code Generation . 48

vi

Figures

4.1 Compiler Tool Chain . 33
4.2 High-Level Soware Architecture . 34

5.1 Architectural Overview . 39
5.2 UML Diagram (Excerpt) . 40
5.3 Untyped Abstract Syntax Trees (Example) 41
5.4 Type Deduction and Typed Syntax Trees (Example) 44
5.5 Parallel Reduction . 57

6.1 Performance Testing – NVIDIA GeForce GT 330M (512MB) 66
6.2 Performance Testing – NVIDIA GeForce GTX 480 (1536MB) 67
6.3 Performance Testing – Speedup Results 68

vii

Listings

2.1 Map Function (Erlang) . 16
2.2 Invalidation of Loop-Carried Dependence 24
5.1 Factorial Function (Plain) . 51
5.2 Factorial Function (Tail-Recursive Form) 51
5.3 Factorial Function (Tail-Recursive Form, Exploiting Associativity) . . 52
5.4 Factorial Function (Iterative Form) 53
7.1 Simultaneous Recursion . 74
7.2 Fibonacci Function (Plain) . 75
7.3 Fibonacci Function (Tail-Recursive Form) 75
A.1 Pattern Matching and Conditionals in Function Deĕnitions 87
A.2 List Composition . 88
A.3 List Preĕxation . 88
A.4 List Concatenation . 89

viii

Tables

2.1 Memory Properties of Typical CUDA-Enabled Devices 9

A.1 Operator Precedence and Associativity 86

C.1 Type Precedence . 99
C.2 Computational Cost of Special-Purpose Functions 101

ix

Acknowledgments

First, I would like to expressmy sincere gratitude tomy supervisorDr. JohnPower for his
continued help and support, and to Dr. Russell Bradford and Prof. John Fitch for their
input and advice in the early stages of the project. I would also like to thankDavid Anisi,
Peji Joe Faghihi, PhillipMeredith andMartin Shaw for proof-reading and support. Last
but not least, I would like to thank Marius Eriksrud and Robin Helgesen for providing
mewith the hardware equipment that was used in the performance testing of the project.

x

CHAPTER 1
Introduction

Contents
1.1 Background . 1
1.2 Motivation . 1
1.3 Aims . 2
1.4 Objectives . 3
1.5 Document Structure . 4

1.1 Background

Parallelism was explored already in the early days of computing, and today, the ap-
proaches to parallel computing are many. On a conceptual level, parallelism is generally
classiĕed into two groups, namely task parallelism and data parallelism. Task parallel-
ism is the termusedwhenwe execute different sequences of instructions simultaneously.
Each of these code sequences can access both shared and local data. Conversely, data
parallelism is the term used when we execute a single sequence of instructions on mul-
tiple data-setsƬ [SK10, §10].

On a hardware level, we ĕnd parallelism realised in the form of, for instance, in-
struction pipelining, hyper-threading and SIMDƬ within a register (SWAR). All these
techniques allow the user to speed up computations by concurrent or seemingly con-
current execution of instructions.

1.2 Motivation

Over recent years, the rate of increase in clock speed of CPUs has been Ęattening, con-
tributing to a boost in the popularity of parallelism [Sut05]. e development of the
uni-core CPUs has stagnated, and engineers are now working to increase the number of
cores per CPU. Work is also put into improving the infrastructure between these cores
as the achievable memory bandwidth is a limiting factor. Today, multi-core CPUs and

ƬSIMD – single instruction, multiple data

1

CHAPTER 1. INTRODUCTION 2

other hardware that can be exploited to attain concurrency have become mainstream
and can be found in almost every new laptop and PC.

e graphics processing unit (GPU), a coprocessor found on most computers
nowadays, was originally designed to offload 2D and 3D graphics processing from the
CPU. Dedicated graphics processing chips have existed for many years, but in recent
years it has become increasingly popular to utilise the GPU’s massively data-parallel
processing capabilities in general-purpose computing (GPGPU) [SK10, §1]. In 2005,
NVIDIA published work on how computational concepts can be mapped onto the GPU
[Har05]. At the same time, they also worked on unifying their GPU architectures. e
result, known as the Compute-UniĕedDevice Architecture (CUDA), simpliĕes GPGPU
programming and allows the programmer to easily utilise the GPU in the computation
of data-parallel problems. eĕrst version of theCUDAToolkit, a framework consisting
of a specialised C/C++ compiler, a proĕler and various other tools, libraries and docu-
mentation for programming CUDA-enabled devices, was released in 2007 [NVI09].

Even though hardware is in place to perform parallel computations, the exploita-
tion of these features is not synonymous with higher performance. Not all computa-
tional problems can be implemented efficiently on parallel architectures, and to rewrite
the algorithms to add support for parallelism can be a nontrivial task. Furthermore,
the complicated nature of concurrent problems, the cost of transferring data between
memory banks, e.g., forGPUs, and the communication overhead that is existent between
co-operating threads and processes all place a limitation on the amount of speedup that
is achievable from parallelisation [Har05, p. 494].

e motivation for this project originates in the problems that are stated above. e
problem of parallelising existing sequential algorithms constitute a challenge to the pro-
grammer, and the emerging use of parallelism in general makes it important to be able
to express parallel algorithms in a clear and concise way.

1.3 Aims

e overall aim of this work is to provide the programmer with a tool that simpliĕes
the exploitation of the processing capabilities offered by today’s data-parallel architec-
tures. More speciĕcally, this work targets the NVIDIA CUDA chipset, which is an apt
representative for these architectures.

Previous research indicates that functional programming languages apply well to
concurrent applications [AVWW93, Arm07, Jon89]. Moreover, the functional pro-
gramming paradigm have a good reputation in the area of correctness analysis since
the functional programming style enables and simpliĕes mathematical reasoning about
programs. Consequently, a functional language is chosen as the foundation for the work
carried out in this project.

e work that is described in this document entails the development of a proto-
type compiler for a functional language, namely the language which is described in Ap-
pendix A. e objective of this compiler is to generate optimised code which exploits
the processing capabilities of the GPUs. e focus is directed towards the optimisation
techniques that can be applied to functional code to prepare the input for automatic par-
allelisation, i.e., on the steps that can be taken to simplify the semantic analysis of the
input programs.

Task parallelism is outside the scope of this project due to the restrictive nature of
CUDA. e implemented compiler solely targets Ęat data-parallel architectures. Hence,
no nested parallelism is available to the end-user. Data-parallel architectures maintain

CHAPTER 1. INTRODUCTION 3

a strong relation to mapping problems, e.g., the original applications of GPUs were es-
sentially mapping operations that were carried out on two-dimensional arrays of pixels.
Mapping is also a renowned phenomenon in the context of functional programming,
and the prototype compiler capitalises on this link during the compilation process when
parallelising the input code.

Functional programming languages motivate the programmer to express problems
using recursive functions. Hence, the occurrence of recursion and function pointers
plays a vital role in conventional functional languages. CUDA does not support any
of these two language features prior to devices with compute capabilityƭ 2.0. Hence,
an alternative approach must be taken when targeting these devices [NVI10b]. A part
of the problem can be met by incorporating optimisation techniques such as tail-call
elimination and by analysis of the structure of the language [ALSU06]. Furthermore,
data-parallel recursion can be used to iterate over recursively deĕned data [NO99].

It is reasonable to assume that there are situations that cannot be handled efficiently
in this manner. us, an important job of the compiler is to determine what can be
parallelised and, hence, executed on the GPU. It is noteworthy that the lack of archi-
tectural support for recursion and function pointers also applies to other data-parallel
architectures such as, for instance, OpenCL [Mun10].

1.4 Objectives

e following bullet points list the quantitative and qualitative measures by which the
completion of this project is judged:

• A statically and implicitly typed, functional programming language must be de-
signed. e language must allow the programmer to easily express algorithms in
a functional manner.

– ere are penalties associated with type conversion. ese are particularly
high on delicate architectures such as CUDA. Implicit typing allows the com-
piler to deduce an optimal type system by minimising the number of type
conversions in the program.

– Static typing reduces thememory overhead that is involved in the abstraction
of typing, and the performance overhead that is involved in the boxing and
unboxing of dynamically typed values.

• An optimising and parallelising compiler must be implemented. e compiler
must support the programmer in the development of high-performance programs
that can be executed on data-parallel architectures. More speciĕcally, compila-
tion must yield programs that, if possible, can exploit the massively data-parallel
processing capabilities of CUDA-enabled graphics processors.

– Automatic parallelisation of code is heavily dependent on an extensive ana-
lysis of the input program. To be able to successfully conduct such an ana-
lysis, the input should be well-formed and optimised. us, much attention
should be drawn towards the general optimisation techniques that can be ap-
plied to functional code, in the belief that this will improve the quality of the
parallelisation process.

ƭe term “compute capability” is used by NVIDIA to discriminate between the feature-sets of their
CUDA-enabled graphics processors.

CHAPTER 1. INTRODUCTION 4

1.5 Document Structure

is document is structured into seven chapters. e ĕrst chapter, as we have already
seen, discusses the background, the motivation and the overall aims and objectives of
the project. e second chapter is the result of the literature survey that has been under-
taken to get a better understanding of the topic area, and aims to give a comprehensive
overview of the problem of automatically parallelising sequential, functional-style code.

Chapters 3 to 5 present the requirements, design and implementation of the sug-
gested solution. More speciĕcally, Chapter 3 lists the identiĕed functional and non-
functional requirements, in addition to a set of testing requirements. Chapter 4 presents
the high-level design of the implemented compiler system and draws attention to the
overall objectives of the compiler. Chapter 5 discusses the details around the low-level
design and implementation, and justiĕes the techniques that have been applied and the
choices that have been made during the development phase.

Chapter 6 describes the organisation and the results of the unit and black-box test-
ing. is chapter also presents the results of the performance testing, which contains
objective measurements of the speedups that have been achieved as a result of the em-
ployed optimisation and parallelisation techniques.

In Chapter 7, we summarise thework and critically appraise the implementation and
the ĕndings. In this chapter, we also identify areas for further work.

e chapters that are mentioned above constitute the main matter of this document.
ere is also a set of appendices which expand on the technical content that is presented
in Chapters 4 and 5.

Appendix A gives a formal description of the functional programming language
that has been designed as part of this work, and Appendix B lists and justiĕes the al-
gorithms that have been implemented to convert instances of augmenting recursion
into tail recursion. In Appendix C we deĕne the type and performance models that
are used by the implemented compiler system, and in Appendix D we give an overview
of the command-line usage of the compiler and a brief introduction to the source code
hierarchy. Appendix D also lists a set of representable code excerpts.

CHAPTER 2
Literature Review

Contents
2.1 Introduction . 5
2.2 e Compute Uniĕed Device Architecture 7

2.2.1 e reading Model 7
2.2.2 e Memory Model . 8
2.2.3 NVIDIA CUDA C/C++ 10
2.2.4 Challenges . 10

2.3 Languages and Libraries for Parallel Computing 10
2.3.1 Shared Libraries and APIs 11
2.3.2 Programming Languages 12

2.4 Compiler Transformation Techniques 16
2.4.1 Intermediate Representations 17
2.4.2 Commonly Applied Transformation 19
2.4.3 Tail Recursion Optimisation 20
2.4.4 Optimisation of Augmenting Recursion 21
2.4.5 Structural Recursion . 21
2.4.6 Dependence Analysis 22
2.4.7 Loop Transformations 24
2.4.8 Procedure Call Transformations 25

2.5 Performance Cost Analysis . 26
2.6 Data Layout and Memory Access Patterns 26
2.7 Summary . 26

2.1 Introduction

Over recent years, the rate of increase in CPU clock speed has been Ęattening, contrib-
uting to a boost in the popularity of parallelism [Sut05]. Dedicated graphics processors
have delivered accelerated performance to end-users for years, but not until recently has
it become popular to utilise the capabilities of these parallel devices to do more than

5

CHAPTER 2. LITERATURE REVIEW 6

just graphics processing [SK10, §1.3]. GPUs are designed to carry out massively data-
parallel operations such as pixel shading and, thus, allow the user to run the same se-
quence of instructions on multiple data-sets simultaneously. Because of this, GPUs are
today frequently used in data-intensive computing, especially in domains such as med-
ical imaging, computational Ęuid dynamics and environmental science [SK10, §1.5].

e trend of using high performance graphics processors to perform general-
purpose computing was for a long time deemed a challenging business. Tradition-
ally, the resources on these devices were tightly constrained and the instruction set
was limited to speciĕc graphics operations only [SK10, §1.3.2]. However, in later years,
GPU manufacturers such as NVIDIA and AMD/ATI have put efforts into unifying the
hardware architectures of their graphics platforms to provide a simple and generic pro-
gramming model for data-parallel computing. Some of the results of these initiatives
are NVIDIA’s Compute Uniĕed Device Architecture (CUDA), Khronos Group’s Open
Computing Language (OpenCL), Microso’s DirectCompute API and AMD’s stream
processors (FireStream).

Unfortunately, having the hardware in place to execute concurrent operations is not
synonymous with improved performance. Applications running on a parallel platform
will not beneĕt directly from the underlying hardware unless explicitly designed to ex-
ploit the available functionality. Also, not all sequential algorithms lend themselves to
implementation on parallel architectures.

As stated in Chapter 1, this project entails the development of a prototype compiler
which allows the programmer to exploit some of the parallel processing capabilities that
data-parallel architectures offer. More speciĕcally, the developed compiler targets the
CUDA platform.

One of the objectives of this work is to equip programmers with a tool that sim-
pliĕes the development of algorithms for data-parallel architectures, namely a com-
piler for a programming language without explicit concurrency constructs, and which
takes sequential, functional-style code as input and endeavours to produce fast, parallel-
ised code for CUDA C/C++ as output. In data-parallel problems, much computational
power is spent on traversing huge data-sets, and in functional programming this is equi-
valent to iterating over lists or similar data structures by the means of recursive, referen-
tially transparent functions [Hud89]. erefore, in order to try to reduce the amount of
processing time spent on traversing large data-sets, automatic parallelisation is a matter
of converting amenable, recursive functions into parallel loops.

Initially the focus of this work was directed towards the parallelisation phase of the
compilation. However, to improve the quality of the automatic parallelisation process,
the compiler depends on the outcome of a range of other optimisations. Consequently,
the focus has shied away from the actual parallelisation phase and towards the optim-
isation techniques that can be employed to prepare the input for parallelisation.

e following sections study CUDA and the complementary CUDA soware devel-
opment kit in greater detail and aim at giving a good foundation for the code genera-
tion phase of the compiler. §2.4 and onwards include an evaluation of the optimisation
techniques that can be applied to functional-style code to prepare the input for parallel-
isation. Additionally, inĘuential programming languages and soware libraries which
are relevant to this work are evaluated and discussed.

CHAPTER 2. LITERATURE REVIEW 7

2.2 e Compute Unified Device Architecture

CUDAwas ĕrst released in 2007 and is a data-parallel hardware architecture for graphics
processors. In recent years, it has become increasingly popular to utilise CUDA’s cap-
abilities in high-performance, general-purpose computing [SK10, §1.3]. e appurten-
ant CUDA framework consists of a compiler, proĕling tools, various soware libraries
and documentation to help the programmer exploit the full capabilities of CUDA. e
compiler is an extended variant of C/C++ which allows the programmer to write het-
erogeneous code, targeting both CPUs and GPUs. e language adheres to the C/C++
standards when targeting the CPU, commonly denoted the host. However, due to lim-
itations in the GPU hardware, there are some restrictions to what can be achieved in
device code. In later releases of CUDA, these limitations have diminished, moving the
CUDA language towards full C/C++ support [NVI10b].

In the current version of CUDA, devices with compute capability (a version number
identifying the feature set of a particular unit) greater than or equal to 2.0 can employ re-
cursion and indirect function referencing. ese two features are fundamental to func-
tional programming [Hud89], and hence, the implementation of these allows for more
functional-style code to run on the GPU than what has previously been possible. It is
also worth noting that devices with compute capability 2.0 can execute multiple kernels
concurrently [NVI10b]. In further work, this can be exploited to implement a limited
form of task-parallelism.

2.2.1 ereading Model

CUDA-enabled GPUs offer a scalable programming model. Each GPU holds one or
more streaming multiprocessors (SMs) and can provide up to a total number of 480
processing cores [NVI10b]. When executing programs on such GPUs, one normally
spawns a large number of identical threads. Each of these threads is identiĕed by either
a one-, two- or three-dimensional index. is indexing system makes it trivial to invoke
computations across elements in a domain such as a vector or a matrix, i.e., the pro-
grammer can easily assign the computation of each thread to a speciĕc cell or a speciĕc
group of cells in, say, a matrix.

e schedulers of these GPUs organise threads into primitive groups, called warps.
e threads in a warp get scheduled to run concurrently on a single multiprocessor and
are closely related in terms of what resources they share and have access to. However,
the programmer never deals with warps directly. e programmer deals with threads
and blocks of threads. e number of threads that gets allotted to each block is constant
across all blocks and is typically amultiple of thewarp size. A choice of toomany threads
per block, exhausts the registers and the shared memory. Similarly, a choice of too few
threads per block yields poor utilisation, e.g., opting for 16 threads will make half of the
multiprocessor lie idle since the hardware is designed to run 32 concurrent threads per
multiprocessor [NVI10b].

Computational blocks are distributed across grids and are indexed in a similar fash-
ion to that of threads. e maximum dimensions of the grids and blocks are dependent
on the underlying hardware and can be retrieved by querying the device. e graphics
processor can execute equally many blocks in unison as there are multiprocessors on
the chip. Hence, each block gets allotted to a unique multiprocessor. If there are more
blocks than there are multiprocessors, the GPU will assign multiple blocks to each of
the multiprocessors for alternate execution.

CHAPTER 2. LITERATURE REVIEW 8

On a lower level, warps of 32 threads each get scheduled for concurrent execution
and will run until, say, a lengthy memory access occurs. A warp hitting this condition
gets descheduled, allowing for other warps to run until the memory access has been
completed. e programmer is generally advised to assign multiple blocks to each mul-
tiprocessor since this provides more choices of warps to schedule if a multiprocessor has
to wait for a synchronisation to ĕnish [NVI10b]. To reduce the need for synchronisation
and idling in general, it should also be noted that the control Ęow of each thread in a
warp should follow the same execution path [NVI10b].

All the threads that get spawned on a CUDA-enabled graphics processor execute
the same sequence of instructions, namely a kernel. In CUDA C/C++, kernels are dis-
guised as annotated functions. In general, the programmer decorates the functions with
function-type qualiĕers to specify where the code blocks reside, i.e., whether they reside
on the host or on a GPU device, and where the function is callable from.

On CUDA-enabled GPUs, the spawning of threads is considered computationally
cheap. However, it does make sense to reduce the number of control transfers across
device boundaries, i.e., between the CPU and the GPU. Multiple code blocks can be
grouped together, lessening the scheduling and communication overhead. CUDA im-
plements a barrier function to coordinate communication between threads of the same
block [NVI10b]. is can be used to synchronise threads and, hence, resolve data inter-
dependence between operations.

For devices of compute capability 1.3 and higher, double-precision Ęoating-point
arithmetic is supported. However, there is a penalty for using 64-bit Ęoating-point op-
erations in terms of clock cycles. e throughput for 32-bit Ęoating-point instructions
is the same as the throughput for integer instructions, so integers and single-precision
Ęoating-point numbers can be used side by side without affecting the performance. On
the other hand, integers and reals should not be used interchangeably as this intro-
duces implicit type conversions to the program, which in turn slows down the execution
[NVI10b].

2.2.2 e Memory Model

CUDA threads normally operate on data residing in the physical memory of the graph-
ics processor on which they get executed. at is to say that, unless page-locked host
memory is used, the data in the CPU is inaccessible to the GPU, and vice versa.

CUDA implements a shared memory model with several layers of separation. On
the highest level, there is a chunk of global memory which is accessible from all the
threads. is type of memory is considered slow and expensive due to the latency
and the limited bandwidth of the memory buses between the global memory bank and
each individual multiprocessor. To maximise memory throughput when using global
memory, it is important to follow the most optimal access patterns for the architecture
to ensure that the reads and writes can be grouped together and optimised by the GPU.
Lower-level banks of cached, read-only memory, such as constant memory and texture
memory, can signiĕcantly improve the performance of a program [NVI10b].

e host memory can only be accessed directly from a CUDA device if the memory
page or thememory pages that contain the data of interest get locked. e locking of host
memory can potentially speed up the application. However, by locking the memory, the
pages in question cannot be swapped to disk. e physical memory is a scarce resource,
and since page-locking reduces the amount of physical memory that is available to the
operating system, it can have a severe impact on the overall system performance [SK10].

CHAPTER 2. LITERATURE REVIEW 9

Location / Scope Size Hit Latency Description
Global (Read/Write)
Off-Chip / Global 100s of MBs 100s of cycles Persistent across kernel invocations. More ef-

ĕcient to access when multiple threads access
contiguous elements simultaneously – this en-
ables hardware to coalesce memory accesses to
the same page.

Local (Read/Write)
Off-Chip / Function ≤ GlobalƬ = Global Memory used on a per-thread basis. Register us-

age is to be preferred, but this space can be used
for register spilling, etc.

Shared (Read/Write)
On-Chip / Function 16KBƭ/SM ≈ Register latency Local space of cached memory that can be

shared between threads in a thread block.
Constant (Read-Only)
On-Chip / Global 64KB total ≈ Register latency Data originally residing in global memory, but

cached in each SM. Commonly used in lookup
tables. Simultaneous requests within a multi-
processor must be to the same location, other-
wise delays will occur.

Texture (Read-Only)
On-Chip / Global ≤ Global > 100 cycles Locally cached global memory which capitalises

on two-dimensional locality. Hardware inter-
polation and conĕgurable behaviour of texture
edge values make this kind of memory useful in
applications such as video encoders.

Table 2.1: Memory properties of typical CUDA-enabled graphics processors (based on
Table 1 in [RRB+08]).

Each multiprocessor sits on an isolated chunk of memory, known as the shared
memory of that particular unit. Due to the locality and the caching of shared memory,
it is much faster to access and use than, for instance, the global memory. However, data
stored in this memory bank cannot be shared between separate multiprocessors and has
a limited storage capacity [NVI10b].

On a thread level, CUDA offers a set of fast registers and a relatively slow, local
memory bank. Registers, which reside physically on each of the processing units of the
multiprocessors, are the preferred placeholders for data during computation. It is im-
portant to try to keep the number of temporaries to a bare minimum – cf. §2.4 on page
16. If the computation requires more temporaries than there are registers available, slow
local memory or similar memory banks will have to be used instead. is phenomenon
is called register spilling [ALSU06].

In summary, the CUDA architecture offers a lot in terms of processing power. How-
ever, the CUDA platform is, as most other parallel architectures, extremely sensitive to
bad memory accesses. Data copies are generally more time consuming than computa-
tions due to the latency and the bandwidth of the memory buses. us, the amount of
data to be transferred between the host and the device, and the extent of each of these
transfers, should be minimised. Care must be taken when deciding where the data is to
be stored. Bad memory access patterns will have severe implications on the perform-
ance of the application [RRB+08]. As is the case onmost parallel architectures, proĕling
and experimentation seem to be the best ways of ĕnding the fastest implementation for
a particular problem. However, the guidelines and the optimisation strategies provided
by NVIDIA [NVI10b, §5] generally yield good results [NVI10b, RRB+08, Har08].

Ƭe amount of local memory available to each thread varies between 16KB and 512KB. is depends
on the compute capability of the device.

ƭDevices of compute capability 2.0 has 48KB of shared memory per streaming multiprocessor (SM).

CHAPTER 2. LITERATURE REVIEW 10

2.2.3 NVIDIA CUDA C/C++

CUDA C/C++ implements a conventional C/C++ language with a number of exten-
sions, allowing the programmer to write heterogeneous code that targets both the CPU
and CUDA-enabled graphics processors. e language is fully compliant with the
C/C++ standards when writing host code, but there are some restrictions to what can
be done in device code. Even so, the language is moving towards full compliance for
device code as well, but only when targeting devices of compute capability 2.0.

e CUDA language includes type qualiĕers to specify where code and data should
reside. ese type qualiĕers can also be used to specify whether to use shared memory,
texture memory or constant memory for a piece of data. Additionally, the language
provides dedicated constructs for spawning CUDA kernels from the CPU [NVI10b].

As mentioned in §2.2.2 on page 8, all the data that is accessed by a CUDA kernel
should reside in thememory of the executing device. Hence, to be able to do any form of
data processing, the input data must be transferred from the CPU to the GPU. Similarly,
the result must be transferred back to the CPU aer the computation has ĕnished.

In other words, the programmer must be able to allocate, read, write and free device
memory. Consequently, the programmermust also be able to query for what devices are
available in the system on which the target program is to be run. e soware libraries
that are provided by NVIDIA have a vast collection of functions to aid the programmer
in this process.

2.2.4 Challenges

As mentioned in the previous sections, the GPU hardware architecture imposes certain
limitations on the programmers. To gain speedups, the programmer is highly depend-
ent on the problems at hand being naturally data-parallel. If they are, the computations
will scale well on the CUDA platform as CUDA-enabled GPUs provide a large number
of hardware managed threads, each which can compute a certain portion of each prob-
lem independently. However, the GPUs are extremely sensitive to irregular memory
accesses. Poor utilisation of the caching capabilities of the graphics processors can sig-
niĕcantly inĘuence the performance of a program [RRB+08]. Hence, it is crucial to have
a good data layout to allow large chunks of subsequently accessed data to be cached on
the GPU. e speed and bandwidth of the memory bus between the CPU and the GPU
and the memory buses between the global memory on the GPU and each of the multi-
processors, yield a relatively high latency for accessing host memory and global device
memory. As discussed in §2.2.2, local, cached memory and on-chip registers have a
much lower latency and are to be preferred when choosing where data is to be stored
[Har08, RRB+08].

In general, computations are cheap and memory accesses are expensive on these
architectures. Sometimes, for smaller problems, one might not even beneĕt from paral-
lelising a program due to the overhead that is caused by data transfers between the host
and the device. It is also worth mentioning that, in some cases, recomputing data can
be cheaper than fetching it from memory.

2.3 Languages and Libraries for Parallel Computing

In §2.2 on page 7, we gave an introduction to CUDA, the hardware platform which
the compiler – from now on called F – is targeting. e remaining sections of this

CHAPTER 2. LITERATURE REVIEW 11

review focus on the code transformations that the compiler can perform to parallelise
and optimise functional-style code.

Semantic analysis of parallel programs is an areawhich has been researched formany
years, and there have beenmade numerous attempts to facilitate parallelism in program-
ming languages, CUDA being one of them. In some languages, native constructs have
been added to the language to allow the programmer to expose parallelism. More com-
monly though, is the use of external libraries to achieve the same objective.

is section contains an evaluation of a selection of libraries and languages for par-
allel computing. e purpose of this investigation was to identify key features which
should be considered in the design and implementation of the project.

2.3.1 Shared Libraries and APIs

As discussed in §2.3.2 on page 12, there exist many programming languages which cope
with concurrency. However, there are also a lot of libraries available to exploit parallel-
ism in conventional languages. e collection of libraries that is described in this section
is a small but illustrative subset of these.

Conventional languages oen deal with task-parallelism as opposed to data-
parallelism. For instance, in Java, the programmer can extend the java.lang.Thread
class to run code blocks asynchronously. In C, the programmer has access to threading
libraries such as Preads [POS95]. ese libraries allow for concurrent execution of
certain types of functions and allow the programmer to manage shared resources by the
means of mutually exclusive locks, semaphores and other similar mechanisms.

Even though task-parallelism can be used to solve data-parallel problems, the
scheduling and thread management in task-parallel libraries tend to be more costly in
terms of performance. Data-parallel architectures, such as CUDA, oenmanage threads
or similar entities in hardware, and this allows for fast spawning and simultaneous exe-
cution of a vast number of processes, as mentioned in §2.2.1 on page 7.

In F, only data-parallelism is exploited, so task-parallel libraries are of little in-
terest to us. Some devices of compute capability 2.0 and higher can execute multiple
kernels concurrently. Similarly, multiple devices and CUDA streams can be utilised to
accomplish a primitive form of task-parallelism [NVI10b]. However, this is a subject for
further work. e following subsections focus on data-parallelism and study a selection
of libraries that have been relevant to this project.

2.3.1.1 CUBLAS and Accelerator.NET

CUBLAS is a GPU-accelerated implementation of the Basic Linear Algebra Subpro-
grams (BLAS) in CUDA C/C++ [NVI10a], and consists of common linear algebra
routines which can be used transparently without having to deal with CUDA directly.

Accelerator.NET is a soware library which adds support for data-parallelism to the
Microso .NET framework [TPO06]. e library provides wrapper classes with generic
routines to performoperations on single- andmulti-dimensional arrays in parallel. How
these computations get distributed onto the machine depends on the underlying hard-
ware, e.g., if the program runs on a quadcore machine, the library splits the workload
in four and executes each chunk on a separate core. Accelerator.NET can also exploit
available graphics processors.

e concept of dynamic distribution of computation introduces the idea of dynamic
execution behaviour. is means that the compiler can add code to decide how to eval-
uate a function at run-time. Say, for instance, that the programmer wants to evaluate

CHAPTER 2. LITERATURE REVIEW 12

map(F, List). en, F can produce code so that map executes in parallel for large
numbers of elements in List, and sequentially otherwise. Hence, the compiler should
produce two versions of the function as well as extra code to determine which version
to use based on a computational cost model such as, for instance, the Parallel Random
AccessMachine (PRAM) [Ble96, ST98]. e parallel languageNESL, which is presented
in §2.3.2.5 on page 16, implements such a performancemodel and thereby gives the pro-
grammer a formal way of reasoning about the space and time complexities of a program
[BG96].

Reuse of well-written and fast code is a key concept in both CUBLAS and Accel-
erator.NET. With respect to F, the compiler should recognise common patterns in
the code and apply high-performance code templates, where it sees ĕt, during the code
generation stage. For example, recursive functions reducing the elements of a list into a
scalar can be substituted with an instance of, say, the high-performance parallel reduc-
tion algorithm that was presented in [Har08].

2.3.1.2 OpenMP

OpenMP is an application programming interface (API) that allows the program-
mer to perform cross-platform, shared-memory multiprocessing. e library supports
the C/C++ and Fortran languages, and is available for many hardware architectures.
OpenMP controls parallelism by the means of compiler directives, library routines and
environment variables. In other words, OpenMP provides an explicit programming
model for parallel computing [ARB08].

In OpenMP, the programmer can decorate looping constructs to make them run
in parallel. However, since the order in which the parallel loop gets executed is inde-
terminable, loops should only be parallelised if there exist no loop-carried dependences.
Loop-carried dependence is a common issue one has to tackle when parallelising loops
and is further discussed in §2.4.6 on page 22.

2.3.2 Programming Languages

ere exists a vast number of programming languages out there, and a substantial subset
of these targets parallel computing. In this section, a selection of languages are presented
to give a Ęavour of the style in which parallelism and concurrency can be expressed.
More speciĕcally, this section discusses programming languages and theirmapping onto
parallel problems.

In procedural languages, Ęow control happens primarily through loops, conditionals
and function calls, and the order of execution is vital. Many procedural languages, such
as for instance C and C++, supports pointers and aliasing. However, memory indirec-
tion introduces additional complexity to the data-Ęow analysis and, hence, renders the
languages undesirable when dealing with automatic parallelisation of loops [BGS94].

Data-Ęow analysis can be used to identify loop-carried dependences and is therefore
an important aspect of this project. F opts for a functional-style language, partially
because of the lack of memory indirection in this programming paradigm.

It should also be noted that aliasing makes it difficult to deĕne a complete semantics
for a language, making it inherently difficult to reason about a program’s correctness
[BGS94]. e amenability to correctness analysis is one of the strong sides of functional
programming [Hud89], and is particularly valuable to this work as it simpliĕes the ap-
plication of cost models when performing automatic parallelisation.

CHAPTER 2. LITERATURE REVIEW 13

2.3.2.1 Automatic Parallelisation of Fortran

Fortran is an example of a procedural programming language. Originally, Fortran disal-
lowedmemory indirections and, thus, was considered to bemore amenable to data-Ęow
analysis than its sibling languages, such as, C and C++ [BGS94]. However, current ver-
sions of Fortran support pointers and other features that are associated with aliasing
[ISO97]. As mentioned earlier, unrestricted pointers introduce difficulty in the deduc-
tion of which variable a pointer is referring to and, hence, make state changes unpre-
dictable and difficult to track. is reduces the opportunity of optimisation [BGS94].

Nevertheless, Fortran is still highly regarded in the high-performance engineering
and scientiĕc computing communities [BGS94] and has been studied in a number of re-
search projects on parallelisation [ABC+88, BKK+89, PGH+89]. e research that has
gone into the parallelisation of Fortran has, inter alia, lead to the development of High
Performance Fortran (HPC). HPC is an extension of the Fortran 90 compiler which ex-
ploits data-parallelism by distributing the workload of array computations and certain
kinds of loops across multiple processors [For97]. Some of the concepts that were in-
troduced in HPC, were later adopted in Fortran 95.

Co-Array Fortran is another approach to parallelising Fortran. e general idea
behind this Fortran extension is to replicate the compiled program and all its associated
data, called an image, and execute multiple such replicates asynchronously. e images
can then interact with each other through shared data, and synchronise their execution
by the use of barriers [NR98]. is approach is quite similar to the approaches that can
be found in other data-parallel languages and libraries.

Fortran code can also be parallelised through the use of the OpenMP API [ARB08]
or the PGI CUDA Fortran compiler [PG10]. e optimisation and parallelisation tech-
niques that are employed in these variants of Fortran are of particular interest to this
work and is discussed further in §2.4 on page 16.

2.3.2.2 Parallelisation of Java for Graphics Processors

In 2010, Peter Calvert investigated how to automatically parallelise Java byte-code on
CUDA-enabled devices [Cal10]. His work focuses on the extraction of trivial loops from
the byte-code that gets generated by, for instance, a Java compiler, and on the parallel-
isation of these loops using the CUDA C/C++ compiler. e tool that was produced as
part of Calvert’s project allows developers who target the Java Virtual Machine (JVM) to
automatically or manually (by the use of annotations) beneĕt from the parallelisation of
looping constructs in their programs.

e data-Ęow and dependence analyses that are carried out by Calvert’s compiler
tool have many similarities to the analyses that are undertaken in F, and some of the
topics that were discussed in his report are applicable to this project as well. However, a
substantial part of his work focuses on topics such as reverse engineering of byte-code,
loop detection and kernel extraction from low-level code, and all these subjects are ir-
relevant to this work.

2.3.2.3 Functional Languages

Functional programming treats computation as an evaluation of referentially transpar-
ent functions. Functional languages tend to avoid global state and commonly implement
single assignments [Hud89]. e latter also implies immutable data. Explicit looping
constructs are absent in these kinds of languages, so looping is accomplished through
the application of recursive functions.

CHAPTER 2. LITERATURE REVIEW 14

Recursion in computer science is similar to the concepts of recursion and induction
in mathematics. erefore, given that there is no state and no mutable data, recursion
can signiĕcantly simplify the correctness analysis of programs since the programmer
can reason mathematically about the implementation [Hud89].

To implement a language which is amenable to Ęow and dependence analyses
and which, consequently, is well-disposed to automatic parallelisation, F opts for a
functional-style grammar with strict evaluation, implicit typing, immutable data and
no state. Implicit typing is realised by the means of type inference [ALSU06].

Functional languages are claimed to be naturally concurrent, and have been extens-
ively discussed in the literature of parallel computing [BG95, HJ85, ST98, Szy91]. Much
of the research has gone into task-parallel issues such as the parallelisation of argument
evaluation. Since there are no explicit looping constructs in functional languages, the
only way to parallelise loops is to consider recursive functions. is involves that the
compiler must transform recursive functions into loops [LH88, Har88], which in turn
are amenable to parallelisation.

One of the functional languages which has tried to exploit parallelism is MultiLisp.
MultiLisp is a dialect of Lisp which introduces the idea of parallel evaluation of function
arguments and so-called futures. Futures are programming constructs which allow the
evaluation of certain terms to be performed asynchronously whilst subsequent compu-
tations, that are not dependent on the result of the evaluation, are carried out. Hence,
the execution of the program can continue until the results of the asynchronous evalu-
ations are strictly needed [HJ85]. However, these extensions introduce side-effects by
the use of shared memory and therefore renders the dialect non-deterministic. e ap-
proach that is taken in MultiLisp is best suited for task-parallel architectures and thus
not particularly relevant to this work.

Lisp is not the only functional language that has been subject to research on parallel-
isation. Considerable efforts have also been made to try to add concurrency constructs
to Haskell [CKLP01, CKL+11, Cha10, TLP02]. Data-parallelism has indeed been ex-
ploited in derived versions of Haskell, but mainly by supplying the programmer with
library functions to perform parallel operations on arrays and structures. is is similar
to what is done in the Accelerator.NET library, which we described in §2.3.1.

However, there are other aspects of the Haskell language that are of interest to us in
this project. Haskell implements the call-by-need evaluation strategy. In call-by-need
evaluation, arguments do not get evaluated before the function call as they do in call-
by-value evaluation. On the contrary, the arguments get evaluated when they are ĕrst
referenced from within the function body. As opposed to what is done in the call-by-
name strategy, where the arguments get reevaluated upon every reference, the call-by-
need evaluation caches the results of the ĕrst evaluation of every argument so that these
results can be reused in subsequent accesses [ASSP96].

e call-by-need evaluation strategy introduces the idea of function memoisation
[ASSP96]. If we consider the Fibonacci function in (2.1), we see that evaluating, say,
fib(10) will yield multiple calls to all fib(i), i < 10. Without memoisation, the com-
puter must evaluate fib upon every call, which obviously involves a fair amount of re-
dundant computation. By caching the result of a function call for a given input, the
reevaluation of the function will be computationally cheaper since the return value can
simply be looked up in a hash-table instead of being recomputed – this is only the case
if the cost of recomputation is higher than the cost of a hash-table lookup.

fib(n) =

{
n, if n = 0 ∨ n = 1,
fib(n− 1) + fib(n− 2), if n > 1.

(2.1)

CHAPTER 2. LITERATURE REVIEW 15

In light of the objectives that were stated in §1.4, and further justiĕed by the results that
can be achieved from applying the optimisation techniques that are discussed in §2.4.3
and §2.4.4 on page 20, function memoisation has not been implemented in F.

2.3.2.4 Concurrency-Oriented Languages

Erlang is a concurrency-oriented programming language which implements strict eval-
uation, single assignments and dynamic typing. e language was originally designed
by Ericsson to support the development of distributed, fault-tolerant applications. Er-
lang implements an explicit concurrency model based on communicating processes
and uses message passing instead of shared, global variables to produce lock-less code
[AVWW93].

Another language which deploys concurrency by implementing communication
channels between sequential processes, is the imperative, procedural language occam.
occam is designed for concurrent programming and has explicit declarations of whether
statements are to be executed sequentially or in parallel [SGS95].

In this work we opt for implicit parallelism. Hence, no such constructs have been
made available in the F language. One can argue that the compiler should avoid hiding
too much away from the programmer [SH92]. However, for automatic parallelisation
of loops over large data-sets, a lot can be done implicitly to optimise the program. e
applicable optimisation techniques are discussed in §2.4 on page 16.

Communicating processes are not explicitly designed for data-parallel problems and
are more relevant to task-parallel computation. In F, parallelisation only occurs in
computational expensive sections of the code where a single set of instructions can be
applied tomultiple data entities simultaneously, e.g., in hotspots such as array-processing
loops [ALSU06]. Consequently, other forms of parallelism are not considered.

at being said, Erlang and occam approach concurrency transparently, meaning
that parallelism is programmatically exploited in the same way regardless of whether
the user deals with a cluster system or a single, unicore machine. is is an interesting
concept which F has adopted.

Erlang implements several concepts that help to simplify the analysis and improve
the readability of code. F is inspired by Erlang and inherits some of its core features:

• Pattern Matching – Erlang allows for the use of pattern matching in function sig-
natures to improve the readability of function deĕnitions. e language also lets
the programmer implement multiple bodies for the same function [AVWW93],
e.g., to provide one clause for each possible input case, which, for instance, can
make it easier to distinguish between the base case and the inductive step of re-
cursive functions. is approach is analogous in functionality to having an if-
statement inside a single function body, but simpliĕes the semantic analysis and
improves the readability of the program.

map(l, f) =

{
∅, if l = ∅,
f(l1) :: map([l2, . . .], f), if l = [l1, l2, . . .].

(2.2)

e mapƬ function that is described in (2.2) has two discernible types of input,
namely l of zero and non-zero cardinalities. e function can therefore be imple-
mented in Erlang by using two separate function bodies, one for each input type,
as illustrated in Listing 2.1.

ƬNote that the binary operation :: is given by list preĕxation, see §A.7.2 on page 88.

CHAPTER 2. LITERATURE REVIEW 16

Listing 2.1: e map function that is deĕned in this code snippet, applies a function
to all the elements of a list (Erlang)
map([], F) → [];
map([H|T], F) → [F(H)] ++ map(T, F).

• List Operations – As shown in the example above, lists can easily be split and
examined in Erlang. e construct [H|T] splits a given list, l, and assigns the ĕrst
element of the list, l1, to H and the remainder of the list, [l2, l3, . . .], to T. A similar
construct is available in the F language.
List comprehension is a common feature of many functional and array program-
ming languages [Arm07, Hud89, ST98], including Erlang, and is essentially a pro-
gramming construct for generating lists based on a set of criteria. is is a concept
that is based on the mathematical set-builder notation. List comprehensions are
realisable by the application of the fundamental map and filter functionsƭ that
can be found in most functional languages, and are therefore parallelisable. List
comprehensions are subject to further work.

• Atoms and Variables – Erlang differentiates between atoms, identiĕers starting
with a lower case letter, and variables, identiĕers starting with a capital letter. In
F, atoms are automatically substituted with numerical constants at compile-
time so that, whenever atoms are used in the program, the machine can compare
integers rather than strings. is feature can be regarded as syntactic sugar and is
implemented solely to improve the readability of input programs.

2.3.2.5 Performance Models for Data-Parallel Languages

NESL is a parallel programming language which integrates ideas from function pro-
gramming, parallel algorithms and array programming [Ble95, BHC+93]. e language
can be used to solve regular, data-parallel problems, but is also suitable for irregular al-
gorithms that work on sparse matrices and traverse over trees and graphs. NESL follows
a divide-and-conquer approach and supports nested parallelism, i.e., the programmer
can spawn parallel processes from within other parallel processes [Ble95]. CUDA can-
not instantiate new kernels from within executing kernels [NVI10b]. Hence, nested
parallelism is disregarded in this work.

As mentioned in §2.3.1 on page 11, an important aspect of NESL is its implementa-
tion of a language-based performance model which allows the programmer to perform
a formal estimation of the work and depth of a program [BHC+93]. e measures that
are yielded by such an analysis correlate to the actual running time on a parallelmachine.
erefore, the measures are also useful in the reasoning about a program’s performance
and, consequently, in the justiĕcation of applied optimisations.

2.4 Compiler Transformation Techniques

In this project, we study how functional code can be parallelised. Asmentioned in previ-
ous sections, loops tend to become the hotspots, i.e., the most computational expensive
sections, of the code. To attack this problem when parallelising and optimising func-
tional code, one mainly focuses on the transformation of recursive functions into loops

ƭFor instance, the list comprehension
{

x2 | x ∈ L, x ≤ P
}

can be expressed in any functional lan-
guage as: map(λx. x2, filter(λx. x ≤ P, L)).

CHAPTER 2. LITERATURE REVIEW 17

and then on the parallelisation of these loops, which allows us to distribute the work-
load across multiple processing units [ALSU06, Har88]. e reader should note that
there exist other approaches to parallelisation of functional code, see §2.3.2 on page 12.
However, these are predominately related to task-parallel architectures.

Tail-recursive functions are easily transformable into loops [BGS94, Har88]. Aug-
menting recursion can be converted into tail recursion [LH88, Bir77, LS00], and con-
sequently, by eliminating the resulting tail call, a loop can be derived. However, some
recursive functions are not amenable to these optimisations, e.g., consider a function
performing an in-order traversal over a binary tree. F addresses the problem of
optimising instances of tail recursion and augmenting recursion. Other kinds of re-
cursion, such as tree recursion, indirect recursion and mutual recursion, are not con-
sidered. However, the translation of mutual and simultaneous recursion into iteration
is a routine extension of the methods that are implemented in F, and should therefore
be considered in further work.

One of the ĕrst stages of the compilation process is the translation of the input source
code into an abstract syntax tree and, subsequently, into an intermediate code represent-
ation, e.g., in the form of three-address code [ALSU06]. ree-address code and other
intermediate representations are discussed in §2.4.1.

Once the abstract syntax tree has been generated and an intermediate representation
has been derived, the compiler can perform certain transformations on these to optimise
the output which gets produced in later phases of the compilation [ALSU06]. e fol-
lowing sections study various optimisation techniques that can be applied to functional
code, some of which operate on the abstract syntax tree and some of which operate on
the intermediate code representation.

Before proceeding, it is worth mentioning that the compiler should always prioritise
correctness over performance. e result of a compiler transformation, P ′, must always
be correct in the sense that the program prior to the transformation, P , and P ′ both
produce the same output for the same input, i.e., for all input I , P (I) = P ′(I). In the
mathematical sense, this is relatively easy to verify. However, in computing, we also have
to consider integer overĘows, rounding errors and precision errors. Furthermore, since
optimisations and compiler transformations can involve reshuffling of instructions, we
have to consider situations where P ′ raises exceptions at different points in the program
than P , or where exceptions get raised due to unhandled cases.

2.4.1 Intermediate Representations

In the context of compiler construction, there is a selection of intermediate code rep-
resentations to choose from. Functional-language compilers oen choose to employ
continuation-passing style or administrative normal form [App98b, Ken07], whilst
imperative-language compilers normally opt for three-address code or static single as-
signment form. is section presents the intermediate representations that are listed
above. e intermediate representation that is used in F is presented in §5.3 on page
40, together with a justiĕcation for the choice of representation.

• λ-Calculus – Representations that are based on λ-calculus can be used to rep-
resent the input code in functional-language compilers. However, these are not
good intermediate representations for call-by-value languages, such as F, as
they have the potential to change inĕnite loops into terminable programs. Fur-
thermore, single evaluation of parameters can be expanded into multiple evalu-
ations [App92].

CHAPTER 2. LITERATURE REVIEW 18

• Continuation-Passing Style (CPS) – e continuation-passing style employs
single assignments and is mainly concerned with interprocedural optimisations.
is representation essentially turns all function applications inside out, and has
the property of making control-Ęow and data-Ęow explicit [App92]. CPS also has
the property of ensuring soundness of β-reductions (function inlining). In con-
trast, call-by-value languages that use an intermediate representation that is based
on λ-calculus, only allow for sound applications of the weaker β-value rule since
side-effects and non-termination can invalidate the full β-reduction [Ken07].
CPS represents all arithmetic and logical operations as functions. us, all op-
erations appear in the form of function calls. Additionally, all functions take an
extra argument, namely a continuation. e continuation of a function is an-
other function whose main objective is to receive and process the return value
of the function which is referencing the continuation. Instead of using the con-
ventional call-and-return paradigm, CPS uses continuations to control the Ęow
of the program. Consequently, control will never return to the call-site of a func-
tion as the corresponding return value gets propagated through the referenced
continuations instead of being passed back to the caller.
e following example illustrates how an ordinary expression can be translated
into continuation-passing style:

x + (y − 1)× z → add(x,mul(add(y,−1), z))

→ add′(y,−1, λr0. mul′(r0, z, λr1. add′(x, r1, k))),

where op′(a, b, c)
def
= c(op(a, b)), op ∈ { add, mul }.

Note that k is the continuation that gets passed in to the evaluation of the entire
expression, and that this is the function that is responsible for processing the result
of the evaluation of x + (y − 1)× z.

• Administrative Normal Form (ANF) – e administrative normal form bears
many similarities to the continuation-passing style. For instance, as is naturally
the case in CPS, the ANF representation requires all function arguments to be
represented trivially, meaning that every argument must either be an immediate
value or a variable reference [FSDF93]. is can be accomplished by using the
pre-deĕned let-construct, as illustrated below:

x + (y − 1)× z → let r0 = y − 1 in

let r1 = r0 × z in x + r1.

In addition to being extensively used in functional-language compilers, the ad-
ministrative normal form is also used in the study of semantics for impure func-
tional languages [Ken07, Pit05].

• ree-Address Code (TAC) – ree-address code is a sequence of quadruples
holding an operator (•), two operands (o1, o2) and a destination (d), and is com-
monly denoted by a sequence of instructions of the form d ← o1 • o2. Since
each three-address code instruction is limited to having two operands, long and
complex expressions must be rewritten in terms of compiler-generated tempor-
aries [ALSU06]. For example, an assignment, x← a+(b×c)−d, gets translated
into an equivalent sequence of instructions:

t1 ← b× c; t2 ← a + t1; x← t2 − d, where ti are temporaries. (2.3)

CHAPTER 2. LITERATURE REVIEW 19

Each three-address code instruction can also be assigned one or more labels since
the handling of Ęow-control instructions requires each individual instruction to
be addressable.

• Static Single Assignment Form (SSA) – e static single assignment form is a re-
ĕnement of three-address code, and is mainly concerned with the representation
of function bodies. As the name suggests, SSA employs single assignments, i.e., it
disallows destructive assignments to variables, and it is therefore well-suited for
intra-procedural optimisations and settings where data-Ęow analyses should be
conducted [App92].
SSA is predominantly employed in imperative-language compilers. Nevertheless,
it shares many of the same properties as continuation-passing style and adminis-
trative normal form [App98a].

In general, it should be noted that the choice of representation does not have any un-
desirable effects on the outcome of the optimisation process, as we can easily convert
between the different forms during compilation [App98b, App98a, Ken07]. As has been
stated in the literature, the functional-style representations, ANF and CPS, and the
imperative-style representations, SSA and TACƮ, are essentially doing the same thing,
just in different notations [App98b, Ken07].

e main difference between CPS and the other representations that are mentioned
above is the need for renormalisation when inlining functions [Ken07]. In CPS we em-
ploy continuations, in the form of ĕrst-class functions, which receive the results of the
corresponding evaluations. However, in the other representations, we introduce new
variables. To perform inlining in the latter case, we need to rename all the variables of
the function body, i.e., renormalise the function. is contrasts to CPS, where we can
perform direct inlining without renormalisation.

2.4.2 Commonly Applied Transformation

is section lists a set of commonly applied TAC transformations. ese semantics-
preserving transformations are examples of machine-independent optimisations that
are applied iteratively until no more optimisation candidates can be found [ALSU06].
e listed transformations assume that the input is in the form of a basic block, i.e., a
sequence of TAC instructions without branch instructions, except from potentially at
the end of the block. Furthermore, only the ĕrst instruction in the block can be labelled.

• Common Subexpression Elimination – In common subexpression elimination,
we consider groups of quadruples which all contain the same two operands and
operation type. All pairs (q1, q2) in such a group get processed. If there are no
intermediate assignments to any of the operands of q1 and q2 in the instructions
linking the two TAC instructions together, the ĕrst TAC instruction, with respect
to a chronological ordering, is retained, and the second instruction gets substi-
tuted by an assignment, dq2 ← dq1 . For example, considering a sequence of TAC
instructions, t1 ← a × b; t2 ← a × b, common subexpression elimination
transforms the latter instruction into t2 ← t1. Note that, since the F language
implements single assignments, no intermediate assignments can occur. Hence,
the test for destructive assignments lapses.

ƮGiven that the employed TAC representation can guarantee that all assignments are non-destructive.

CHAPTER 2. LITERATURE REVIEW 20

• Copy Propagation – is transformation exploits the substitutions that are per-
formed by common subexpression elimination. e copy propagation transform-
ation considers all copy assignments, i.e., TAC instructions on the form d ← o1,
and replaces every future reference to d by o1. E.g., considering the TAC sequence
t1 ← a + b; t2 ← t1; c ← t1 × t2, copy propagation transforms the latter in-
struction into c ← t1 × t1, since t2 ← t1 gets propagated through all of the
subsequent instructions.

• Dead Variable Elimination – is transformation identiĕes and eliminates re-
dundant instructions. For instance, in the example above, dead variable elim-
ination will render t2 ← t1 redundant since there are no references to t2 in the
ensuing instructions. is instruction will therefore be removed, yielding the fol-
lowing TAC sequence: t1 ← a + b; c← t1 × t1.

• Constant Folding – is transformation evaluates and folds all arithmetic opera-
tions where both operands are numerical. E.g., t1 ← 5× 7 becomes t1 ← 35.

• Algebraic Transformation – Algebraic transformation considers and simpliĕes all
redundant arithmetic operations, such as addition by zero and multiplication by
one. E.g., t1 ← x+0 becomes t1 ← x, t1 ← 1×x becomes t1 ← x, t1 ← 0×x
becomes t1 ← 0, and so on.

• Strength Reduction – Strength reduction substitutes certain kinds of operations
with computationally cheaper operations. For example, addition is a cheaper op-
eration than multiplication. Hence, t1 ← 2× x can be replaced by t1 ← x + x.
Similarly, t1 ← x2 can be replaced by t1 ← x× x, and so on.

2.4.3 Tail Recursion Optimisation

As mentioned in earlier sections, tail-call elimination allows us to turn tail-recursive
functions into explicit looping constructs [ALSU06, BGS94]. In tail-recursive calls, ex-
ecution control need not return to the point of invocation. us, there is no need for
a stack to store return addresses and to pass function arguments. Tail-call elimination
converts tail-recursive function calls into normal branch instructions and reassigns the
applied function arguments as needed. Similar transformations can be made for head-
recursive and middle-recursive functions. However, F only deals with tail recursion.

By the application of procedure inlining, one can turn invocations of tail-recursive
functions from within other recursive functions into sub-loops. If this transformation
yields a perfect loop nest and the inner loop has a greater iteration span than the outer
loop, one can optimise the code even further by performing loop interchanges [BGS94].
A loop nest is a set of loops, one inside another. If the bodies of all these loops, except
from the innermost body, only consist of the next loop in the chain, the nest is called
a perfect nest. As discussed in §2.4.7.3 on page 25, imperfect loop nests can be turned
into perfect nests by loop distribution.

e loop interchange transformation exchanges the indices, the bounds and the step
sizes of two nested loops and can be used to rearrange loops so that the outermost loop
becomes the most amenable to parallelisation. Since there is no support for nested par-
allelism in F, such rearrangements can play an important role in the optimisation
phase. However, in practise, the F compiler generates few instances of nested loops,
and so, the implementation of this feature has not been prioritised.

CHAPTER 2. LITERATURE REVIEW 21

2.4.4 Optimisation of Augmenting Recursion

Augmenting recursion can be converted into tail recursion by the means of introducing
one or more auxiliary parameters to the original function signature [LS00]. is re-
sembles rewriting the functions as loops, similar to those that can be found in imperative
languages [Shi05]. e F compiler exploits the trivial cases where such transforma-
tions can bemade. e chief beneĕt from converting instances of augmenting recursion
into tail recursion is that the resulting instances of tail recursion can be transformed into
physical looping constructs. is eliminates the stack growth that is normally associated
with recursion [ASSP96, §1.2].

2.4.5 Structural Recursion

On data-parallel architectures, we are mainly concerned with computations that can be
executed in parallel over vast data-sets. Hence, an important aspect of this work is to
optimise instances of recursion over data structures.

e only data structure that is available in F, is homogeneous lists. Perhaps the
most common way to iterate over such lists, is to consider two well-deĕned entities of
the structure, namely the ĕrst element (the head) and the remainder of the list (the tail).
is allows us to consider two cases of input; the case where the list is empty and the
case where the list is built up from an element prepended to an arbitrary list. It is easy
to see that this is a recursive structure and, thus, that iteration over such data struc-
tures strongly resembles the mathematical approach to structural induction, see the map
function that was described in (2.2).

e action of prepending updated elements to a recursively processed list, is in fact
an instance of augmenting recursion. E.g., in (2.2), the second function clause must
process the function call map([l2, . . .]) before it can prepend f(l1) to the resulting list.
Consequently, tail-call elimination cannot be applied directly.

A common way around this problem is to perform a transformation called tail re-
cursion modulo cons. e instance of augmenting recursion that is described above
depends on the preĕxation of an element to the result of a recursive call. Hence, a depth-
ĕrst traversal is performed and the caller must wait for the callee to ĕnish computing be-
fore continuing. However, if we introduce an auxiliary variable and initialise this with
the empty list, we can turn the depth-ĕrst traversal into an inline, iterative process where
the result of the computation that gets carried out on the head element can be appended
to the auxiliary list for each iteration [ASSP96, §2.2].

In conventional, functional programming languages, lists are normally represented
as recursive structures in the form of linked lists. is representation ĕts well with the
computational model of functional languages. In general, the action of appending ele-
ments to a linked list is computationallymore expensive than preĕxation and, hence, can
have a bad impact on our derived optimisation. However, in this context, the resulting
loop can be rewritten to allow for efficient suffixation of elements [ASSP96]. us, the
computational cost of appending elements to the list does not affect the performance of
the generated loop.

Generally, linked lists are considered to be computationally efficient data structures.
However, in terms of memory usage, they are considered wasteful due to the extens-
ive use of referencing between elements. Each element of the list, li, holds a pointer to
the rest of the list, [li+1, . . . , ln]. Consequently, the linked list structure has a memory
overhead of O(n). Also, the linking of elements is bad with respect to the cost of main-

CHAPTER 2. LITERATURE REVIEW 22

tainingmemory coherence, since all the pointers must be updated whenever the list gets
moved from one memory location to another.

In CUDA-speciĕc code, we want to reduce the amount of data that gets transferred
between the host and the device and, thus, remove aliasing altogether. e use of point-
ers poses a problem with respect to memory usage and memory coherence. To address
this problem, F implements a Ęat memory model without cross-referencing of ele-
ments.

2.4.6 Dependence Analysis

Aer having converted recursive functions into explicit looping constructs by themeans
of themethods listed in §2.4.3, §2.4.4 and §2.4.5 on pages 20 to 22, F tries to parallelise
these loops. However, to do so, the compiler needs some tools to help determine the
parallelisability of the loops. is section introduces one such tool, namely dependence
analysis.

Dependence analysis allows the compiler to impose constraints on the execution
order of instructions. e result of the analysis, commonly represented in the form of a
graph where instructions are denoted as nodes and dependences are denoted as edges,
can be used to reorder and, hence, reschedule the execution of instructions to improve
the performance of the output program [ALSU06].

2.4.6.1 Control-Dependence and Data-Dependence

ere are two types of dependences in computer programs, namely control-dependence
and data-dependence. Control-dependence, commonly denoted S1 δc S2 for two in-
structions, S1 and S2, deals with the cases where the execution of one instruction must
precede the execution of another one. For example, the control-dependence relation,
C1 δc S1, holds for an if-statement (C1) and its true-clause (S1) since S1 is strictly de-
pendent on the execution of C1 [PW86].

Similar dependence relations exist for the operation on data. Data-dependence ana-
lysis identiĕes cases where simultaneous execution of instructions are impossible due to
conĘicting uses of the same variables, and distinguishes between four different kinds of
dependences:

• FlowDependence–ere exists a Ęowdependence, also called a true dependence,
between two subsequent instructions S1 and S2 if S1 writes a value that is read
by S2. A Ęow dependence S1 δ S2 yields an explicit execution order on the two
instructions, namely that the execution of S1 must precede the execution of S2.

• Antidependence – Antidependences occur whenever an instruction S2 writes to
a variable, v, that is read by a preceding instruction S1. is is denoted S1 δ S2.
e restrictions imposed on the execution order by antidependences are not as
severe as the ones caused by Ęow dependences. e antidependence between S1

andS2 can be resolved by using two separatememory locations for the variable, v.
is allows for S1 and S2 to be swapped around without affecting the correctness
of the execution [BGS94].

• Output Dependence – If two instructions, S1 and S2, write to the same variable,
v, there is an output dependence between them, denoted S1 δ◦ S2. Such depend-
ences can be resolved using storage replication. However, if there are no control

CHAPTER 2. LITERATURE REVIEW 23

transfers and no intervening use of v between S1 and S2, the assignment in S1

becomes redundant and can be eliminated [BGS94].

• Input Dependence – If two instructions, S1 and S2, read from the same memory
location, there exists an input dependence between them. is imposes no order-
ing constraints on the instructions. However, the identiĕcation of input depend-
ences can be used to optimise data access patterns and, hence, improve the data
locality and cache usage of the program [BGS94].

2.4.6.2 Loop-Carried Dependence

e dependence relations that have been presented so far in this section can be used
to determine and optimise the execution order of loop-free sequences of instructions.
However, since F is capable of generating iterative constructs from recursive func-
tions, the F optimiser must also encapsulate and consider loop-carried dependences.
In loops, dependence relations can bind both instructions and instances of instructions.
To separate between the two, the latter is distinguished by a superscript notation stat-
ing the loop iteration for which the instance is valid, e.g., S(1)

a δ S
(1)
b for a loop iterating

over values of a variable, i, and in the case where i = 1. is notation can also be exten-
ded to denote instances of instructions in loop nests [PW86], e.g., S(3,5)

a δ S
(3,5)
b when

i = 3, j = 5 for an outer loop iterating over i and an inner loop iterating over j.
A further extension of the notation above allows us to easily denote more general

dependences between iterations, i.e., loop-carried dependences. If, for instance, the read
of an operand in instruction S

(i)
2 depends on the write of an instruction S

(i−1)
1 , we can

denote this by S1 δ< S2 where the less-than sign in the subscript stands for (i− 1) < i.
δ= is used to denote dependences within the same iteration. is allows us to annotate
dependences in loop nests as well, e.g., S1 δ<,= S2, where < is annotating the outermost
loop and = is annotating the innermost loop.

Having these tools in place, we can analyse the correctness of permutations in the
instruction ordering. is allows for further exploration and evaluation of applicable
optimisations [ALSU06]. In F, the dependence analysis is also used to determine
whether or not:

• Multiple parallel blocks can be merged together.

• Synchronisation barriers are needed between separate loops within the same ker-
nel due to dependences between instructions in the various loop bodies.

• Allocated memory for data structures, such as lists, can be reused. An example
would be the application of a function, f , to all the elements of a list, see (2.2). If
the original list never gets used aer this operation, the map function can simply
do inline substitutions into the original data structure instead of creating a new
list and populating this with the resulting values. is implies less pressure on
resources.

2.4.6.3 Invalidation of Loop-Carried Dependence

Given a for-loop of similar form to the one in Listing 2.2, i.e., with two subsequent
array accesses and integer constants c, d, j and k, we can readily check whether the loop
carries any dependences. Initially, since we prioritise correctness over performance, we
take a pessimistic stand and assume that there exists a loop-carried Ęow dependence in

CHAPTER 2. LITERATURE REVIEW 24

the loop. However, for the loop to carry any Ęow dependences, explicitly between S2

and S3, the greatest common divisor of c and d, gcd(c, d), must divide (k − j) [AK81,
BCKT79, Wol90]. Note that this criterion lapses if the greatest common divisor is zero.

Listing 2.2: e loop only has a loop-carried dependence if gcd(c, d) divides (k − j).
S1 : for i in (lbound, lbound+1, ..., ubound):
S2 : a[c*i+j] = ... # write to array
S3 : ... = a[d*i+k] # read from array

For example, if we consider the loop in Listing 2.2 with c = d = 2, j = 0 and k = 1,
we observe that there will be no loop-carried Ęow dependences betweenS2 andS3 since
gcd(2, 2) fails to divide (1 − 0). In other words, the initial assumption of there being
a loop-carried dependence between S2 and S3 has been invalidated. us, the loop is
fully parallelisable and can beneĕt from running on a CUDA-enabled device, given that
the work range of the loop is greater than some predeĕned parallelisation threshold.

2.4.7 Loop Transformations

Up to this point, the compiler has received directions on how it can produce an optim-
ised sequence of instructions from functional-style code. Furthermore, it has received
input on how it can convert recursive functions into loops. However, to produce good
data-parallel representations of these loops, it might be necessary to apply certain loop
transformations [BGS94, BCKT79, Har88, PW86]. Again, it is worth emphasising the
importance of loop optimisation and parallelisation, as computer programs spend the
majority of their execution time on computing loops. e following subsections discuss
the loop transformations that are relevant to this work in greater detail. Most of the loop
transformations that have been omitted from this review, are le out due to the fact that
the recursion-to-loop conversion renders them inapplicable or effectless.

2.4.7.1 Map and Reduce in Functional Programming

As has been discussed in previous sections, the compiler has to deal with cases where
there exist loop-carried dependences. With regards to loop parallelisation, it is worth
noting that the workload can still be split up between threads even if there exist in-
terdependences between the iterations, e.g., consider parallel reduction and parallel
scan. Borrowing ideas from the functional paradigm, modiĕed versions of the map
and reduce functions can be used to distribute the workload across multiple processing
units [DG08, YTT+08]. However, in parallelising the reduction code, it is important
to ensure that good coding practises are applied to avoid irregular memory accesses
[Har08].

2.4.7.2 Loop-Invariant Code Motions

An expression which appears inside a loop body, but whose value remains ĕxed for
all values of the induction variable, is called loop-invariant. Since loop-invariants get
reevaluated for every iteration of the loop, they constitute an unnecessary overhead in
execution time. is overhead can be eliminated by hoisting the loop-invariants out of
the loop. Such transformations are called loop-invariant code motions [BGS94].

Loop-invariant conditionals which reside inside loop bodies can also be hoisted out
of the loop. is involves a bit of extra book-keeping as the encapsulating loop must

CHAPTER 2. LITERATURE REVIEW 25

be substituted by a conditional and two identical loops, one for the true-branch and
one for the false-branch of the conditional (non-existent false-branches are obviously
omitted). e process of liing loop-invariant conditionals out of the loop is called loop
unswitching.

2.4.7.3 Merging and Splitting of Loops

Loop distribution, also called loop splitting and loop ĕssion, splits a loop into multiple,
smaller loops, e.g., one per instruction found in the loop body. is transformation is
suitable for vector machines where parallelisation is exploited on an instruction level.
However, on high-level architectures this would increase the loop overhead.

On platforms such as CUDA, it is more sensible to try to increase the number of
computations that get carried out per loop iteration, i.e., the number of instructions
per kernel [NVI10b]. is can be achieved by loop fusion. Loop fusion merges loop
bodies together and coalesces the loop bounds. is reduces the loop overhead and im-
proves the load balance of parallel loops [BGS94]. Furthermore, loop fusion reduces the
amount of branching and, hence, improves the instruction pipelining on the machine.
With respect to memory, this transformation tend to improve register and cache locality
[ALSU06].

2.4.7.4 Unrolling and Rerolling of Loops

e idea behind loop unrolling is to replicate the loop body to reduce the number of
iterations and to increase the amount of processing per step. is decreases the loop
overhead that is incurred by branching and evaluation of conditionals [BGS94], and
improves register and cache locality [ALSU06].

In some cases, the programmer hasmanually unrolled a loop by hand. Certain com-
pilers revert these cases by rerolling the loops before carrying out any further compiler
transformations to the program. In doing so, the compiler reduces the complexity of
the input and, therefore, simpliĕes the subsequent optimisation phases [BGS94].

CUDA C/C++ implements automatic loop unrolling for small loops with known
trip counts and provides a compiler directive (#pragma unroll) to control the unrolling
behaviour of larger loops [NVI10b]. Hence, loop unrolling is not implemented in the
F compiler.

2.4.7.5 Loop Coalescing and Loop Collapsing

When traversing multi-dimensional data, we oen ĕnd ourselves constructing perfect
loop nests containing one loop for every dimension of the considered data-set. In these
cases, given that the treated data structures allow us to, we can beneĕt from merging the
loops and converting multi-dimensional indices into linear indices [BGS94, ALSU06].
Successful application of this transformation yields less condition checking and branch-
ing and can therefore improve the overall performance of the program. is technique is
not directly applicable to F since the language only supports one-dimensional arrays.
However, the transformation is effectual and should be considered in further work.

2.4.8 Procedure Call Transformations

ere exists a number of different interprocedural optimisation techniques, e.g., proced-
ure inlining (§2.4.3 on page 20), procedure cloning (§2.3.1.1 on page 11) and function
memoisation (§2.3.2.3 on page 14). Procedure inlining and procedure cloning have, as

CHAPTER 2. LITERATURE REVIEW 26

illustrated in previous sections, applications that can affect and improve the result of
other optimisations, and have been implemented in F. However, other interproced-
ural optimisation techniques have not be considered in this work.

2.5 Performance Cost Analysis

Loops should only be parallelised if the parallelised version runs faster than the original,
sequential version. erefore, to be able to decide which version to use, we need some
way of tellingwhich one is faster. In §2.3.2.5 on page 16, we studiedNESL anddiscovered
its implementation of a language-based performance model [BG96, BHC+93]. Such
performancemodels allow us to reason about the performance of sequential and parallel
code and can therefore aid us in the process of deciding whether or not to run a loop in
parallel. F implements a simplistic performance model which is inspired by the one
that is implemented in NESL.

Another point worth noting, as we touched upon in §2.3.1 on page 11, is that the
parallelisability of a code section might be dependent on the range of a loop or the input
parameters of a function. erefore, the execution behaviour should be determined at
run-time. To address this, F generates a run-time check which determines whether
or not to parallelise a loop based on the size of the input and on the computational cost
of the loop body.

2.6 Data Layout and Memory Access Patterns

Previous sections have discussed the importance of a good memory layout and well-
behaved memory access patterns. e key decision one has to make in attacking this
problem, is how to decompose the data when distributing the workload across multiple
CUDA threads [NVI10b, Har05, Har08].

In this work, we only deal with data along one dimension since the type system of
F is restricted to dealing with integers, Ęoating-point numbers and Ęat lists (in the
form of ĕxed-size arrays). Hence, the data is decomposed along a single dimension, and
consequently, only the outermost loop in a loop nest is considered for parallelisation. In
other words, there is no need for block decomposition of data in F, and we only need
to worry about data locality along one axis.

It is important to consider the scenario where the number of iterations of a loop ex-
ceeds the maximum number of resident threads on the GPU. If the number of iterations
is less than the capacity of the GPU, we opt for a serial decomposition of data. Other-
wise, a cyclic decomposition is chosen [BGS94]. If the latter is the case, each CUDA
thread gets allotted several iterations of the original loop to process.

In §2.2.2 on page 8, we mentioned the importance of data locality and good util-
isation of memory caches in CUDA. Deducing whether read-only memory can be used
and where the data should be stored to get the most out of the caching mechanisms
of the GPU, is crucial as this can signiĕcantly affect the performance of the program
[RRB+08, SK10].

2.7 Summary

is project involves the development of a compiler for functional-style code whose
main aim is to simplify the development of algorithms for data-parallel architectures.

CHAPTER 2. LITERATURE REVIEW 27

e compiler targets the CUDA platform and endeavors to produce fast, parallel code
which exploits CUDA’s high-performance computing capabilities.

e ĕrst sections of this literature review looked at the CUDA platform in detail,
focusing on its threading model and its memory architecture. In short, we observed
that CUDA is a scalable and massively data-parallel architecture which is, as most other
data-parallel architectures, sensitive to irregular memory accesses and poor utilisation
of the built-in caching mechanisms.

e ensuing sections explored the world of parallel soware libraries and program-
ming languages to gather insight into how these map onto data-parallel problems. We
looked at NESL and how it implements a language-based performance model to reason
about the time and space complexities of parallel implementations. Furthermore, we
looked at the evolution of parallelisation in the Fortran programming language, which
is predominantly concerned with static code analysis. Additionally, ideas that are con-
cerned with the readability of code and the amenability to semantic analysis were col-
lected from various concurrency-oriented and functional languages.

In §2.4, we justiĕed how automatic parallelisation of functional-style code is amatter
of converting recursive functions into parallelisable loops and, furthermore, discussed
different techniques that can be applied to do so. is section also detailed the set
of compiler transformations and optimisation techniques that is implemented in F.
Data-dependence and data-Ęow analyses were discussed in detail, and we saw examples
of scenarios where such analyses are useful to the compiler.

e review then moved on to outlining the application of performance cost models,
before concludingwith a recap on the importance of a gooddata layout andwell-behaved
memory access patterns.

We have seen that automatic parallelisation of code is a nontrivial task, and that it is
unfeasible to ĕnd an optimal solution as such. Again, we emphasise the importance of
correctness and repeat that correctness must be prioritised over performance.

CHAPTER 3
Requirements Specification

Contents
3.1 General Overview . 28
3.2 Functional Requirements . 29
3.3 Non-Functional Requirements 30
3.4 Testing and Resources . 31

3.1 General Overview

is section lists the overall requirements for the compiler system. e rest of the chapter
presents the identiĕed soware and hardware requirements.

• Correctness – All generated programs must be correct in the sense that they al-
ways compute the correct answer, regardless of whether or not they have been
subject to optimisation and parallelisation.

• Performance– If parallelism canbe beneĕcially exploited, the generated programs
must achieve an improvement in execution time. at being said, a slight decrease
in performance should be allowed in boundary cases, considering that the run-
time checks for whether or not a loop is parallelisable with the given input take
non-zero time.

• Verifiability – e achieved results must be veriĕable through testing. Hence,
a code base of example programs must be made available to support objective
testing.

• Feedback – e compiler must provide sufficient feedback to the user on the res-
ults of the type deduction phase and the optimisation phases. Furthermore, error
and warning messages must be printed if the provided input program does not
comply with the language speciĕcation (Appendix A) or if the program contains
unused variables or functions, or unreachable code.

28

CHAPTER 3. REQUIREMENTS SPECIFICATION 29

3.2 Functional Requirements

e F compiler targets CUDA-enabled devices, more speciĕcally devices of compute
capability greater than or equal to 1.3. However, a substantial amount of the work that
has been carried out in the course of this project has gone into studying the optimisations
that can be performed to prepare the input for parallelisation, rather than the parallel-
isation itself. us, we ĕnd that many of the optimisation techniques that are discussed
here are applicable to other data-parallel platforms as well.

In terms of functionality, the bullet points below summarise the features that have
been prioritised in the implementation phase of this project. Some of the ĕndings have
not made it into the implementation of the prototype compiler. ese ĕndings are dis-
cussed in Chapter 7.4.

(1) Input and Output – e compiler must accept functional code as input, and pro-
duce optimised CUDA C/C++ code as output.

(2) Functional Language – e designed input language must comply with the lan-
guage speciĕcation given inAppendixA. Itmust disallow destructive assignments
and prohibit the use of global state. e language must also implement pattern
matching on numerical and vector-based function parameters.

(3) Type System– e language must implement a static and implicit type system
with support for the types: integers, Ęoating-point numbers, and immutable, ho-
mogeneous lists. Additionally, the language must implement support for higher-
order functions. Closures are outside the scope of the project and should not be
supported.

(4) Type Inference – e compiler must be able to deduce the type of variables based
on variable initialisations, applied arithmetic operations, etc. In programs, the
typing of the data that is being processed can have a severe impact on the per-
formance, e.g., Ęoating-point operations are generally slower than integer oper-
ations, and there are penalties associated with implicit type conversions at run-
time. Consequently, the compiler should opt for cheaper types and minimise the
ramiĕcations of type conversion in the generated output programs.

(5) Optimisations – e compiler must apply the elementary compiler transforma-
tions that are described in §2.4.2 on page 19. Additionally, the compiler should
implement procedure inlining and loop fusion.

(6) Recursion – e compiler must be able to automatically generate parallel loop-
ing constructs from tail-recursive functions. e compiler should also be able to
convert well-deĕned instances of augmenting recursion into tail-recursive equi-
valents and, consequently, into loops.

(7) Mapping and Reduction – e compiler must be able to identify instances of
structural recursion and transform direct, one-to-onemaps into parallel mapping
constructs. e compiler must also be able to transform additive and multiplic-
ative reduction operations into their parallel equivalents.

(8) Portability – e compiler must generate code for both the CPU and the GPU
so that the program can run regardless of what hardware is installed on the target
machine, using the CPU as a fall-back option. e output executable must be able

CHAPTER 3. REQUIREMENTS SPECIFICATION 30

to determine whether to run the sequential or the parallel version of a function
based on the available hardware and on the size of the input data.

e following extensions were originally planned, but have not been implemented due
to their lack of practical relevance.

• MemoryAccess Patterns–ecompiler should, to some extent, be able to identify
whether to Ęag data for storage in constant memory, texture memory, device
memory or shared host memory – due to the penalties that are associated with
hits on non-cached memory, the type of the memory that is used by the program-
mer oen affects the execution speed of the program. e programmer should be
allowed to override these memory Ęags, and cases that are not recognised by the
compiler should be handled by the use of annotations.
Due to the immutability of lists in the designed language, see (3) above, it seems
appropriate for the compiler to ignore this requirement and to stick to one storage
strategy for all the data that is shared between the host and the device.

• read Synchronisation – e compiler must be able to detect whether or not a
thread synchronisation point (also known as a barrier) is required between any
of the statements in a block of GPU code. e detection must be based on a de-
pendence analysis to see whether or not there exist interdependences between the
statements in question. e early versions of the compiler should simply divide
such statements into separate CUDA kernels.
If we consider the compiler transformations that are to be implemented in the
F compiler and their effect on the generated CUDA kernels, we ĕnd that this
feature can be disregarded. However, synchronisation should be implemented in
further work as other planned transformations are reliant on its implementation.

Listed below are the limitations of the implemented compiler; meaning functionality
that has not been considered as part of the project.

• eonly data types available to the programmer are: integers, reals, homogeneous
lists and function literals.

• e language implements only a limited subset of the arithmetic operations and
boolean predicates that are available in other languages, namely: addition, sub-
traction, multiplication, division, modulo, equality test and comparison.

• e compiler does not employ high-level programming concepts such as object-
orientation, inheritance, templates, libraries, structures, etc.

3.3 Non-Functional Requirements

e soware and hardware requirements for the compiler system are listed below:

(a) e compiled output must target CUDA-enabled systems of compute capabil-
ity 1.1, but should focus on exploiting features that are available on systems of
compute capability greater than or equal to 1.3.
Compiled programsmust be runnable on the x86machine architecture. However,
they obviously require that a CUDA-enabled graphics processor is available on the
run-time system to be able to capitalise on the applied parallelisation.

CHAPTER 3. REQUIREMENTS SPECIFICATION 31

(b) e compilation process is dependent on having access to the CUDA Toolkit,
or more speciĕcally the CUDA C/C++ compiler. us, the user must have the
CUDA Toolkit installed on his or her machine to be able to run the compiler.

(c) e compiler is implemented in Python 3 and uses the latest Python Lex-Yacc
(PLY) module. us, Python 3.x and PLY 3.4 or higher must be installed on the
user’s system.

ere are no requirements regarding the running time of the compilation process. Nev-
ertheless, it is worth noting that the compiler should guarantee termination of the type
stabilisation phase and that the optimisation phases will be aborted aer a pre-deĕned
number of iterations if no satisfactory solutions can be derived.

3.4 Testing and Resources

is section speciĕes the testing requirements for the implemented solution and lists the
hardware resources that should be used in the performance testing.

• Verifiability – As mentioned in §3.1, the implemented solution must be veriĕable
and, thus, an extensive code base of example programs must be made available.

• Correctness – All compiled programsmust be correct – in the sense that has been
deĕned previously. Hence, concise unit tests and code snippets must be provided
to allow for objective correctness testing.

• Hardware – With respect to quality and objectivity, the performance tests should
be carried out on multiple CUDA-enabled machines. More speciĕcally, the com-
pilation results should be subject to testing on the following devices:

– CUDA-enabled GPUs of compute capability≥ 1.1:
Testing should be carried out on graphics processors implementing the
NVIDIA GeForce GT 330M (512MB) chipset.

– CUDA-enabled GPUs of compute capability≥ 2.0:
Testing should be carried out on graphics processors implementing the
NVIDIA GeForce GTX 480 (1536MB) chipset.

CHAPTER 4
High-Level Design

Contents
4.1 Overview . 32
4.2 Tools and Modules . 32
4.3 Language Design . 33
4.4 Soware Architecture . 33

4.4.1 Semantic Analysis . 35
4.4.2 Type Inference . 35
4.4.3 Optimisation . 35
4.4.4 Parallelisation . 35
4.4.5 Code Generation . 36
4.4.6 External Build Tools . 36

4.1 Overview

is chapter aims at giving a high-level overview of the F compiler system. We start
out by describing the tool chain and the modules that have been used by the prototype
compiler. en, we justify the design of the input language and give a brief overview of
the lexical, syntactic and semantic analyses, before concluding with a high-level over-
view of the type inference, optimisation, parallelisation and code generation phases.
Chapter 5 describes the compilation pipeline in more detail.

4.2 Tools and Modules

As illustrated in Figure 4.1, the F compiler executes on top of the Python 3 interpreter.
e compiler uses the Python Lex-Yacc (PLY) module to perform the lexical and syn-
tactic analyses – also known as the tokenisation and parsing phases of the compilation
process, respectively. ese phases are described in further detail in §4.3.

Aer having obtained an abstract representation of the meaning of the input pro-
gram, the optimiser and the compiler back-end collaboratively do their jobs in produ-
cing an equivalent, optimised CUDA C version of the program.

32

CHAPTER 4. HIGH-LEVEL DESIGN 33

Figure 4.1: is diagram illustrates the compilation process from a tool perspective.
e F compiler runs on top of the Python 3 interpreter and outputs C99 and CUDA
C/C++ source code. e F ouput is automatically compiled using either the GNU
C compiler or the NVIDIA CUDA compiler, culminating in a host executable for x86
machine architectures.

When targeting sequential architectures, the compiler produces C code complying
with the C99 standard. e GNU Compiler Collection (GCC) is then used to compile
the produced code into a host executable for either the x86-32 and x86-64 machine ar-
chitecture. Parallelised code is compiled using the NVIDIA CUDA compiler, which
essentially is an extension to any underlying C compiler system, e.g., GCC. e output
is still targeting the x86 architecture, but the executables are now able to transfer con-
trol to all the GPUs that are available on the host system, and to exploit the data-parallel
processing capabilities of these devices.

4.3 Language Design

e F language is a functional programming language which implements static and
implicit typing. e language implements single assignments and call-by-value evalu-
ation, and is built up from two base types, namely integers and reals. e language can
also deal with homogeneous, immutable lists. Furthermore, F supports the use of
higher-order functions, meaning that function references can be passed as arguments,
stored to variables and returned from functions.

e design of the F language is grounded in the ideas of simplicity and expressive-
ness. One of themain criteria for the design of the language has been that ofmaintaining
a simple and concise, but yet powerful and expressive grammar. e implementation of
patternmatching on function signatures and the allowance formultiple function clauses
are examples of this, as they extend the syntax of the language, but with the objective to
simplify the coding style. e choice of using call-by-value evaluation is again justi-
ĕed by the focus on simplicity. Lazy evaluation introduces additional complexity to the
compiler, the same does support for closures. A formal description of F can be found
in Appendix A.

4.4 Soware Architecture

e compilation process can be regarded as a pipeline process of well-deĕned and in-
dependent components, as illustrated in Figure 4.2. e pipeline takes functional-style
code as input and produces a compiled and optimised executable as output. e ĕrst
step in this process is the analysis of the meaning of the input program. is is handled
by the lexer and the parser.

Aer the parsing phase is completed, a preliminary semantic analysis is carried out,
during which semantic information is added to the derived representation of the input.

CHAPTER 4. HIGH-LEVEL DESIGN 34

Figure 4.2: is ĕgure provides a high-level overview of the F soware architecture.
We observe that an iterative process of type deduction and optimisation is executed on
the abstract syntax tree that gets generated during the syntactic analysis, and that the
result of this iterative process yields an intermediate representation amenable to paral-
lelisation and code generation.

e output of this preliminary analysis is a structural representation of the program, in
the form of an abstract syntax tree.

Since the F language is implicitly typed, there is no type information available
at this stage of the process. us, the compiler passes the syntax tree on to the type
inference system, which iteratively tries to deduce the type of all variables and functions
in the input program. is stage is generally seen as a part of the semantic analysis.

Once the type information for all symbols is available, we can proceed to the op-
timisation phase. First, since three-address code is a data structure of lower complexity
than syntax trees and, thus, more amenable to analysis and optimisationƬ, the optimiser
translates the abstract syntax tree into three-address code, as described in §2.4 on page
16. Second, compiler transformations such as common subexpression elimination, copy
propagation, dead variable elimination and constant folding are applied. ese trans-
formations are applied iteratively until no more optimisation candidates can be found.
Aer the optimiser has ĕnished simplifying the structure of the abstract syntax tree,
it tries to derive further optimised versions of the tree by the application of procedure
inlining and function rewriting.

Now, if the intermediate representation of the program has changed since entering
the type inference and optimisation stages of the compilation process, a new optimisa-
tion pass is carried out, meaning that the derived representation gets injected into the
pipeline at the point right aer the lexical and syntactic analyses have ĕnished.

Once the type deduction and optimisation processes have either stabilised or
reached a pre-deĕned iteration threshold, the optimised, intermediate code is passed
on to the paralleliser. is component essentially turns loop candidates into parallel
loops whose iterations get distributed across several processing units when executed on
the GPU. By loop candidates we mean loops whose bounds, step sizes and loop bodies
are well-deĕned and contain no undesirable interdependences between iterations. In
the current implementation of F, the parallelisation phase is mainly concerned with
the translation ofmapping- and reduction-style problems into their parallel equivalents.

e ĕnal step of the pipeline is the code generation phase. e code generator pro-

ƬIt should be noted that the abstract syntax tree and three-address code representations that are used in
F are equivalent data structures (§5.3.2 on page 40), and that the type inference system therefore also accepts
input on the form of three-address code.

CHAPTER 4. HIGH-LEVEL DESIGN 35

duces C99 and CUDA C/C++ compliant source ĕles which are equivalent to the pro-
cessed input program, but which are based on the optimised intermediate representa-
tion. e compiler then invokes the external build tools to produce the desired output
program from the generated source ĕles.

4.4.1 Semantic Analysis

e compiler front-end is normally split into two separate components, namely a lexer
and a parser. e lexer, also called the tokeniser, is responsible for breaking the input
code down into distinguishable entities. ese entities are usually called tokens.

Given a set of tokens, the parser tries to deduce the semanticmeaning of the program
based on a grammar. is grammar is a set of rules that specify how these tokens can be
put together. A syntactically correct program is deĕned to be a sequence of tokens that
satisfy a well-deĕned derivation of these rules [ALSU06].

Strictly speaking, the parser is responsible for the syntactic analysis. To be able to
deduce the exact meaning of a program, a more extensive semantic analysis is needed.
e semantic analysis is the process of building up a comprehensive symbol table and
adding semantic information, such as symbol information and type information, to the
syntax tree that gets derived during the syntactic analysis.

4.4.2 Type Inference

As part of the semantic analysis, the types of all functions and variables in the input
program are deduced. is process is dealt with by the type inference system. Since
F is implicitly typed, the deduction of type information is an iterative process where
the compiler tries to assign types to symbols so that the program is in a well-deĕned
state. e aim of this stabilisation process is to establish a set of type assignments that
yields a sound interpretation of the language, meaning that the type model in §C.1 on
page 97 is satisĕed for the derived type assignments.

4.4.3 Optimisation

e optimisation phase is a ĕne-grained, iterative process consisting of multiple sub-
processes. Some of these sub-processes include the commonly applied compiler trans-
formations that are described in §2.4.2 on page 19, the interprocedural optimisations
that are mentioned in §2.4.8 on page 25, and the loop transformations that are men-
tioned in §2.4.7 on page 24.

Given a typed syntax tree, the optimiser attempts to derive a simpliĕed structure
by applying the transformations that have been mentioned earlier. If the structure of
the intermediate code representation changes as a result of the transformations that get
applied in an iteration of the optimisation process, the compiler attempts to run another
iteration. e compiler repeats the cycle until no more improvements can be made, or
an iteration threshold has been reached.

4.4.4 Parallelisation

Aer all the type information has been deduced and an optimal intermediate code rep-
resentation has been derived, the compiler moves on to the parallelisation stage. By
this point, amenable recursive functions have been translated into looping constructs.
is stage is therefore a matter of analysing the loop bodies to try to ĕnd candidates

CHAPTER 4. HIGH-LEVEL DESIGN 36

for parallelisation. More explicitly, this means that an analysis is carried out to identify
occurrences of loop-carried dependence. Such dependences put constraints on how the
computation of the loops can be distributed across multiple processing units and, thus,
determines to what extent the loops can be executed in parallel.

e parallelisation phase is mainly concerned with the search for occurrences of
mapping and reduction problems and, thus, focuses on data-parallel operations that
can be carried out on list structures. Parallelisable loops are Ęagged so that the compiler
can take appropriate action and produce CUDA kernels for these loops during the code
generation phase.

4.4.5 Code Generation

eĕnal step of the pipeline process, before the results get passed on to the external build
tools, is to generate code that represents the derived, optimised solution. As mentioned
in the beginning of this chapter, F produces C99 andNVIDIAC/C++ code by default.

e code generator is a compound of multiple code emitters, one for each of these
supported output formats. e design of the compiler allows for easy construction of
new code emitters. us, targeting other, currently unsupported architectures, such as
OpenCL, requires minimal effort.

e code generation phase is essentially an in-order, depth-ĕrst tree traversal where
each code emitter outputs appropriate code blocks upon every node visit. e emittance
process is for the most part template-based. For more details, refer to §5.12 on page 57.

4.4.6 External Build Tools

Upon the completion of the code generation phase, the resulting code gets passed on to
the GCC and CUDA compilers. F ensures that the build tools get invoked with the
correct Ęags and completely hides the use of the external build tools from the end-user.

CHAPTER 5
Detailed Design and

Implementation

Contents
5.1 Overview . 38
5.2 Tokenisation and Parsing . 38

5.2.1 Lexical Analysis . 38
5.2.2 Syntactic Analysis . 38

5.3 Intermediate Representation . 40
5.3.1 Abstract Syntax Tree . 40
5.3.2 ree-Address Code . 40
5.3.3 Types . 41
5.3.4 Symbols and Environments 42
5.3.5 Change Propagation . 43

5.4 Feedback . 43
5.5 Type Inference . 44
5.6 Live Variable Analysis . 45
5.7 Dependence Analysis . 46
5.8 Elementary Compiler Transformations 47
5.9 Interprocedural Optimisations 49

5.9.1 Procedure Cloning . 50
5.9.2 Procedure Inlining . 50
5.9.3 Optimisation of Augmenting Recursion 51
5.9.4 Tail-Call Elimination . 53

5.10 Loop Optimisations . 53
5.10.1 Loop Fusion . 54
5.10.2 Loop Restructuring . 54
5.10.3 Loop Idiom Recognition 55

5.11 Automatic Parallelisation . 55
5.12 Code Generation . 57

37

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 38

5.12.1 Sequential C Code Generation 57
5.12.2 CUDA C/C++ Code Generation 58

5.1 Overview

is chapter details the low-level design and implementation of the prototype compiler
that has been discussed in previous chapters.

In short, the compiler takes F source ĕles as input and produces C99 and CUDA
C/C++ĕles as output. In the process of transforming the input into parallel CUDA code,
an intermediate code representation of the semantic meaning of the program is needed.
e translation of input code into such an intermediate representation is carried out by
the compiler front-end.

e intermediate code is subject to various compiler transformations in an at-
tempt to make the code amenable to automatic parallelisation. As mentioned in earlier
chapters, F focuses on the parallelisation of data-parallel constructs. emiddle-end’s
main objective is therefore to turn recursive functions into loops and to try to parallel-
ise these. A loop is naturally data-parallel if there exist no data-dependences between
iterations. us, a data-dependence analysis is required during the optimisation and
parallelisation stages to be able to detect parallelisable loops.

A compiler transformation may yield other optimisation candidates, e.g., copy
propagation oen yields candidates for dead variable elimination. us, the optimisa-
tion phase is an iterative process that will keep running until a stable, optimal solution
has been found or an iteration threshold has been reached. When no more optimisa-
tion and parallelisation candidates can be found, the code generator gets invoked and
traverses the internal representation of the input program to produce the required C and
CUDA C/C++ source ĕles.

5.2 Tokenisation and Parsing

e compiler front-end is divided into two components, namely a lexer and a parser.
e lexer translates the input string into tokens, and the parser builds up a syntax tree
from these tokens based on the formal grammar of the input language. is section
describes these two processes. e data structures and the auxiliary modules that are
needed to arrive at an intermediate representation of the input, is discussed in greater
detail in §5.3 on page 40.

5.2.1 Lexical Analysis

e lexer translates the string representation of the input code into a list of atomic com-
ponents, normally called tokens. Examples of such tokens are identiĕers, parenthesis,
numbers, etc. eprocess of translating the input into tokens is called the lexical analysis
of the input. e resulting tokens feed directly into the syntactic analyser, also known as
the parser, which studies and analyses the composition of tokens and whether it adheres
to a formal grammar or not.

5.2.2 Syntactic Analysis

eparser produces a syntax tree based on the sequence of tokens that gets derived from
the input program. is syntax tree is untyped and contains only the most essential in-

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 39

TAC

TAC

Figure 5.1: e depicted Ęow diagram provides an architectural overview of the com-
pilation process. e compiler front-end is responsible for the semantic analysis of the
input program and, thus, also the type deduction process. As illustrated in the diagram,
the optimisation stage is divided into two sub-phases, one dealing with the machine-
independent transformations that take place on a block level, i.e., in branch-free sections
of the code, and one dealing with interprocedural optimisations and loop transform-
ations. e optimiser and the paralleliser constitute the compiler’s middle-end. e
back-end is essentially the code generator which produces sequential C99 and CUDA
C/C++ code. e produced source ĕles are automatically and transparently compiled
using external build tools, yielding the desired executables.

formation about the input program. It should be noted that all identiĕers and keywords
are stored to a symbol table to ensure unicity of strings and symbols in the internal data
structures of the compiler.

e compiler is implemented in Python using the functionality that is provided by
the PLY module. e PLY module allows us to implement the lexer and the parser us-
ing annotated functions, or more speciĕcally, using Python’s support for documentation
strings. e implementation of the lexical and syntactic analysers can be found in the
source ĕles “parser/lex.py” and “parser/yacc.py.”

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 40

Figure 5.2: is diagram is an excerpt of the UML diagram of the implemented solution,
with a particular focus on the data structures that are used in the intermediate code
representation.

5.3 Intermediate Representation

e compiler front-end generates an intermediate code representation in the form of an
extended abstract syntax tree – which we will describe further in §5.3.2. However, the
intermediate representation also depends on several other data structures, e.g., abstrac-
tions of symbols and types. is section describes all the internal data structures that
are used in the intermediate code representation in F.

5.3.1 Abstract Syntax Tree

e abstract syntax tree is a unique representation of the input and takes the form of an
n-ary tree. e intermediate code is stored in a dictionary of function deĕnitions, and
since each deĕnition can consist of multiple function clauses, every function deĕnition
is in fact stored as an array of function nodes. e function bodies are stored in a format
similar to the one that is used in Figure 5.3.

In the Python implementation of the compiler, each node of the syntax tree is an
instance of the Node-class. Every Node-object holds a reference to a derived instance of
the DataNode-class, e.g., a Number-, Operation- or SymbolReference-object. is allows
for easy book-keeping of node parents and for inline substitution of nodes and branches,
as we will see in later sections. e justiĕcation for this architectural decision is that we
want to simplify the tree manipulations that are carried out by the optimiser, see §5.3.5
on page 43.

5.3.2 ree-Address Code

In F, the intermediate representation needs to take the form of three-address code
(§2.4.1 on page 17) in some stages of the optimisation process to ensure the applicabil-
ity of certain compiler transformations. TAC is represented in the form of an abstract
syntax tree with explicit constraints imposed on the number of branches per node and
on the structure of the tree. More speciĕcally, the rules of the three-address code rep-
resentation imply that all Operation-nodes only have two operands, and that both of
these operands are on a trivial form, i.e., in the form of an immediate value or a symbol

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 41

=
equals

u
id

×
times

2
int

+
plus

v
id

1
int

@
apply

sin
id

÷
slash

π
real

w
id

=
equals

u
id

+
plus

×
times

2
int

v
id

×
times

1
int

@
apply

sin
id

÷
slash

π
real

w
id

Input: u = 2 × (v + 1) × sin(π
w

). Input: u = 2 × v + 1 × sin(π
w

).

Figure 5.3: e abstract syntax trees that are depicted above, illustrate the results of the
syntactic analyses of the inputs printed below each tree. Note the effects of bracketing
and the operator precedence rules that are deĕned in §A.2 on page 85.

reference. Consequently, the abstract syntax tree and three-address code representa-
tions are equivalent data structures, meaning that both can be fed directly into the type
inference system without any alterations. e conversion of abstract syntax trees into
three-address code is covered in §5.8 on page 48.

Since F disallows destructive assignments, the employed intermediate representa-
tion, three-address code, is essentially equivalent to SSA.is gives us a good foundation
for performing data-Ęow analyses. Other intermediate representations, such as the ones
that are described in §2.4.1 on page 17, are not used by the F compiler.

With respect to the implemented compiler transformations, the employment of, for
instance, the continuation-passing style would not have had any direct effect on the op-
timisation process as the intermediate code is already in an equivalent format. Also, the
fact that function inlining requires renormalisation of function bodies when represent-
ations other than CPS are used can be disregarded as the nature of the implemented
abstract syntax tree structure would have required additional steps to be taken even if
the continuation-passing style was employed. Regardless, in further work, one should
consider to employ the continuation-passing style, as it could potentially enable the ap-
plication of other, hitherto uncovered interprocedural transformations.

It is worth noting that, in intermediate stages of the compilation, the internal rep-
resentation of the input code may contain destructive assignments, e.g., in the internal
representations of looping constructs. ese are dealt with explicitly by the use of locks
on symbols and instructions. e locks impose a set of constraints on the symbols in
question, and these constraints are used to disallow certain transformations on the input
during optimisation.

5.3.3 Types

As we will see in later sections, each node of the abstract syntax tree gets assigned a type
based on the results of the type inference process. To be able to typify the nodes in the
syntax tree, we need an explicit representation of all the types that are available in F.
Considering the types that are available to the programmer (see §A.1 on page 83), the
following type attributes have been identiĕed:

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 42

• Every type is either a scalar (Z, R), a vector (Z∗, R∗) or a function type.

• Scalar types and vector types are either integral (Z, Z∗) or real (R, R∗).

• Vector types are immutable and homogeneous; the latter meaning that vectors
cannot mix integer elements with reals, and vice versa.

• Function types are recursive structures that are constructed from the above base
types. More speciĕcally, function types have zero or more parameter types, and a
single return type, e.g., Z −→ Z and Z∗ × (Z −→ R) −→ R∗

ese attributes must be visible in the internal representation of the types.
e type inference process capitalises on the fact that some types take precedence

over others. e precedence of a type is a static measure that gets assigned to each type
upon instantiation. More speciĕcally, the types are ranked as follows:

1Ƭ < Z < R < Z∗ < R∗ < F where F denotes function types. (5.1)

e types that are listed in (5.1) are represented by instances of the Type-class, which
is deĕned in “semantics/types.py.” All the base types are statically deĕned, whereas
function types are composed at run-time from the deduction of implicitly typed func-
tion signatures.

e type-attribute of the nodes in the abstract syntax tree is a dynamic attribute
which deduces the type of the node upon invocation. e type is deduced based on
the data of the Node-instance in addition to a set of constraints that can be imposed
by the typify-method. As described in §5.5 on page 44, the combination of calls to
type and typify is used by the type inference system to stabilise the typing of the input
program. For classes such as Operation, whose type depends on an arbitrary number of
sub-nodes, the Type.dominion class-method provides functionality to deduce the most
dominant type from a set of types, i.e., the type of the highest precedence.

5.3.4 Symbols and Environments

All identiĕers that are found in the input programduring the semantic analysis get stored
in a symbol table so that each symbol can be referenced uniquely by a memory pointer
in later stages of the compilation. e use of a symbol table reduces the number of
strings comparisons that are needed to perform a symbol lookup. Furthermore, data
duplication is eliminated as the symbol table ensures unicity of symbols and provides us
with a way of storing additional information about each entry, e.g., information about
the type, scope and origin of each symbol. e symbol table and all the functionality
that is relevant to the symbol table implementation can be found in the Symbol- and
SymbolReference-classes in “semantics/tree.py.”

Scope levels are trivially deĕned in F. All functions reside in the global scope,
and all variables and parameters reside in the parent function’s local scope. e inter-
mediate code does in fact use additional scope levels when dealing with variables inside
looping constructs. However, these are all distinct and invisible to the programmer.
Since F has no constructs for lexical scoping and due to the fact that the language has
single assignments, the need for additional scope levels is inexistent.

Ƭ1 denotes void, a type which is commonly used to represent the set of parameters for nullary functions,
e.g., 1 −→ Z is a function type with no parameters and an integral return type.

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 43

5.3.5 Change Propagation

During the optimisation phase, certain branches and leaves of the syntax tree may be
subject to alteration. Changes that are made to these nodes naturally propagate up the
tree andmay cause other simpliĕcations and alterations to be exploitable at higher levels.

For example, consider the n-ary syntax tree:

(4 * 2) + X + 2 7→ add(mul(int(4), int(2)), id(X) int(2)). (5.2)

If we transform mul(int(4), int(2)) into mul(int(8)) and perform an inline substi-
tution to get int(8), we end up with the tree add(int(8), id(X), int(2)). However,
we would now like to automatically update the parent node so that the recent changes
can be exploited at higher levels of the tree. To avoid having to reprocess the entire
tree for every little change, an update event gets invoked on the changed node’s parent.
More speciĕcally, the update-method of the top-level Operation-node gets invoked so
that the appropriate optimisations can be carried out. In F, the update-method for
Operation-nodes performs constant folding, amongst other transformations. So in this
scenario, the invocation will yield the expected result, add(int(10), id(X)).

Every node of the syntax tree implements an update-method, and this dynamic
mechanism is extensively used in the type inference and optimisation phases of the com-
pilation to propagate all changes up the tree and to ensure a coherent structure. Note
that the triggering of events will propagate all the way up to the root node. Hence, the
depth of the tree is insigniĕcant.

e separation between the Node-class and the DataNode-class is in fact a result of
the design that is described above as it allows for easy substitution of nodes and easy
book-keeping of parents. In the current implementation, inline substitution is simply a
matter of changing the value of the data-attribute of the Node-object. Whereas, if the
separation between the two classes had not been in place, we would have had to keep
an explicit pointer to one of several slots in the parent node, namely the slot that was
used to store a reference to the considered node object. e latter structure complicates
the process of keeping a coherent tree structure. Furthermore, Python does not support
multiple levels of indirection and, thus, the naïve design would have required an extra
level of abstraction.

We did in fact see an instance of inline substitution in the example above, i.e., the
transformation of mul(int(8)) into int(8). e ĕrst instance is a shorthand for the
Python structure:

Node(Operation('*', Node(Number(8)))),

which, as a result of the inline substitution that is described above, gets restructured into
Node(Number(8)). More speciĕcally, the data-attribute of the outer node-instance gets
changed to point to the instance of the Number-class instead of the Operation-class.

5.4 Feedback

As stated in Chapter 3 on page 28, the compiler must provide feedback to the user on the
results of the compilation. e compiler must also print error messages if the provided
input program does not comply with the language speciĕcation, and warning messages
if the program contains unused symbols or unreachable code.

To simplify error recovery and elimination of unused symbols andunreachable code,
the compiler keeps track of the exact source code location of all the tokens in the input

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 44

× : −
times

v : −
id

@ : R
apply

sin : R −→ R
id

÷ : R
slash

1 : Z
int

w : −
id

× : R
times

v : R
id

@ : R
apply

sin : R −→ R
id

÷ : R
slash

1.0 : R
real

w : R
id

Raw Data from the Syntactic Analysis Abstract Syntax Tree Aer Type Deduction

Figure 5.4: is ĕgure illustrates the results of a type deduction that has been carried
out on the le-hand side syntax tree. Observe how the type of the sin-function and the
resulting type of the real division propagate up and down the tree. Observe also how
integers are converted into reals when type constraints are added.

program. e locations are associated with the nodes in the syntax tree, and take the
form of a Location-object. e Location-class provides additional functionality that
allows for easy printing of formatted error and warning messages to the standard error
stream.

F conveys extensive error and recovery information to the end-user. In addition to
providing messages about syntax errors and missing entry-points, the compiler informs
the user about the following problems:

• Unterminated function groups, overlapping signatures for patternmatching func-
tion clauses, and missing catch-all clauses (§A.5 on page 87).

• Invalid operand types, and invalid argument types in function applications.

• Invalid number of arguments in function applications.

• Inconsistency in the return types of function clauses of a function group.

• Duplication of parameters, and destructive assignments to variables.

• References to undeĕned variables and functions.

e compiler outputs warning messages if the input program contains any unused vari-
ables or functions, or if the type inference process fails to deduce a stable type system.

5.5 Type Inference

In §5.3.3 on page 41, we deĕned the type system of F. e type inference component
of the compiler is a part of the semantic analyser, and takes an iterative approach to
deduce the type of all the variables, functions and parameters in the input program.
If no stable solution of typing can be deduced, the process fails, i.e., no valid output
program can be generated, and the user gets an appropriate notiĕcation describing the
problem and any inconsistencies that may exist.

As mentioned in previous sections, the type inference system exploits the function-
ality that is provided by the type- and typify-methods of the Node-class. ese meth-
ods are virtual and end up redirecting the caller to the corresponding methods of the

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 45

interlinked DataNode-objects. e type-method is used to deduce the current type of a
branch of the syntax tree, whereas typify is used to add typing constraints.

By iterative application of these methods, the compiler eventually reaches a stable
state, i.e., a state where the type of none of the nodes has changed as a result of the current
iteration. However, on bad input, such a process has the potential to never terminate.
us, a threshold has been implemented so that the process is guaranteed to stop if a
stable solution has not been reached in a reasonable number of steps.

e type deduction process complies with the type model that is speciĕed in §C.1
on page 97. e general principle is that all the leaf nodes have a type associated with
them, except from symbols. E.g., integers are obviously of type Z, and reals of type R.
Symbols are typed based on their parent nodes. For instance, the symbol w in Figure 5.4
will obtain the type R since real divisions always yield quotients of type real. Such type
assignments will propagate to all references to the involved variables, here w, by the
invocation of the typify-method.

e introduction of type constraints to immediate values yields type conversion if
the new type has higher precedence than the existing one. Note how the changes that
are caused by the type inference system are propagated in both directions of the tree –
changes in a higher level of the tree will propagate down to the leaves and changes in the
leaves will propagate up to the root.

5.6 Live Variable Analysis

Dead variable elimination, copy propagation and other compiler transformations are
dependent on having knowledge about the liveness of variables in the currently pro-
cessed basic block. Recall that a basic block is a branch-free sequence of three-address
code instructions of the form d ← o1 • o2. Algorithm 5.1 describes the employed live-
ness analysis in general. e algorithm returns a collection of sets, each of which holds
the live variables at a certain execution point of the program, i.e., Li is the set of variables
that are live upon the execution of the instruction, ti.

Algorithm 5.1 Live Variable Analysis – based on Algorithm 8.7 in [ALSU06].
Input: A basic block, B, of three-address code instructions ti, 1 ≤ i ≤ n.
Output: L = {L1, . . . , Ln}, where Li is the set of live variables aer execution of ti.

1: LV ← {}
2: for i = n down to 1 do
3: {Assume ti is of the form x← y • z.}
4: Li ← LV
5: LV ← LV \ {x}
6: LV ← LV ∪ {y, z}
7: end for
8: return L

e liveness analysis is extensively used in the optimisation and parallelisation
phases. Since F implements single assignments, the implementation of the liveness
analysis takes a slightly different approach to check whether a variable is live or not.
Single assignments imply that there are no destructive assignments to variables. us,

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 46

checking for liveness is simply a matter of checking whether or not the considered vari-
able is referenced at a later stage of the basic blockƭ.

Generally, we ought to consider destructive writes as they can result in seemingly
live variables actually being dead, e.g., consider a variable between a read in tk and a
destructive write in tl, where l > k. However, in F, this criterion lapses. Also, in this
context, it suffices to test for liveness on a basic block level as there are no constructs
for lexical scoping, i.e., a function body is essentially a single basic block. In interme-
diate stages of the compilation, scoping and separation between basic blocks occur if
an instance of recursion is converted into iteration. e compiler then tests for liveness
across basic blocks and will have to consider destructive writes to all iteration variables.

5.7 Dependence Analysis

is section presents the dependence analyses that have been implemented in F and
which are used by the compiler during the parallelisation phase.

In §2.4.6 on page 22, we presented a set of control- and data-dependences that are
commonly found in computer programs. By identifying such dependences, we can de-
termine an optimal execution order of instructions, with the objective to, for instance,
improve the cache locality in a code block. However, in F, dependences are analysed
only to ensure that there are no loop-carried dependences in the loops that are selected
as candidates for parallelisation.

Algorithm 5.2 Loop-Carried Dependence Analysis
Input: A basic block, B, of three-address code instructions ti, 1 ≤ i ≤ n, representing

the body of a parallel for-loop, and a variable H representing the currently pro-
cessed element of the input list, L.

Output: True, if the loop body carries dependences across iterations, false, otherwise.
1: { Input loop is of the form: for-each (H ∈ L) { ... }. }
2: R← {},W ← {H}, P ← {}
3: for i = 1 to n do
4: { Assume ti is of the form x← y • z, and that x, y, z are variables. }
5: if operation (•) is list preĕxation then
6: {Previous analysis ensures that ti is of the form H = y, meaning that ti is an

update of the currently processed element of L. }
7: if y /∈W then
8: P ← P ∪ {y} { Not previously written in the current iteration. }
9: else

10: if y /∈W then P ← P ∪ {y}
11: if z /∈W then P ← P ∪ {z}
12: end if
13: R← R ∪ {y, z},W ←W ∪ {x}
14: end for
15: return (W ∩ P) ̸= ∅

As mentioned in previous sections, the objective of the compiler is to identify and
exploit parallelisable loops. Since the identiĕed candidate loops get parallelised for ex-
ecution on data-parallel architectures, the compiler focuses on the parallelisation of

ƭNote that the inclusion of internally represented looping constructs in basic blocks is invalid and results
in a splitting of the original blocks.

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 47

mapping- and reduction-style problems. F uses dependence analysis to identify can-
didates for parallelisation, i.e., loops without loop-carried dependences, and aerwards,
uses the criteria that are listed later in this section to identify well-behaved reduction
and mapping constructs.

In Algorithm 5.2, we see how F searches for interdependences between loop iter-
ations. e compiler explicitly checks that read accesses to variables only happen when
the variables in question have been written to earlier in the current iteration of the loop,
or not at all (which means that we are dealing with a global variable). Due to the nature
of the transformations from recursion to iteration, and due to the constraints that are
imposed on us by the supported data structures, updates to elements at, say, index j for
a currently processed element i, where i ̸= j, are covered by the more general depend-
ence checks in the algorithm, i.e., we need not consider the invalidation technique that
was mentioned in §2.4.6.3 on page 23.

To check whether a candidate loop is amapping operation, a reduction operation, or
potentially neither of the two, is a fairly straightforward procedure. To identify mapping
operations, the compiler checks the following criteria:

• e considered loop must be identiĕed as a parallel for-loop, meaning that the
original, recursive function must be on a well-deĕned, inductive form with a
clearly distinguishable base case, the empty list, and a single inductive step map-
ping the head element of the processed list. is criterion is a result of the process
of converting recursion into iteration – the conversion is described in more detail
in §5.9.3 on page 51.

• e return type of the original recursive function must be a vector type, i.e., Z∗

or R∗. is follows from the previous criterion.

• Exactly one of the instructions in the loop body must process the head element of
the input list and reset its value based on the computational result.

To identify reduction operations, the compiler checks the following criteria:

• e considered loop must, as before, be identiĕed as a parallel for-loop, meaning
that the structural recursion must be on a well-deĕned, inductive form with a
single base case, the empty list, yielding a result of type integer or real, and exactly
one inductive step.

• ere must be no direct operations on the traversed input list. e only valid
operations are read accesses to the current head element of the induction variable,
i.e., the element of the list that is currently being processed.

• e result variable, which is identiĕed from the recursion-to-iteration conversion,
can only be assigned to once. In other words, the loop bodymust hold exactly one
assignment on one of the following forms – where P is the result variable:

P ← P + t or P ← P × t where t cannot hold any references to P .

Consequently, F only deals with additive and multiplicative reduction.

5.8 Elementary Compiler Transformations

e optimisation phase of the compilation is an iterative process. is is a result of the
fact that certain transformations enable others, meaning that some derivations can only

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 48

be found aer a set of other transformations has been performed on the input. e
reason why we choose to take an iterative approach is to be able to stabiliseƮ this process
and, hence, be able to derive the optimal solution to the optimisation problem.

e ĕrst step of the optimisation process is to ensure that the intermediate represent-
ation of the input program, meaning the abstract syntax tree, is in a format that satisĕes
the rules for three-address code – cf. §5.3 on page 40. If the abstract syntax tree does not
already comply with these rules, we can easily convert it into a valid format by applying
Algorithm 5.3 to all expression branches of the tree. e output of this transformation
may contain excessive code or use unnecessarily many temporary variables. However,
this is handled by the optimiser in later stages. It should be noted that Algorithm 5.3
only provides an outline of the translation process, and that there are special cases that
need more careful handling. For instance, operations are represented as n-ary nodes,
not binary nodes, and need to be split into multiple assignments of binary operations
into temporary variables. e full implementation of the algorithm can be found in
“semantics/ssa.py.”

Algorithm 5.3 Translation into TAC – based on Figure 2.45 in [ALSU06].
Input: Expression, x, in the form of a branch of the currently processed syntax tree, a

code block, C , in which the expression resides (more speciĕcally, a Combinator-
object), and the index, i, of the statement holding the expression.

Output: Expression satisfying the axioms of three-address code. Note that the code
block, C , may experience modiĕcations as a result of the translation.

1: if x is an immediate value or a symbol reference then
2: return x {Trivial operand, no action needed.}
3: else
4: {e input, x, is guaranteed to be of the form y • z.}
5: Generate new temporary, t.
6: y′ ← Algorithm 5.3(y)
7: z′ ← Algorithm 5.3(z)
8: Create and insert new branch, t← y′ • z′, at index (i− 1) in C .
9: return t

10: end if

Once the abstract syntax tree is in a three-address code format, we can apply a set
of elementary compiler transformations to the tree, more speciĕcally, the commonly
applied compiler transformations that we described in detail in §2.4.2 on page 19. Some
of these transformations depend on the liveness analysis that was described in §5.6.

In F, we use an extended form of three-address code, and the reason for this is that
wewant to exploit the additional functionality that is provided by the abstract syntax tree
structure. Strictly speaking, constant folding, algebraic transformation and strength re-
duction all get carried out by the update-method of the Operation-class. Nevertheless,
these transformations are still part of the iterative optimisation process that was outlined
above.

In contrast to the transformations that are enabled by the abstract syntax tree
structure, some of the transformations must be dealt with elsewhere, by other means.
ese are handled by the Optimiser-class, whose implementation can be found in
“optimisation/general.py,” and are listed below:

ƮBy stabilising an iterative process, we mean reaching a state where no more transformations can be
applied, i.e., no further changes can be made to improve the performance of the program.

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 49

• Common Subexpression Elimination – is transformation substitutes duplicate
subexpressions with the assignment destination of the ĕrst occurrence.

• Copy Propagation – is transformation propagates s1 from all instructions of
the form d ← s1 to all operands that are equal to d in subsequent instructions,
unless the data-Ęow is interrupted by a destructive assignment to d. Destructive
assignments are inexistent in F. Nevertheless, they can occur in the internal
representation, e.g., in the representation of looping constructs where iteration
can cause a seemingly well-behaved assignment to become destructive.

• Dead Variable Elimination – is transformation eliminates all instructions, ti,
of the form d← s1 • s2, where d is dead aer the instruction, i.e., d /∈ Lj for all
j ≥ i (Algorithm 5.1).

Aer the ĕrst phase of the optimisation is completed, meaning when the iterative ap-
plication of the compiler transformations that are listed in this section has stabilised (as
illustrated in Figure 5.1), the compiler rebuilds trivial expressions from the three-address
code. is means that the compiler propagates the right-hand side of all assignments of
the form d ← s1 • s2, where d is only referenced once in the subsequent instructions,
to the rest of the instructions in the containing code block and eliminates the single-
referenced assignments altogether. is reduces the overhead that is imposed on us by
superĘuous use of temporary variables – even though the use of such additional vari-
ables is likely to be eliminated by the external build tools. Furthermore, the rebuilding
of expressions can simplify the semantic reasoning in later stages of the compilation
process, e.g., in the interprocedural optimisations and in the recursion-to-iteration con-
versions.

Since F is a pure functional language, function calls are referentially transparent.
us, aer having completed phase one of the optimisation, the compiler also collects all
equivalent function invocations residing in the same scope, and substitutes these by ref-
erences to a temporary variable which has been assigned the result of a single invocation
of the function. For instance, y ← f(g(x), g(x)) becomes: t← g(x); y ← f(t, t).

e ĕnal step before the optimiser moves on to phase two is to clean up the interme-
diate representation. is step entails the removal of unused symbols and functions. It
is worth observing that phase one can be revisited aer the second phase has been com-
pleted. is happens if the intermediate representation changes as a result of the current
iteration of the optimisation process – in fact, this would then also involve a reiteration
of the type inference process.

5.9 Interprocedural Optimisations

e ĕrst phase of the optimisation process deals with trivial and commonly applied
compiler transformations. In this work, the application of these transformations has
the objective of simplifying the semantic analysis that is employed in later stages of the
compilation. e process of making the input amenable to automatic parallelisation is
heavily dependent on the interprocedural optimisation techniques. More speciĕcally,
as we have mentioned in previous sections, the parallelisation of pure, functional code
for data-parallel architectures is ĕrst and foremost a matter of converting recursion into
iteration, in the form of data-parallel loops.

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 50

5.9.1 Procedure Cloning

F implements a dynamic model for determining whether a loop should be run se-
quentially or in parallel. Hence, the compiler needs to generate multiple versions of the
same function. To accomplish this, the procedure cloning transformation is employed.

Procedure cloning is an optimisation technique which creates specialised replicas of
the original function, and which updates the linked call-sites accordingly [CHK92]. In
the case of F, two specialised copies are made, one for sequential execution and one
for parallel execution. During function replication, all local variables and parameters
are duplicated and re-referenced so that there are no links between the new and the old
copy of the function. e dynamic model, determining which of the two specialised
function copies should be run, is described in §5.12.2 on page 58.

5.9.2 Procedure Inlining

In purely functional programming languages, the functionality of the implementation
tends to be distributed across multiple functions, each with a relatively small body of
statements. Consequently, functional-language compilers are dependent on interpro-
cedural optimisation techniques to be able to produce high-performance programs. is
is a contrast to imperative languages, in which we oen ĕnd large function bodies with
multiple looping constructs, etc., and whose compilers are predominantly concerned
with the intra-procedural optimisation techniques.

Procedure inlining is perhaps one of the most important interprocedural optimisa-
tion techniques for functional languages. is technique can substantially reduce the
overhead that is associated with function invocations, as it reduces the overall stack us-
age of the program [BGS94]. Inlining of functions can introduce new local variables,
which essentially reside in the run-time stack. However, most compilers try tomap local
variables onto the registers that are available on the user’s machine [ALSU06], and since
the latency of accessing registers is much lower than the latency of accessing memory,
superĘuous use of the stack is considered more costly than the use of local variables in
general. Furthermore, procedure inlining can enable other optimisations and improve
the quality of the semantic analysis that is employed in the conversion of recursive func-
tions into loops.

In the context of this work, it should be noted that the reduced stack usage also
implies better compatibility with the target GPU architecture. Generally, GPUs have
limited stack support due to the delicate memory architectures of these devices. ere-
fore, GPU compilers, such as the CUDA compiler, oen disallow recursion and inline
functions that are targeting the graphics device, by default [NVI10b, Mun10].

Not all functions can be inlined, e.g., consider inĕnitely recursive functions. ere-
fore, we need to check whether the candidates for procedure inlining satisfy certain cri-
teria. Inlining is a multi-step procedure where the compiler considers all the function
applications in the input program and performs the following steps:

• First, the compiler checks whether or not the target of the function application is
a trivial leaf function. For the function to be a trivial leaf, the following conditions
must be satisĕed:

– ere must be no function applications in the function body – exceptions
include the special-purpose functions that are listed in §A.3 on page 85.

– e function must not be referenced as a ĕrst-class function in other parts
of the program.

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 51

– e function signature must be trivial, i.e., there must be no pattern match-
ing on any of the function arguments.

– e condition-clause of the function must be blank⁴.

• If the above criteria aremet, the compiler clones the target function of the call-site
and retains a copy.

• e compiler then substitutes all parameter references in the cloned functionwith
their corresponding arguments from the function application.

• Finally, the compiler substitutes the function application node with the body of
the derived function.

Upon completion of the inlining process, there will no longer be any references to trivial
leaf functions in the program. Trivial leaf functions can therefore be omitted from the
generated output and, consequently, removed from the intermediate representation.

5.9.3 Optimisation of Augmenting Recursion

e prime optimisation candidates in F are functions that implement augmenting re-
cursion – see deĕnitions, algorithms and proofs in §B.1 on page 90. e conversion of
augmenting recursion into tail recursion has been discussed onmultiple occasions in the
literature, see for instance [LS00, BD77], and has proven to be an important and bene-
ĕcial transformation in functional-style programs. However, most compilers tend not
to implement this transformation as an automatic transformation and, therefore, leave
it up to the programmers to manually rephrase their functions to exploit the advantages
that are associated with the employment of tail recursion.

Listing 5.1: is listing shows how the classic factorial function can be implemented in
F. Note that the function employs augmenting recursion to accomplish its objective.
fact(0): 1; # base case
fact(N): N * fact(N-1). # recursive case

F automatically transforms augmenting recursion into tail recursion. is yields
improved performance in sequential programs as it enables the conversion of recur-
sion into iteration and, hence, has the potential to completely annihilate the linear stack
growth that is associated with conventional recursion – see §5.9.4.

Listing 5.2: e code in Listing 5.1 can be optimised by converting the instance of aug-
menting recursion into tail recursion, see §B.1.1 on page 92.
fact(N, T, R), N == T: N*R; # a(0) = 1
fact(N, T, R): fact(N+1, T, N*R). # g(A, B) = A * B
fact(0): 1; # d(N) = N - 1
fact(N): fact(1, N, 1). # d -1(N) = N + 1

⁴e built-in if-function is eagerly evaluated as a result of the design of the F language. Since a con-
ditional would imply lazy evaluation of the function body, and furthermore, since there exists no equivalent
representation in the F intermediate representation, such a function cannot be inlined unless the necessary
internal constructs are added to the compiler implementation.

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 52

However, this is not the only beneĕt of optimising instances of augmenting recur-
sion. Observe that instances of structural recursion essentially get converted into iterat-
ive constructs of the formof a parallel for-loop. us, the transformation of augmenting
recursion into tail recursion and iteration also enables the parallelisation of structural
recursion for data-parallel architectures, such as CUDA.

Generally, it is oen easier and cleaner to express structural recursion in the form of
augmenting recursion than in the form of tail recursion, as shown in §B.1.4 on page 94
and discussed brieĘy in §2.4.5 on page 21. Consequently, the conversion of structural
recursion in the form of augmenting recursion into tail-recursive equivalents, is a cru-
cial task for the F compiler. is becomes evident when we consider the potential size
of the processed data structures. e processed lists can be large and cause a huge stack
overhead. us, it is vital that we are able to derive iterative versions of the recursive
functions. It is also worth noting that, by sticking to the original function representa-
tions which implement augmenting recursion, we might not even be able to compute
the answers as we might run out of stack space before the answers have been deduced.

Listing 5.3: e code in Listing 5.2 can be further improved since g, themultiplication of
two integers, is an associative and commutative function. e following snippet shows
the result of the extended optimisation, which is described in detail in §B.1.2.
fact(0, R): R; # base case
fact(N, R): fact(N-1, R*N). # recursive case
fact(N): fact(N, 1). # helper function

e code listings that are provided in this section show an example of how the
F compiler transforms instances of augmenting recursion into tail recursion. e
last step of this transformation, the step that, here, exploits the associativity and com-
mutativity of the identiĕed function, g, and whose result is exempliĕed in Listing 5.3, is
not necessarily beneĕcial in terms of performance. In the case of the factorial function,
the last step would actually turn a multiplicative sequence of the form:

fn × (f(n−1) × (f(n−2) × . . . (f1 × f0) . . .)), (5.3)

into an equivalent sequence of the form:

((. . . ((fn × f(n−1))× f(n−2))× . . .)× f1)× f0, (5.4)

where fn > . . . > f1 > f0. e computation of (5.4)would requiremore large-number
multiplications than the computation of (5.3), andwould therefore be substantiallymore
costly to compute, performance-wise, especially for large values of n [LS00]. In other
words, the order in which the function, g, is applied, can affect the running time of the
program. is is clearly demonstrated in the example above, where we would normally
opt for the former alternative, i.e., the version of the factorial functionwhich is presented
in Listing 5.2. A natural counter-example is list reversal [LS00], which is an instance
of structural recursion that can be expressed in the form of augmenting recursion. In
further work, an extended performance model should be employed to automatically
detect whether or not the last step of the optimisation of augmenting recursion should
be performed on applicable functions⁵.

⁵e last step of the transformation is only applicable to functions that implement augmenting recursion
and where the identiĕed g-function is associative and commutative.

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 53

5.9.4 Tail-Call Elimination

If the last statement of a function body contains a function call whose return value gets
returned directly without any other interference, the function is said to have a tail call.
We can exploit the fact that the target functions of such calls do not have to return to
the call-site by substituting the function call with a jump instruction. is allows us to
reuse the current stack frame instead of setting up a new activation record and allocating
additional stack space for the function arguments [Ste77, BGS94].

Functions with recursive tail calls are called tail-recursive functions. ese func-
tions can beneĕt even further from the technique that is outlined above, since they can
be turned into looping constructs where the bodies of the original functions form the
bodies of the generated loops, and the function parameters constitute the associated it-
eration variables. e concept of converting recursion into iteration can be extended to
deal with mutual recursion [LS00]. F can transform tail recursive functions with one
or more base cases into iterative constructs. However, the compiler cannot deal with
instances that have more than one recursive call.

Listing 5.4: e classic factorial function can be optimised by converting augmenting
recursion into tail recursion (Listing 5.3). e function can also be optimised further by
eliminating the tail call and turning the function into a loop.
fact(N, R): while (N > 0) { R′ = R*N, N′ = N-1, R = R′, N = N′ }, R.
fact(0): 1;
fact(N): fact(N-1, N).

applicable to procedure inlining, which yields:
fact(N): R = 1, while (N > 0) { R = R*N, N = N-1 }, R.
the intermediate use of R′ and N′ is eliminated by the optimiser.

In addition to preparing the input for parallelisation by simplifying the compiler’s
job in identifying cases where parallelisation is possible, the combination of convert-
ing augmenting recursion into tail recursion and tail-call elimination annihilates stack
growth. us, the transformation of recursion into iteration can also act as an enabler
for traversals over huge data-sets, i.e., in cases where the program would normally run
out of stack space because of the depth of the recursion.

5.10 Loop Optimisations

ere exist no explicit looping constructs in the F language. Nevertheless, the pre-
viously described compiler transformations have the potential of generating intermedi-
ate constructs for iteration, e.g., tail-call elimination can turn a recursive function into
a loop. ese intermediate constructs should always be subjected to optimisation as
loop transformations constitute an important part of the optimisation process for data-
parallel architectures [BGS94].

e current version of the F language only supports one-dimensional, homogen-
eous arrays. Due to this limitation, only a few of the loop transformations that are com-
monly discussed in the literature, are applicable to the compilation process of F. For
instance, the current version of the compiler will never end up in a state where it pro-
duces nested loops, so it would make no sense to try to apply transformations such as
loop coalescing, loop collapsing, loop tiling, loop interchange, etc.

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 54

Another common loop transformation which is not implemented in F, is loop
unrolling. e CUDA compiler unrolls amenable loops by default, and so, F could be
made to rely on this feature. However, the compiler is unable to produce loop nests due
to the single-dimensionality of the supported data structures and the constraints that are
placed on procedure inlining and the recursion-to-iteration transformation. Loop nests
are essential to the employment of loop unrolling as the outer loops of nests are turned
into GPU kernels, meaning that if we only have a single level of nesting, the entire loop
is made into a kernel and the loop will disappear. us, the beneĕts from employing
loop unrolling cannot be exploited in the current version, and the need for the unrolling
feature of CUDA lapses.

Some compilers also exploit a combination of loop unrolling and loop rerolling to
improve the quality of the other loop optimisations [BGS94]. e implementation of
this feature lapses of the same reasons as those that are listed above.

5.10.1 Loop Fusion

F is, as we have seen previously, unable to produce loop nests because of the single-
dimensionality of lists and the constraints that are imposed onprocedure inlining (§5.9.2
on page 50) and on the optimisations that are applied to recursive functions (§5.9.3 on
page 51). However, the compiler has the capability of producing a set of consecutive
loops within a single function body. Consecutive loops that are traversing over the same
data are likely to introduce additional overhead due to the performance penalties that
are associated with looping⁶. us, we want to merge such loops to improve the overall
performance of the program – a transformation called loop fusion.

From a parallelisation perspective, loop fusion allows us to invoke a single GPU ker-
nel instead ofmultiple ones. is improves the performance of the compiled program as
the instantiation and execution of GPU kernels, not to mention the associated memory
transfers between the CPU and the GPU, can be quite costly and should be kept to a bare
minimum. e loop fusion transformation is implemented in F to attack the latter
issue of superĘuous kernel invocations.

Loop fusion can also be implemented to target loops that are generated from in-
stances of non-structural recursion. However, this may require uniĕcation of the
boundaries of the iteration variables. Non-structural recursion is not parallelised by
the F compiler and, thus, the merging of such loops is ignored in this work.

5.10.2 Loop Restructuring

Tail-call elimination produces raw while-loops from tail-recursive functions. To sim-
plify the analysis that is employed in the parallelisation stage, these raw loops are attemp-
ted transformed into sequential and parallel for-loops. e compiler tries to identify
instances of well-behaved induction from the operations that are applied on the induc-
tion variables, as described in §5.7 on page 46. To improve the quality of this analysis,
the compiler utilises the fact that F implements pattern matching on function argu-
ments to help identifying the core of the induction. e latter helps ĕltering out seeming
induction variables which are used to accumulate the results of the inductions instead.
e complexity of the generated loops depends on how many parameters there are in

⁶e condition checks that are performed for every iteration of the loop and the code for progressing to
the next element of the traversed list can be costly in terms of performance when we are iterating over huge
data-sets.

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 55

the original functions, and on how many of these parameters remain static throughout
the execution of the loops.

Strictly speaking, the generation of sequential for-loops does not affect the parallel-
isation stage of the current version of the compiler. However, this transformation can
prove important in later work, as it enables the application of further loop transform-
ations and, thus, has the potential to improve the data locality of the generated loops.
is is particularly beneĕcial if the compiler produces loop nests and if the outer loops
of these nests get parallelised. e parallelisation of such loop nests would yield GPU
kernels that execute sequential loops, and it would be desirable for these sequential loops
to access data in predictable ways.

5.10.3 Loop Idiom Recognition

e optimiser tries to identify well-behaved instances of induction, a process which is
based on the analysis that was outlined in §5.7 on page 46. All candidates are either of
the form of parallel mapping or parallel reduction, and are Ęagged as such so that they
can be exploited during the code generation phase.

5.11 Automatic Parallelisation

As is clearly stated in the objectives that are listed in §1.4 on page 3, F focuses on the
pre-parallelisation phases of the compilation of functional-style code. Consequently, the
compilation process is mainly concerned with the type inference process and with the
compiler transformations that have been discussed up until now.

Even if the focus of this work has been put into preparing functional-style code
for parallelisation, the implemented prototype compiler also implements a component
which parallelises applicable looping constructs – which have been derived from the ap-
plication of the previously discussed optimisation techniques. is component targets
the CUDA platform, and deals with the identiĕcation and translation of the following
kinds of loops:

• Mapping Constructs – All parallel for-loops⁷ that apply an operation or a func-
tion to each element of the traversed data structures. Note that the operation /
function can only operate on the sole element that it has been given, and that no
cross-referencing of elements can occur.

• Reduction Constructs – All sequential for-loops that compute the sums or the
products of all the elements of the traversed data structures – such loops are called
additive and multiplicative reduction constructs, respectively.

e two types of looping constructs that are described above are not mutually exclusive
as, for instance, sequential for-loops that compute the sums or the products of some
maps of the traversed data structures are equally valid candidates for parallelisation. e
general criteria for parallelisation of such mapping and reduction constructs are given
in §5.7 on page 46.

e fact that a candidate loop satisĕes the criteria for being a mapping or reduction
construct is not enough to guarantee that the parallelisation of that particular loop will
yield an improved run-time performance. To guarantee speedup, we need to ensure

⁷Here, a parallel for-loop is a loop without loop-carried dependences. Conversely, a sequential for-loop
is a loop with at least one identiĕed loop-carried dependence.

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 56

that the size of the processed data and the workload of the loop make the parallelisa-
tion worthwhile, i.e., that the list is sufficiently long and that the loop body performs a
relatively costly operation on the elements, in comparison to the size of the data.

As we have seen in previous chapters, memory transfers between the host and the
device can be costly, and they should therefore be kept to a minimum. To minimise the
communication overhead that is imposed on us by parallelisation, the compiler tries to
merge subsequently executed GPU kernels that are working on the same data. Further-
more, a parallelisation model, (5.7), is employed to rule out the cases where the cost of
running a loop sequentially is lower than the cost of transferring the data to the device,
invoking the GPU kernel, and transferring the result back to the host. To be able to give
an estimate of the latter, the length of the traversed list must be taken into account. e
size of the list is not always deducible at compile-time. Hence, a partially dynamicmodel
must be employed.

Generally, the cost of a for-loop which traverses over a list, L, sequentially, can be
modelled as:

Pseq(L) = (δ + PJ body K)× |L |, (5.5)
where |L | denotes the length of the list, δ is an estimate of the loop overhead, and
PJ body K is the computational cost of the loop body. e parallel execution of the same
for-loop, traversing over the same data, can be modelled as:

Ppar(L) = (|L | × γ) + PJ body K + ξ, (5.6)

where γ is an estimate of the communication overhead that is caused by the memory
transfer of a single list element, and ξ is the cost of a GPU kernel invocation.

Deciding which candidate loops to parallelise is then a matter of identifying loop
instances where the size of the input list, L, satisĕes:

Ppar(L) < Pseq(L). (5.7)

e performance models, (5.5) and (5.6), only provide an estimate of the actual work-
load of a loop. Hence, we cannot guarantee speedup by applying themodels to the paral-
lelisation process. In fact, candidate loops can occasionally be tagged for parallelisation
even if the sequential versions of the loops run faster in reality. On the other hand, since
the performance model is derived empirically from a model which is based on the costs
of arithmetic operations on CUDA devices [NVI10b], the deviations in running time
on these occasions can be disregarded as they are unlikely to contribute to a substantial
slowdown of the execution of the output program.

e fact that the size of the traversed data structures need to be taken into account,
implies that a part of the deduction of whether a loop should be run in parallel or not
must happen at run-time. us, the compiler implements a hybrid between a static
and a dynamic performance model. e static part of the model estimates the cost of
the bodies of the candidate loops at compile-time, whilst the dynamic part is a set of
minimalistic run-time checks which combines the pre-computed costs with the lengths
of the traversed lists and branches to the desired loop version accordingly. Note that the
compiler automatically generates two versions of each candidate loop, one for sequential
execution and one for parallel execution. e complete model is described in detail in
§C.2 on page 100. e implementation of the model and the CUDA code emitter can be
found in “analysis/complexity.py” and “backend/cuda/__init__.py,” respectively.

With respect to the parallelisation of reduction-constructs, it is worth noting that
maximum parallelism can be achieved by computing the reduction in a tree-like fash-
ion, where each branch of the computation tree corresponds to the summation or mul-
tiplication of two of the numbers of the list or of two of the previously computed results,

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 57

(x1 + x2 + · · ·+ xm + xn)

+..

+

+

+

x1 x2

...

+

... ...

+

+

... ...

+

... +

xm xn....

︸ ︷︷ ︸
n

Figure 5.5: is ĕgure illustrates the formof the computation tree that is used to perform
parallel reductions in F. Note that CUDA provides no support for nested parallelism,
and so, the computation trees must be encoded in the form of one-dimensional arrays,
where the children of the node at index i are at indices 2i+1 and 2i+2, and the parent
of the same node is at index (i − 1)/2. e workload of a single computation tree can
then be parallelised by allotting an equal number of leaf nodes to each thread.

as illustrated in Figure 5.5⁸. is causes a lowering in the number of serial steps that we
need to take to compute the sum or the product of a list of numbers, namely from O(n)
to O(logn) for a list of n elements [BGS94].

5.12 Code Generation

e ĕnal phase of the compilation process consists of two sub-processes, namely the
process of generating a C/C++ program which represents the optimised derivation of
the input program, and the process of compiling this program into an executable using
the external build tools. e component which is responsible for the generation of the
C/C++ program consists of two different code emitters, one for generating standard C99
code and one for generating CUDA C/C++ code. As mentioned in §4.4.5 on page 36,
the code generation process is essentially an in-order, depth-ĕrst tree traversal where
each code emitter outputs appropriate code blocks upon every node visit. We will now
look in detail at the implementation-speciĕc details of each of the two code emitters that
have been implemented for F.

5.12.1 Sequential C Code Generation

e code emitter which generates standard C99 code is capable of targeting both 32-bit
and 64-bit host architectures. All data entities, except from lists, are declared using the
primitive typing constructs of the C language. With regard to lists, there are two evident
representations available to us: either we can use a linked-list representation or we can
choose a Ęat memory model which implements lists in the form of arrays. In F, we
opt for the latter representation as this simpliĕes the transferring and handling of data

⁸Note that the out-of-order computation that gets performed during the parallel reduction of a list works
because of the guaranteed associativity of the reduction operation. Other reduction operations, such as min
and max, can also be implemented as they are both associative operations.

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 58

that get performed by all parallelised sections of the program when we are targeting
CUDA-enabled devices.

Even though lists are immutable constructs in F, we settle upon a mutable list
representation which allows for in-place editing and updating of lists – this is an un-
problematic decision as the preprocessing of the language will ensure non-violation of
the immutability property of lists. e compiler exploits themutability of the list repres-
entation to reduce the memory footprint and the overhead that is caused by extraneous
memory allocations, deallocations and transfers. As alreadymentioned, the Ęatmemory
model uses arrays to represent lists. e elements of each of these arrays are given a type
identical to the base type of the parent list, i.e., the type integer or real.

Time and space efficiency of list operations, such as preĕxation, can be seen as a
requirement of functional-language compilers, since functional-style programs tend to
demand high dynamicity of lists. To meet the demands of functional-style programs,
the list representation that is employed in F has been made lightweight and efficient.
Each list is trivially represented by a pointer to the ĕrst element of the list, the length and
the capacity. All lists get allocated memory buffers in a block-wise fashion, and as soon
as the space that is required to store the elements exceeds the capacity of the allocated
memory buffer, the buffer gets resized. When a list overruns its capacity, this normally
implies that the size of the allocated memory buffer gets doubled.

As a result of the employed list representation, preĕxation is simply a matter of ad-
justing the pointer to the ĕrst element of the list and incrementing the length-ĕeld. List
preĕxation is therefore a fast operation. Due to the need for buffer reallocation when a
list buffer gets exhausted, boundary cases can be substantially more costly. However, in
practise, these cases are still relatively cheap.

All the special-purpose functions that are described in §A.3 on page 85, map directly
onto C library functions, such as the ones that are declared in “math.h”, and statically
deĕned F functions, which deals with list operations and so on. e only exception
is the if-function, which gets translated into an if-statement. It is worth noting that
the resulting if-statement does not preserve the expected laziness of the evaluation of
the true- and false-branches. If lazy evaluation is desired, the user should use pattern
matching or function conditionals instead.

F is highly customisable and provides a huge set of compiler options. ese op-
tions allow the user to ĕlter out certain stages of the compilation process, and can, in the
case of sequential C code generation, also be used to control the GCCmaker object. e
latter fact implies that the user can specify the optimisation-, debug- and verboseness-
Ęags of the underlying GCC compiler through the F interface.

5.12.2 CUDA C/C++ Code Generation

e CUDA C/C++ code generator is an extension of the sequential code generator that
was described in §5.12.1 and provides the following additional functionality:

• Parallelisation of Mapping Constructs – e CUDA code generator identiĕes all
looping constructs that have been tagged for parallelisation, and generates both
a CUDA kernel and a block of sequential C code for each loop. More speciĕc-
ally, all mapping constructs are turned into run-time checks with two conditional
branches, one for sequential execution and one for parallel execution. e checks
reĘect the performancemodel thatwas derived in §5.11 onpage 55. us, the gen-
erated GPU kernels will only get invoked if there is at least one CUDA-enabled

CHAPTER 5. DETAILED DESIGN AND IMPLEMENTATION 59

device available on the host system, and if the considered loops are deemed to run
faster in parallel than they are sequentially on the CPU.
e execution of code blocks that have been tailored for parallel execution in-
volves explicit memory handling for all buffers residing on the GPU. Addition-
ally, parallelisation implies that data must be transferred between the host and the
device to provide arguments to the GPU kernels and to retrieve the results of the
corresponding computations. Furthermore, the number of blocks and threads to
use for execution is determined from the size of the processed lists and, thus, code
must be emitted to deduce these numbers at run-time. Due to limitations on the
number of GPU threads that can be spawned in one go, the code generator also
emits code for dealing with cases where a single kernel invocation fails to handle
all the elements of the processed list.

• Parallelisation of Reduction-Constructs – As mentioned in §5.10.3 on page 55,
idioms such as reduction are matched against optimised templates. More spe-
ciĕcally, F generates reduction kernels based on Harris’ algorithm for parallel
reduction on CUDA [Har08]. e generated reduction kernels can handle both
integers and Ęoating-point numbers, and can be used on both 32-bit and 64-bit
host architectures.
e details concerning kernel invocations andmemorymanagement are the same
for both mapping and reduction constructs. For a full overview, the implement-
ation of the code generator and the methods that are responsible for emitting
code for kernel invocations can be found in “backend/cuda/__init__.py” and
“backend/cuda/lib.py,” respectively.

• Timing of Looping Constructs – e code generator can also dump code that
automatically times the execution of GPU kernels, and these timings can bemade
to either include or exclude the consequent memory transfers. Similarly, code to
time sequential code blocks can be emitted.

• Dumping of Device Information – If the print_device_info-Ęag is set, the code
generator emits preludial code that dumps information about all the CUDA-
enabled devices that are available on the host system upon entry of the generated
program.

Note that theCUDAC/C++maker object can be used similarly to theGCCmaker object
to control the underlying CUDA compiler through the F interface.

CHAPTER 6
System Testing and Results

Contents
6.1 Introduction . 60
6.2 Unit Testing . 60
6.3 Black-Box Testing . 61
6.4 Results . 65

6.1 Introduction

In Chapter 3, we emphasised the importance of correctness and veriĕability. By correct-
ness we mean that all compiled programs must produce the correct answer regardless
of what compiler transformations are applied to the intermediate representation of the
input. Veriĕability is then a matter of being able to conĕrm that this is the case by ex-
tensive correctness testing. e latter also involves performance testing, i.e., testing of
what performance gain we can achieve from the employment of the optimisation and
parallelisation techniques that have been discussed in previous chapters.

is chapter details the system testing that has been performed to validate the out-
come of the project. Furthermore, the chapter also presents the results that have been
achieved by the implemented optimisation and parallelisation techniques.

6.2 Unit Testing

Aer the design of the class hierarchy of the compiler system had been established, a
set of unit tests was sketched out – see “unittests.py.” e following bullet points
summarise the targets of the implemented unit tests and provide amanifestation of their
importance to the F compiler:

• Types – e type inference system heavily relies on a solid and well-deĕned im-
plementation of the underlying type system of the F language. us, the testing
of the type representations has constituted an essential part of the testing process.
More speciĕcally, the unit tests that are targeting the type system of F assess

60

CHAPTER 6. SYSTEM TESTING AND RESULTS 61

the correctness of the implemented type structure, the type equality checks, the
operations that are dealing with type comparisons, the implemented functional-
ity for deducing type dominance, and the various helper functions that are used
to derive, for instance, scalar and vector types.

• Abstract Syntax Tree – e abstract syntax tree forms the basis for all the im-
plemented compiler transformations and is a crucial component to target in the
testing process. Some of the functionality that has been tested by the unit tests
are: node instantiation, invocation of the update-method upon node changes,
node and branch substitution, type deduction and typiĕcation, node collection,
and branch duplication.

• Symbol Table – e two components that are listed above constitute a large part
of the intermediate representation. However, without an adequate symbol rep-
resentation, there is little we can do in terms of compilation, optimisation and
parallelisation. us, the symbol table and the structures that are used to repres-
ent symbols and atoms have also been thoroughly tested.

roughout the life cycle of the project, the main role of the unit tests has been to ensure
that the complex representation of the abstract syntax tree conforms to its expected be-
haviour. us, the unit tests have been extensively used in the veriĕcation stages of the
development process, and have proven to be a particularly useful tool, especially when
introducing new functionality to the intermediate code representation.

Considering the fact that the intermediate representation forms the foundation
upon which all of the optimisation and parallelisation techniques are performed, the
veriĕcation of the correctness of this component has been an important part of the test-
ing process. Errors in the intermediate representation are undoubtedly going to propag-
ate to almost all other components of the system. So, it is crucial to eliminate all poten-
tial problems in this section of the implementation. e ĕnal version of the prototype
compiler passed all the implemented unit tests, without exception.

6.3 Black-Box Testing

In Chapter 3, we stated the importance of veriĕability, and also mentioned the need
for a code base of example programs to support for objective testing of the compiler.
During the development of the compiler, we have produced a code base of twenty-odd
programs that have been tailored to demonstrate and test the implemented compiler
transformations. ese test cases can be found in the test-folder under the F source
code directory on the enclosed CD.

As a supplement to the previously mentioned tests, additional, systematic black-box
testing has been conducted. Note that, given the constraints that have been placed upon
the project, it has been unrealistic to expect to be able to apply detailed and sufficient
testing across all parts of the product. Hence, choices have been made to maximise the
beneĕt of the testing that has been performed, and to minimise the required effort.

e unit tests were carried out to verify the correctness of the underlying structures
and components of the system. In contrast, the black-box testing has taken a higher-
level approach by testing the general correlation between input and expected output. To
sum up, the following transformations have been subject to black-box testing:

• Type Inference – e type deduction phase is a sensitive and crucial stage of the
compilation process. erefore, it has been important to tailor good test cases

CHAPTER 6. SYSTEM TESTING AND RESULTS 62

to verify the type inference component of the compiler. In addition to having
performed exclusive executions of the type inference phase on all the example
programs in the provided code base, special user scenarios have been established
and tested. All the tests were planned aer the type model for the language (§C.1
on page 97) was ĕxed, but before the implementation phase started, to ensure
objectivity.

• Constant Folding and Algebraic Simplification – Methodical tests have been run
to ensure correctness of constant folding and algebraic simpliĕcation. Boundary
and special cases have been tested, e.g., division by zero, multiplication by zero
(yielding zero regardless of variable use), etc. It should be noted that arithmetic
overĘows are not picked up, neither by the optimiser at compile-time nor by the
generated programs at run-time. is was expected behaviour, and other than
that, all the tests were successfully conducted.

• Copy Propagation – Due to the non-destructiveness of assignments in F, one
would think that copy propagation is a straightforward transformation. However,
the intermediate representationmust provide internal constructs for looping, and
since loops are iterative, an intermediate representation for destructive assign-
ments is needed to allow the compiler to operate on the bodies of these loops.
is complicates the process of copy propagation.
e testing of this transformationwas successful. However, it should be noted that
F currently takes a pessimistic approach to copy propagation, i.e., an approach
where it does not try to propagate into and past intermediate looping constructs.
In further work, the compiler should be made to ignore such cases as long as the
considered variable does not appear in the loop body or in the loop conditional.

• Common Subexpression Elimination – is transformation is facing many of the
same issues as the copy propagation transformation. In general, intermediate
looping constructs have the potential to drastically reduce the beneĕt of employ-
ing common subexpression elimination. However, in practise, such intermediate
constructs make infrequent appearances, and rarely impose any real constraints
on the compilation process.
All the test cases for the common subexpression elimination transformation have
been tailored to verify that a pessimistic approach is always taken, meaning that
candidates are disregarded if there is any chance that a looping construct may
interrupt the Ęow between the two instructions that constitute a candidate. e
transformation that deals with collection of equivalent function invocations has
been tested in a similar manner.
Both common subexpression elimination and equivalent invocation collection
satisfy the predetermined test criteria. Only a few cases of interrupting looping
constructs were identiĕed, and all of these were handled as expected.

• Dead Variable and Dead Code Elimination – In fact, all of the commonly applied
compiler transformations (§2.4.2 on page 19) potentially suffer from the issues
that have been described above, but again, these issues seldom manifest them-
selves in practise as loops tend to comprise entire function bodies. Only when
multiple recursive functions are applied consecutively in a single function body,
do the issues arise, and empirical tests show that there tend to be little correlation
between the separated code blocks in these cases.

CHAPTER 6. SYSTEM TESTING AND RESULTS 63

e black-box testing of the dead variable and dead code elimination transforma-
tions were conducted in the same way as with the copy propagation and common
subexpression elimination transformations. Additionally, tests were carried out
to ensure that unused variables and functions are removed from the intermediate
representation as soon as they are rendered as such, and that they, as a result of
this, do not get emitted to the generated C/C++ ĕles.
All the tests were successfully conducted, except from in some of the test cases
where pattern matching got applied to list parameters. In these cases, two inter-
mediate variables got constructed to represent the head and the tail of the list argu-
ment, and these both got Ęagged as untouchable to the optimiser. Consequently,
when further optimisations, or more speciĕcally parallelisation, got carried out,
the tail variable ended up being rendered unused. However, since the tail variable
was Ęagged as untouchable, it could not be omitted from the ĕnal output, which
resulted in the emittance of a redundant variable. Fortunately, this kind of un-
desired behaviour does not affect the correctness of the program. Also, it should
be noted that such instances of unused variables get ĕltered out by the GCC and
CUDA compilers.

• Tail-Call Elimination – e black-box testing of the tail-call elimination trans-
formation entailed multiple crucial points. First of all, tail-call elimination gen-
erates either a while-loop or a for-loop, depending on what information is dedu-
cible from the recursive function, i.e., induction variables, etc. Note that this trans-
formation only applies to recursive tail calls and, thus, that a successful elimina-
tion always will yield an iterative construct. Explicit testing has been performed
to ensure that for-loops are generated whenever a single, well-deĕned induction
variable can be deduced.
As opposed to what is the case in the optimisation of augmenting recursion, tail-
recursion optimisation can handle recursive functions with multiple base cases.
Functions with multiple recursive calls are not dealt with by the compiler, and are
therefore ignored.
A critical point in tail-recursion optimisation is the updating of the induction
variables. For instance, if one of the induction variables gets updated before one of
the other variables do, and if the other variable is dependent on the original value
of the ĕrst variable, then we might end up with an invalid state of the program
unless temporaries are used to retain the pre-update values of the variables and
these retained copies are used in the update process itself – for an example, see §5.4
on page 53. Due to the criticality of this use case, it has been explicitly targeted in
the testing process.
e black-box testing of the tail-call elimination transformation was successful,
and revealed no issues.

• Optimisation of Augmenting Recursion – Rigorous testing of the optimisation of
augmenting recursion has perhaps been themost important part of the black-box
testing, and has therefore received the most attention in the testing process. To
verify the functionality of this compiler transformation, numerous tests, targeting
the following cases, were constructed: validation of recursive functions with one
base case and one recursive call, invalidation of functionswithmultiple base cases,
invalidation of functions with multiple recursive calls, invalidation of functions
which implement simultaneous or mutual recursion. Also, multiple inductive
step sizes were tested, and the expected results were conĕrmed.

CHAPTER 6. SYSTEM TESTING AND RESULTS 64

• Procedure Inlining –is transformation was employed in the F compiler with
the intention to simplify the semantic analysis of the input program. Procedure
inlining has the potential to reveal otherwise hidden optimisation candidates and,
hence, expands the number of optimisation opportunities that are available to us
in the input program.
ere are several potentially precarious stages in the inlining process. If not prop-
erly implemented, we can run into situations of, for instance, variable duplication,
which breaks with the non-destructive assignment strategy. To validate the work-
ings of the inlining transformation, we have made sure that the test cases exploit
situations where multiple invocations to the same function appear in the same
function body. We have also tested the candidate selection function and veriĕed
that multi-clause, non-trivial and non-leaf functions are all being invalidated.

• Loop Fusion and Restructuring – Since only a few of the discussed loop trans-
formations have been implemented, the extent of the black-box testing for loop
transformations has been conĕned to cover loop fusion and loop restructuring.
Loop fusion only transpires in cases where the compiler can identify two or more
consecutive loops that are working on the same data in a single code block. And
loop restructuring is solely concerned with the conversion of generated while-
loops into equivalent for-loops based on the iteration variables that can be iden-
tiĕed in the original loop. e latter transformation is in truth a step in the op-
timisation of recursive functions, and is tested indirectly by the test cases that are
targeting the augmenting recursion transformation.
e loop fusion transformation passed all the considered test cases and revealed
no unforeseen problems.

• Procedure Cloning – is transformation is merely concerned with the parallel-
isation stage of the compilation process, or more speciĕcally, the process in which
duplicate functions for parallel execution are created. As part of the black-box
testing of the procedure cloning transformation, a manual inspection of the gen-
erated CUDA ĕles was carried out for all the programs in the provided code base
to ensure that valid GPU kernels were generated. All tests were conducted suc-
cessfully, except from in some cases where additional arguments needed to be
passed into the generated kernels.

e lexical and syntactic analysers have also been subject to black-box testing. Ex-
haustive test cases were tailored to verify the correctness of the F grammar and its ac-
tual implementation. e conducted test cases were written speciĕcally to target known
boundary and special cases, and were all passed.

Furthermore, the application of the performance cost model has been tested and
veriĕed. However, these tests did not go into as much detail as the previous ones. e
black-box testing of the performance model was performed on the examples that can
be found in the provided code base, but also on a set of handcraed scenarios that were
written to exploit potential problems of the model. e results were analysed by manual
inspection of the produced CUDA ĕles, and no problems were identiĕed. However,
it is likely that the model can be improved further by gathering and considering more
empirical data that is concerned with the run-time behaviour of certain programming
constructs, both on sequential and parallel hardware architectures.

e output from the automatic parallelisation stage, i.e., from transformations such
as loop idiom recognition, etc., has been manually inspected and validated for a range
of test cases. So have also the results from the C99 code generation.

CHAPTER 6. SYSTEM TESTING AND RESULTS 65

Lastly, the provision of feedback has been tested by manually verifying that all the
expected error and warning messages get produced and presented to the user upon bad
input. More speciĕcally, correct provision of the messages that are listed in §5.4 on page
43 has been tested for, and all the tests passed successfully. However, in some cases the
column number of the token that was associated with the reported error or warning
message did not correspond well with the source of the reported problem and, thus, did
not provide any sensible information to the user. Consequently, F has been altered to
only report line numbers to avoid confusion.

6.4 Results

As we have seen in the previous sections of this chapter, we have performed both unit
testing and black-box testing to ensure correctness of the implemented solution. e
unit testing was carried out to validate the building blocks of the ĕnal product, and the
black-box testing was conducted to assess the soundness of the implemented optimisa-
tion techniques. In addition to the unit and black-box testing, performance testing has
been conducted to provide metrics which evaluate the proĕciency of the implemented
compiler transformations.

Due to various limitations of the F language, we have been unable to employ any
publicly available benchmarking suites to measure the performance that can be gained
from applying the implemented transformations. e limitations include, for instance,
the inability to deal with multi-dimensional and heterogeneous data.

Since no public benchmarking suite can be utilised, we have been required to im-
plement a set of test cases ourselves. Considering that this is early work, the limitations
of the language has not had a direct inĘuence on the project, as we have been more in-
terested in exploring what can be achieved by the employed compiler transformations
than the possibilities that are presented to us by the language. is argument has led us
to opt for a minimalistic language which is easy to analyse and process from a semantic
perspective. Having said that, given the aim of providing programmers with a tool that
simpliĕes development of parallel algorithms, the language should surely be extended
as part of further work.

Due to the simplicity of the current revision of the F language, parallelism only
manifests itself in a limited number of ways, namely in the form of primitive mapping
and reduction. e main objective of the performance testing is to explore how these
manifestations affect the running time of the generated programs.

It should be noted that, by testing the performance of programs that have been par-
allelised by F, the performance cost model will be tested as well. However, the cost
model has already been tested, as part of the black-box testing that was presented in
§6.3, and is therefore completely le out of the discussion of this section. roughout
the project, the main focus has been put into what sequential constructs can be parallel-
ised for data-parallel architectures, and the tests that have been carried out as part of the
performance testing reĘect this focus. Furthermore, this means that the details around
the selection of parallelisation candidates are omitted from this section.

e test cases that have been considered in the performance testing are concise and
objective. ey have been written to attack the core of the parallelisation process to help
identify what speedups can be achieved by the employed transformations. Obviously,
only attainable parallelisation constructs have been targeted.

We have constructed and tested six different parallelisation scenarios, namely the
ones listed below. Observe that both mapping and reduction constructs have been ac-

CHAPTER 6. SYSTEM TESTING AND RESULTS 66

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

20

40

60

80

100

P
ro
ce
ss
in
g
 T
im
e
 (
m
s)

Mapping λx. x2

Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

100

200

300

400

500
Mapping λx. sin(cos(x)/x)

Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

100

200

300

400

500

600

700

P
ro
ce
ss
in
g
 T
im
e
 (
m
s)

Mapping λx. sin(cos(x)/x), 2 times
Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

200

400

600

800

1000

1200

1400

1600
Mapping λx. sin(cos(x)/x), 8 times

Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

20

40

60

80

100

P
ro
ce
ss
in
g
 T
im
e
 (
m
s)

Additive Reduction
Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

20

40

60

80

100
Multiplicative Reduction

Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

NVIDIA GeForce GT 330M (512MB), Apple Mac OS X Snow Leopard

Figure 6.1: is ĕgure presents the results of the performance testing that was carried
out on a systemwith the following speciĕcations: NVIDIAGeForceGT 330M (512MB),
Apple Mac OS X Snow Leopard 10.6.7, Intel Core i7 2.66 GHz, 64-bit system, 32-bit
executable, 8.00 GB RAM.

counted for. Also note that additionalmapping constructs with kernels of different com-
putational complexity have been tested. is is to explore how the execution time of a
GPU kernel affects the overall performance of a parallelised looping construct, and how
this effect compares to the performance of an equivalent sequential loop.

(a) Mapping of all the elements of a list, yielding the square of each element.

(b) Mapping of all the elements of a list, yielding sin(cos(x)/x) of each element, x.

(c) e same as (b), but applied twice.

CHAPTER 6. SYSTEM TESTING AND RESULTS 67

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

20

40

60

80

100

P
ro
ce
ss
in
g
 T
im
e
 (
m
s)

Mapping λx. x2

Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

500

1000

1500

2000

2500

3000

3500

4000
Mapping λx. sin(cos(x)/x)

Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

1000

2000

3000

4000

5000

6000

7000

P
ro
ce
ss
in
g
 T
im
e
 (
m
s)

Mapping λx. sin(cos(x)/x), 2 times
Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

5000

10000

15000

20000

25000
Mapping λx. sin(cos(x)/x), 8 times

Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

20

40

60

80

100

P
ro
ce
ss
in
g
 T
im
e
 (
m
s)

Additive Reduction
Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

20

40

60

80

100
Multiplicative Reduction

Sequential C

CUDA without Memory Transfers

CUDA with Memory Transfers

NVIDIA GeForce GTX 480 (1536MB), Microsoft Windows Server 2008

Figure 6.2: is ĕgure presents the results of the performance testing that was carried
out on a system with the following speciĕcations: NVIDIA GeForce GTX 480 (1536
MB), Microso Windows Server 2008 R2 Enterprise, Intel Core 2 Duo CPU E6850 3.00
GHz, 64-bit system, 32-bit executable, 4.00 GB RAM.

(d) e same as (b), but applied eight times.

(e) Additive reduction of all the elements of a list.

(f) Multiplicative reduction of all the elements of a list.

Generally, the results that have been achieved are good in terms of performance, espe-
cially considering the fact that executables that are produced from functional-style code
oen tend to be slower than similar implementations in imperative languages because
of the high-level of abstraction that is common in functional-style code, e.g., because of

CHAPTER 6. SYSTEM TESTING AND RESULTS 68

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

2

4

6

8

10

12

14

S
p
e
e
d
u
p

NVIDIA GeForce GT 330M
Mac OS X Snow Leopard 10.6.7

0.2 0.4 0.6 0.8 1.0
Number of Vector Elements 1e7

0

50

100

150

200

250

300

NVIDIA GeForce GTX 480
Microsoft Windows Server 2008

Mapping λx.x2

Mapping λx.sin(cos(x)/x)

Mapping λx.sin(cos(x)/x), 2 times

Mapping λx.sin(cos(x)/x), 8 times

Additive Reduction

Multiplicative Reduction

Figure 6.3: is ĕgure presents the speedup results from the conducted performance
tests. We observe that the maximum achieved speedups on the two test machines
were 12.6 and 253.3 times the sequential execution speeds, respectively. Generally, we
achieved a tenfold speedup on the OS X machine and a hundredfold speedup on the
Windows machine. We observe that the vast difference in speedup is mainly caused by
the difference in sequential execution speed on the two machines, and that the parallel
execution speed was fairly consistent between the two environments.

recursion, higher-order functions, garbage collection, automatic storage management,
etc. e application of general optimisation techniques to sequential code has yielded
speedups of up to 20 times the original execution speed for small and trivial example
programs. ese impressive results are primarily an outcome of the elimination of recur-
sion which demonstrates the value of the optimisation of augmenting recursion. Higher
speedups are expected for programs that are larger andmore complex than the ones that
have been subject to testing – the ones in the provided code base.

Example of Sequential Speedup: e sequential optimisation of a program computing
the value of the factorial function, Listing 5.1, applied to N = 40, i.e., fact(40),
resulted in an average speedup of 16.4when the optimised programwas compared
to a bare, unoptimised version.

In terms of parallelisation, the initial results have been promising, see Figure 6.1 and
Figure 6.2Ƭ. However, we observe that to achieve good speedups, we are oen required
to deal with fairly costly, or at least non-atomic, GPU kernels. For instance, scenario (a)
results in little, if any, speedup, as the overhead that is inĘicted by the memory trans-
fers between the host and the device cancels out the performance that is gained from
executing the kernel in parallel. e observation is also corroborated by the fact that
scenarios (b), (c) and (d) achieve speedups that increase with the complexity of the ker-
nels. In terms of parallel reduction, we observe that there is little difference between ad-
ditive and multiplicative reductions, and that the achieved speedups are low, especially
if we include the overhead that is caused by memory transfers between the host and the
device. However, in more complex applications, some of these memory transfers can

ƬNote that the sequential reference points of the graphs that are presented in this chapter are measures
from the execution of fully optimised, sequential programs, i.e., the speedup is a measure of the form ts/tp,
where ts is the running time of the fastest sequential representation of the problem, and tp is the running
time of the fastest parallel representation of the problem.

CHAPTER 6. SYSTEM TESTING AND RESULTS 69

possibly be made redundant due to memory reuse, and the actual speedup may then be
higher. Observe that the graphs in Figure 6.3 show speedups where thesememory trans-
fers are included in the calculation, and that Figures 6.1 and 6.2 show clear beneĕts from
parallelisation if we disregard the cost of the memory transfers. Obviously, we cannot
disregard the transfer costs altogether, but a slight reduction in the number of transfers
compared to the number of actual kernel invocations can contribute signiĕcantly to-
wards faster execution speeds. Also, it should be noted that the merger of mapping and
reduction constructs will cause higher speedups, and that the identiĕcation and trans-
formation of consecutive parallelisation candidates should be extended and ĕne-tuned
in further work.

We observe that the distinct differences in the speedup ĕgures for the two test ma-
chines are mainly caused by the slower execution speed of sequential programs on the
Windows machine. e speed of execution of CUDA kernels, including memory trans-
fers, has proven to be relatively consistent across the test environments, whilst there has
been a vast variation in the speed of sequential execution. is illustrates the advantages
of parallelisation, especially on slower machines.

To obtain more compelling results, we would have to extend the language to allow
for more complex and interesting problems to be computed, e.g., support for multi-
dimensional data structures and complex number types would enable us to compute 2D
Fourier transforms, and other commonly parallelised algorithms. is would also evoke
work into how thesemulti-dimensional data structures can be represented inmemory to
optimise the processing performance on graphics processors, and into how the memory
layout in general affects the delicate memory models of such devices – see §2.2.2.

Finally, it is worth noting that all the tests have been conducted on large data-sets,
spanning in size from 100 000 to 10 000 000 elements, and that to obtain objective time
measurements, multiple, subsequent kernel executions have been performed for each
of the test cases. e ĕnal analysis has been based on the average running times of ten
test runs. Generally, single-instance execution of GPU kernels can be slow due to the
need for initialisation of the communication channel between the host and the device.
erefore, theGPUkernel should always be executed prior to the ĕrst timemeasurement
to ensure reliable results [SK10].

CHAPTER 7
Conclusion

Contents
7.1 Summary . 70
7.2 Results . 72

7.2.1 Black-Box Testing . 72
7.2.2 Performance Testing . 72

7.3 Critical Evaluation . 74
7.4 Further Work . 74

7.1 Summary

In this report, we have seen how the renewed urge for parallelism over the past few years
has resulted in new and innovative solutions to parallelisation. e way programmers
have started to utilise graphics processors in general-purpose computing is an example
of this. We have also touched upon the difficulty of parallelising existing, sequential
algorithms and, thus, discussed some of the challenges that are present in parallel com-
puting today.

Chapter 1 started out by presenting the background and motivation of the project
before listing the overall aims and objectives of the work. We recap the objectives by
recalling that our main aims were to design a statically and implicitly typed, functional
programming language and to implement a prototype compiler for this language to try
to exploit the massively data-parallel processing capabilities of CUDA-enabled devices.

In the literature review inChapter 2, we stated that the implemented compiler should
aim to simplify the development of algorithms for data-parallel architectures, and, again,
that it should endeavor to produce fast, parallel code. However, we also concluded that
the development of the compiler was to focus on the preparation phase of the parallel-
isation process, i.e., on the transformations that can be employed to prepare seemingly
sequential, functional-style code for parallelisation onto graphics processors.

e literature review further examined the technical details around CUDA, and ex-
plored the world of parallel soware libraries and programming languages to gather in-
sight into how these map onto data-parallel problems. e chapter also looked at NESL

70

CHAPTER 7. CONCLUSION 71

and how it implements a language-based performance model to reason about the time
and space complexities of parallel implementations. Furthermore, the chapter discussed
various aspects of the static code analysis that has been employed in parallelising ver-
sions of Fortran, and collected ideas related to code readability and analytic amenability
from various concurrency-oriented and functional languages.

Lastly, the chapter argued how automatic parallelisation of functional-style code is
a matter of converting recursive functions into parallelisable loops, and furthermore,
discussed the details around data-dependence and data-Ęow analyses, and the different
transformations that can be applied to the input to achieve the above objectives.

Chapter 3 presented the functional and non-functional requirements of the imple-
mented solution, and observed the importance of correctness, veriĕability, feedback and
actual performance gain. e requirements speciĕcation also listed the limitations of the
system and some of the functionality that has been le out due to lack of practical rel-
evance. Lastly, the chapter disclosed the testing requirements and all the resources that
have been used in the performance testing of the compiler.

e report then moved on to discussing the high-level design of the implemented
solution in Chapter 4. e tools and modules that have been used in the development
process were presented, and a brief description of the F language was given. Further-
more, the language design was justiĕed. Chapter 4 then concluded by giving a present-
ation of the high-level soware architecture of the product, to introduce the reader to
the overall compilation process.

Chapter 5 entailed a thorough review of the low-level design of the system, and
aimed to provide the reader with a comprehensive overview of all the implementation-
speciĕc details of the compiler. e chapter illustrated and explained the workings of
the implemented solution, and showed the importance of a well-behaved and rigor-
ously tested intermediate representation. Type deduction was described and demon-
strated, and so were also the commonly applied compiler transformations. In addition,
the chapter outlined the delicacy of some of the implemented transformations.

Next, a detailed presentation of the interprocedural transformations was given, and
the importance of the conversion of recursion into iteration was emphasisedƬ. Further-
more, loop transformations and the transformations that are involved in the process of
automatically parallelising sequential code were presented. e chapter culminated in a
presentation and discussion of the implemented performance model, before explaining
the workings of the code generator in detail.

Chapter 6 outlined the test plan and gave a report of the test results. e moment-
ousness of unit testing was highlighted and, further, justiĕed by showing how errors on
a component level easily propagate to other parts of the system. More speciĕcally, the
intermediate code representation was identiĕed as a crucial test target. e unit testing
section concluded that all the test cases were successfully conducted.

e testing chapter also argued the signiĕcance of black-box testing, and accounted
for how these tests allow us to reveal potential problems of the implemented solution.
e testing was conducted successfully. However, three minor issues were identiĕed.
ese are summarised in §7.2.

e last section of Chapter 6 presented the results of the performance testing. Ex-
cept from ĕnding that the current employment of optimisation and parallelisation tech-
niques has yielded promising increases in execution speed, a few remarks were made
with respect to further work, see §7.2. In particular, it was concluded that various limit-

ƬIt should be noted that the interprocedural transformations are described in more detail in Appendix B,
together with justiĕcations and proofs for the correctness of some of the applied optimisation techniques.

CHAPTER 7. CONCLUSION 72

ations of the current language design and the current compiler implementation disallow
parallelisation of more interesting and complex programming constructs. For instance,
computation over multi-dimensional data-sets is not supported, and instances of sim-
ultaneous recursion are not parallelised (§7.4 on page 74). Nevertheless, tenfold to hun-
dredfold speedups have been achieved in the conducted test cases, depending on the
point of comparison, and these are satisfactory results, especially considering that the
F language and the presented compiler are currently in early stages of the develop-
ment and have a long way to go to reach their full potential.

7.2 Results

is section brieĘy summarises the results of the black-box and performance testing.
e black-box testing and its ĕndings were presented in §6.3 on page 61, and the results
of the performance testing in §6.4 on page 65.

7.2.1 Black-Box Testing

e results of the conducted black-box testing can be summarised as follows:

• e pessimistic approach of the commonly applied compiler transformations
should be subjected in further work to allow for amore global application of these
transformations. As of now, intermediate looping constructs will interrupt the
Ęow of the dependence analysis and break the considered basic blocks into sev-
eral smaller blocks, even if the considered variables do not appear in the looping
constructs themselves.

• In rare cases, variables do not get pruned when they have been Ęagged as unused.
e reason for this is that they in these cases, intentionally, also get Ęagged as
untouchable by the code analyser to ensure that the optimiser does not alter any
of the containing statements. is does not really constitute a problem as the lack
of pruning is compensated for by the external build systems.

• e column numbers of the tokens upon which some of the error and warning
messages are reported, are sometimes misleading as they do not refer back to the
actual root of the problem. Consequently, the current version of the prototype
compiler only reports line numbers.

Apart from the issues that have been listed above, we discovered no problems in this
stage of the testing process. In short, the black-box testing was considered successful.
Note however that, whilst the black-box testing has been conducted successfully, there
has also been identiĕed a number of areas of improvement to the F language and the
code optimiser. ese are discussed in §7.4 on page 74.

7.2.2 Performance Testing

e observations and results of the conducted performance testing can be summarised
as follows:

• No public benchmarking kit has been used in the performance testing due to vari-
ous limitations of the F language, e.g., the lack of support formulti-dimensional
data structures. Instead, a code base of example programs has been used. It is

CHAPTER 7. CONCLUSION 73

generally noted that the language should be extended in further work to allow for
more complex problems to be computed and tested.

• Parallelism only manifests itself in a limited number of ways, more speciĕcally, as
mapping and reduction constructs. Consequently, the input programs must be
on a naturally data-parallel form, where mapping and reduction can be exploited,
to beneĕt from the employed compiler transformations.

• e focus has mainly been put into the exploration of what sequential constructs
can be parallelised for data-parallel execution. Also, as the work has focused on
the preparatory transformations for parallelisation, the ĕnal stage of the parallel-
isation process has received little attention. e F compiler generates mapping
and reduction kernels. However, in further work, the merging of consecutive
kernels should be extended to allow for merging of heterogeneous collections of
kernels as well.

• Six scenarios have been tested to explicitly test what performance can be gained
from applying the employed parallelisation transformations. e following ob-
servations have been made:

– Generally, good results have been achieved. More speciĕcally, the paral-
lelisation of the six test scenarios yielded tenfold to hundredfold speedups.
e achieved speedups may seem fairly low compared to what is normal
for GPGPU programming, at least when we take consistency into account.
However, given the current limitations of the F language, and how these
restrict the expressiveness of the programmer, these results actually exceed
the expectations prior to commencement.

– Optimisation of simultaneous recursion could allow for parallelisation of
operations that span across multiple vectors, and such constructs are expec-
ted to achieve higher speedups. A natural move in further work is therefore
to consider optimisation techniques that deal with simultaneous recursion.

– e effect of the automatic parallelisation is dependent on the computa-
tional cost of the generated CUDA kernels. As noted in §6.4 on page 65, the
attainable speedups increase steadily with the complexity of the kernels.

– Parallelisation is particularly beneĕcial when targeting slower machines. As
we observed in §6.4, the test machine with the lowest sequential execution
speeds, which is still a reasonably fast and modern machine, achieved up
to 250 times speedup from parallelisation, whilst the fastest machine only
achieved a shy tenfold increase in execution speed.

– e tests were conducted on large data-sets. Not only did this demonstrate
the beneĕt of parallelisation in data-intensive processing, but it also helped
to ensure objectivity as the shorter the execution time is, the more likely
it is that the results are going to be inĘuenced and spoiled by the schedul-
ing mechanisms of the operating system. Normally, by considering large
data-sets, the inĘicted system overhead, with respect to time, are reduced in
comparison to the time it takes to compute the answer and, thus, will have
less impact on the performed time measurements.

• In the context of sequential programming, it should be noted that up to 20 times
speedups have been achieved in the execution of small and trivial, sequential pro-

CHAPTER 7. CONCLUSION 74

grams. ese speedups are predominantly a result of the application of interpro-
cedural transformations, such as, conversion of augmenting recursion into tail
recursion and tail-call elimination.

7.3 Critical Evaluation

e goals of designing a functional programming language and implementing a com-
piler for the designed language have been reached. Even though the implemented solu-
tion is regarded as a prototype compiler, the work has proven to attain satisfactory op-
timisation results, even from having to deal with a limited and minimalistic language.

All the functional and non-functional requirements that were speciĕed in Chapter 3
on page 28 have been satisĕed. However, the goal of making a tool that simpliĕes the de-
velopment of parallel algorithms has not been fully reached. e syntax and grammar of
F do indeed allow for easy expression of functional-style problems, but the language
only supports a limited number of types and, more crucially, only supports processing
of one-dimensional data. is reduces the applicability of the language to complex com-
puting problems. Saying that, we did not expect to fulĕll the desire to make a tool that
simpliĕes the development of parallel algorithms in the scope of this project, as this has
been established as a long-term goal.

7.4 Further Work

is section presents ideas for further improvements of the implemented compiler sys-
tem and proposes concepts for further work.

• Extended Type System – In the current implementation, only integers, reals, and
one-dimensional, homogeneous data structures are supported. However, as we
have seen multiple times in this report, the available type system imposes un-
desired limitations on the programmer. us, further work should consider
adding support for multi-dimensional and heterogeneous data structures, and
complex numbers.

• Simultaneous Recursion – As mentioned in §7.2, the optimisation of simultan-
eous recursion could be employed to allow for parallelisation of operations that
span across multiple vectors. For instance, consider the add-function in List-
ing 7.1. e current version of F is unable to parallelise such functions due
to various constraints that are placed on the optimisation of augmenting recur-
sion – see Appendix B. Parallelisation of vector operations such as vector addition
and vector multiplication tends to yield higher speedups than the parallelisation
of operations that are concerned with a single vector, such as mapsƭ. us, by
implementing a transformation that can convert simultaneous recursion into it-
erative constructs, new potential can be exploited by the compiler. It follows from
the proofs in Appendix B that this transformation is routine to implement.

Listing 7.1: Simultaneous Recursion
note that this function only deals with lists of equal lengths
add([], []): [];
add([H1|T1], [H2|T2]): [H1+H2|add(T1, T2)].

ƭe argument follows from empirical testing of native CUDA programs.

CHAPTER 7. CONCLUSION 75

• Multiple Recursive Calls – Instances of augmenting recursion may wind up with
more than one recursive call in the last statement of the recursive function clause,
e.g., consider the Fibonacci function in Listing 7.2.

Listing 7.2: Fibonacci Function (Plain)
fib(0): 1; # base case 1
fib(1): 1; # base case 2
fib(N): fib(N-1) + fib(N-2). # recursive case, with ...

... multiple recursive calls

Future versions of F should try to capture these cases and convert them into
tail-recursive equivalents. For instance, by applying the techniques that have been
discussed by Liu and Stoller [LS00], one can derive a tail-recursive Fibonacci func-
tion similar to the one that is presented in Listing 7.3.

Listing 7.3: Fibonacci Function (Tail-Recursive Form)
fib(0, P1, P2): P1; # base case 1
fib(1, P1, P2): P2; # base case 2
fib(2, P1, P2): P1 + P2; # base case 3
fib(N, P1, P2): fib(N-1, P2, P1+P2). # recursive case
fib(N): fib(N, 0, 1). # auxiliary function

• Compute-Intensive Loops – Some instances of non-structural recursion can in-
volve a substantial amount of computation per recursive step. e programmatic
representation of such instances can appear in the form of a loop. If these loops
yield scalar results, each iteration is only dependent on the results that are com-
puted in the previous iteration, and all inter-iteration computations are carried
out with associative operations, we can still exploit the GPU to improve the run-
ning time of the loop. is can be done by extending the existing implementation
of parallel reduction.

• Recursion Detection – ere are many areas of improvement in the system for
detection of well-behaved recursion. First of all, the current implementation only
deals with multiple base cases if the recursive function implements tail recursion.
A function which implement augmenting recursion can only be subject to optim-
isation if it has a single base case.
Also, even if tail-recursive functions with multiple base cases get translated into
loops, this does not mean that the resulting loops will be parallelised. On the
contrary, only tail-recursive functions with a single base case get parallelised in
the current version of F.
Another potential problem is that the collection of equivalent invocations can end
up hiding the fact that a function is recursive. For instance, if the last statement
of a recursive function clause is g(N − 1)× g(N − 1), this will yield an internal
representation, t1 ← g(N − 1); t1 × t1. As a result, the compiler will be unable
to deduce that the function clause is recursive, and the rest of the tests lapse.
Lastly, support for mutual recursion and arbitrary step sizes should be added –
per now, the compiler only deals with step sizes of positive and negative one.

CHAPTER 7. CONCLUSION 76

• Preallocation of Lists and Generator Templates – Sometimes, when dealing with
recursive functions that generate or manipulate lists, the performance can be im-
proved substantially by preallocating the memory that is used by the destination
list. Preallocation allows us to set the values of the list elements by random access
during the population / manipulation process, rather than having to run a pre-
ĕxation operation for each iteration. Such preallocation mechanisms can also be
made to detect cases where the destination list need to be, say, double or half the
size of the original list.

• Loop Optimisations – By introducing multi-dimensional data structures to the
F language, and by improving some of the existing compiler transformations,
effective loop optimisations will become more important in the compilation pro-
cess, as these alterations will imply that nested and more complex loops can get
generated from the input. Hence, several of the unimplemented loop transform-
ations that were presented in Chapter 2 should be considered in further work.

• Run-Time Checks, Exception Handling and Garbage Collection – As identiĕed
in Chapter 6, F performs no boundary or overĘow checks, not at compile-time
nor at run-time. Similarly, exceptions like division by zero are never handled.
Run-time checks that can help the programmer to identify the errors that are
mentioned above should be implemented in further work, and the employment
of these run-time checks should be made optional, i.e., it should be possible to
turn them on and off so that the user can choose whether the generated program
should perform the checks or not.
It should be noted that the compiler does not produce any code for sophisticated
garbage collection, and that in the current version of F, the generated programs
simply keep track of all allocated memory and deallocate all buffers upon termin-
ation. is functionality should be improved in further work.

• Derivation of Operational and Denotational Semantics – To be able to provide
more thorough reasoning about F programs, it would be useful to derive the
operational semantics for the F language. From a reasoning point of view, it
would be ideal if also the denotational semantics could be derived, together with
a description of the relationship between the two formal semantics [NN07].

• Continuation-Passing Style – A topic for further work could be to explore the
beneĕts of employing a continuation-passing style intermediate representation,
and whether such an employment would exploit more optimisation candidates.

• Task Parallelism and Nested Parallelism – e reduction kernels that get gener-
ated by the compiler, compute the appropriate reductions of the input lists, and
do this by employing a nesting strategy, see §5.11 on page 55. e reduction op-
erations can in fact be regarded as emulations of nested parallelism, which is a
phenomenon which is oen employed on task-parallel architectures.
Recent versions of the CUDA framework allow formultiple pseudo-simultaneous
kernel invocations on devices of compute capability 2.0 or higher, and this
provides a means to accomplish a limited form of task parallelism. Furthermore,
streaming and other techniques can be used to extend the notion of concurrency.
Further work should explore how these features can be exploited to add a limited
form, or at least an illusion, of task parallelism to F. It should be noted that,

CHAPTER 7. CONCLUSION 77

since CUDA does not explicitly support task parallelism due to the nature of the
targeted devices, there are limitations to how far we can push the illusion. Regard-
less, it is likely that some of these features can be exploited in the parallelisation
process and, thus, be used to improve the performance of the produced output.

Bibliography

[ABC+88] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview
of the PTRAN analysis system for multiprocessing. In Proceedings of the
1st International Conference on Supercomputing, pages 194–211, New York,
NY, USA, 1988. Springer-Verlag New York, Inc.

[AK81] J. R. Allen and K. Kennedy. PFC: A program to convert Fortran to parallel
form. Rice University, Department of Mathematical Sciences, 1981.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley, 2
edition, August 2006.

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, 1992.

[App98a] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge
University Press, 1998.

[App98b] Andrew W. Appel. SSA is Functional Programming. 1998.

[ARB08] OpenMP Architecture Review Board. OpenMP Application Program In-
terface Version 3.0, May 2008. Retrieved: 8 December 2010.
http://www.openmp.org/mp-documents/spec30.pdf.

[Arm07] J. Armstrong. Programming Erlang: Soware for a Concurrent World. Prag-
matic Bookshelf, 2007.

[ASSP96] H. Abelson, G. J. Sussman, J. Sussman, and A. J. Perlis. Structure and In-
terpretation of Computer Programs, volume 2. MIT Press, Cambridge, MA,
USA, 1996.

[AVWW93] J. Armstrong, R. Virding, C. Wikstrom, and W. Williams. Concurrent pro-
gramming in ERLANG. Prentice Hall, 2nd edition, 1993.

[BCKT79] U. Banerjee, Shyh-Ching Chen, D. J. Kuck, and R. A. Towle. Time and Par-
allel Processor Bounds for Fortran-Like Loops. Computers, IEEE Transac-
tions on, C-28(9):660–670, 1979.

[BD77] R. M. Burstall and John Darlington. A Transformation System for Devel-
oping Recursive Programs. J. ACM, 24:44–67, January 1977.

78

BIBLIOGRAPHY 79

[BG95] Guy E. Blelloch and John Greiner. Parallelism in sequential functional
languages. In Proceedings of the seventh international conference on Func-
tional programming languages and computer architecture, FPCA ’95, pages
226–237, New York, NY, USA, 1995. ACM.

[BG96] Guy E. Blelloch and John Greiner. A Provable Time and Space Efficient
Implementation of NESL. SIGPLAN Not., 31:213–225, June 1996.

[BGS94] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler Trans-
formations for High-Performance Computing. ACM Comput. Surv.,
26:345–420, December 1994.

[BHC+93] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee, Jay Sipel-
stein, and Marco Zagha. Implementation of a Portable Nested Data-
Parallel Language. In Proceedings of the fourth ACM SIGPLAN sym-
posium on Principles and practice of parallel programming, PPOPP ’93, pages
102–111, New York, NY, USA, 1993. ACM.

[Bir77] R. S. Bird. Notes on Recursion Elimination. Commun. ACM, 20:434–439,
June 1977.

[BKK+89] V. Balasundaram, K. Kennedy, U. Kremer, K. McKinley, and J. Subhlok.
e ParaScope editor: An interactive parallel programming tool. In Pro-
ceedings of the 1989 ACM/IEEE conference on Supercomputing, Supercom-
puting ’89, pages 540–550, New York, NY, USA, 1989. ACM.

[Ble95] Guy E. Blelloch. NESL: A Nested Data-Parallel Language (3.1), September
1995. Retrieved: 8 December 2010. http://www.cs.cmu.edu/afs/cs.
cmu.edu/project/scandal/public/papers/CMU-CS-95-170.html.

[Ble96] Guy E. Blelloch. Programming Parallel Algorithms. Commun. ACM,
39:85–97, March 1996.

[Cal10] Peter Calvert. Parallelisation of Java for Graphics Processors. 2010.

[Cha10] M. M. T. Chakravarty. GHC/Data Parallel Haskell, May 2010. Retrieved:
8 December 2010. http://www.haskell.org/haskellwiki/GHC/Data_
Parallel_Haskell.

[CHK92] K. D. Cooper, M. W. Hall, and K. Kennedy. Procedure Cloning. In Com-
puter Languages, 1992., Proceedings of the 1992 International Conference on,
pages 96–105. IEEE, 1992.

[CKL+11] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating Haskell array codes with multicore GPUs. In Proceedings of
the sixth workshop on Declarative aspects of multicore programming, pages
3–14. ACM, 2011.

[CKLP01] M. M. T. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel.
Nepal – Nested Data Parallelism in Haskell. In Proceedings of the 7th In-
ternational Euro-Par ConferenceManchester on Parallel Processing, Euro-Par
’01, pages 524–534, London, UK, 2001. Springer-Verlag.

[DG08] J. Dean and S. Ghemawat. MapReduce: Simpliĕed data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

BIBLIOGRAPHY 80

[For97] High Performance Fortran Forum. High Performance Fortran Language
Speciĕcation, January 1997. Retrieved: 8 December 2010. http://hpff.
rice.edu/versions/hpf2/hpf-v20.pdf.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. e
Essence of Compiling with Continuations. SIGPLAN Not., 28:237–247,
June 1993.

[Har88] L. Harrison. Parcel: Project for the Automatic Restructuring and Concur-
rent Evaluation of Lisp. In Proceedings of the 2nd international conference
on Supercomputing, ICS ’88, pages 527–538, New York, NY, USA, 1988.
ACM.

[Har05] M. Harris. Mapping Computational Concepts to GPUs. In ACM SIG-
GRAPH 2005 Courses, page 50. ACM, 2005.

[Har08] M. Harris. Optimizing Parallel Reduction in CUDA. 2008. Retrieved:
8 December 2010. http://developer.download.nvidia.com/compute/
cuda/1_1/Website/projects/reduction/doc/reduction.pdf.

[HJ85] Robert H. Halstead Jr. MULTILISP: A Language for Concurrent Symbolic
Computation. ACM Trans. Program. Lang. Syst., 7:501–538, October 1985.

[Hud89] Paul Hudak. Conception, Evolution, and Application of Functional Pro-
gramming Languages. ACM Comput. Surv., 21:359–411, September 1989.

[ISO97] ISO/IEC 1539-1:1997. Information technology – Programming languages –
Fortran – Part 1: Base language. ISO/IEC., 1997.

[Jon89] P. Jones. Parallel Implementations of Functional Programming Languages.
e Computer Journal, 32(2):175, 1989.

[Ken07] A. Kennedy. Compiling with continuations, continued. In Proceedings
of the 12th ACM SIGPLAN international conference on Functional program-
ming, pages 177–190. ACM, 2007.

[KY04] Dongkeun Kim andDonald Yeung. A Study of Source-Level Compiler Al-
gorithms for Automatic Construction of Pre-Execution Code. ACMTrans.
Comput. Syst., 22:326–379, August 2004.

[LH88] James R. Larus and Paul N. Hilĕnger. Restructuring Lisp Programs for
Concurrent Execution. In Proceedings of the ACM/SIGPLAN conference on
Parallel programming: experience with applications, languages and systems,
PPEALS ’88, pages 100–110, New York, NY, USA, 1988. ACM.

[LS00] Y. A. Liu and S. D. Stoller. From recursion to iteration: what are the op-
timizations? In Proceedings of the 2000 ACM SIGPLAN workshop on Partial
evaluation and semantics-based program manipulation, pages 73–82. ACM,
2000.

[Mun10] A. Munshi. OpenCL Speciĕcation 1.1. Khronos OpenCL Working Group,
2010. Retrieved: 8 December 2010. http://developer.amd.com/gpu/
amdappsdk/assets/opencl-1.1-rev33.pdf.

BIBLIOGRAPHY 81

[NN07] H. R. Nielson and F. Nielson. Semantics with Applications: An Appetizer.
Springer Verlag, 2007.

[NO99] S. Nishimura and A. Ohori. Parallel functional programming on re-
cursively deĕned data via data-parallel recursion. J. Funct. Program.,
9(4):427–462, 1999.

[NR98] R.W. Numrich and J. Reid. Co-Array Fortran for Parallel Programming.
In ACM Sigplan Fortran Forum, volume 17, pages 1–31. ACM, 1998.

[NVI09] NVIDIA Corporation. NVIDIA CUDA Architecture: Introduc-
tion & Overview, April 2009. Retrieved: 8 December 2010.
http://developer.download.nvidia.com/compute/cuda/docs/
CUDA_Architecture_Overview.pdf.

[NVI10a] NVIDIA Corporation. CUDA CUBLAS Library, August 2010. Retrieved:
8 December 2010. http://developer.download.nvidia.com/compute/
cuda/3_2/toolkit/docs/CUBLAS_Library.pdf.

[NVI10b] NVIDIA Corporation. NVIDIA CUDA C Programming Guide 3.1,
July 2010. Retrieved: 8 December 2010. http://developer.download.
nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_
ProgrammingGuide_3.1.pdf.

[PG10] e Portland Group. CUDA Fortran Programming Guide and Reference,
November 2010. Retrieved: 8 December 2010. http://www.pgroup.com/
doc/pgicudaforug.pdf.

[PGH+89] Constantine D. Polychronopoulos, Milind B. Girkar, Mohammad Reza
Haghighat, Chia Ling Lee, Bruce Leung, and Dale Schouten. Parafrase-
2: An environment for parallelizing, partitioning, synchronizing, and
scheduling programs on multiprocessors. Int. J. High Speed Comput.,
1:45–72, April 1989.

[Pit05] Andrew Pitts. Typed operational reasoning. In Advanced Topics in Types
and Programming Languages, chapter 7, pages 245–289. MIT Press, 2005.

[POS95] IEEE Std 1003.1c-1995. reads. IEEE., 1995.

[PW86] D. A. Padua and M. J. Wolfe. Advanced Compiler Optimizations for Su-
percomputers. Communications of the ACM, 29(12):1184–1201, 1986.

[RRB+08] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone,
David B. Kirk, and Wen-mei W. Hwu. Optimization Principles and Ap-
plication Performance Evaluation of a Multithreaded GPU Using CUDA.
In Proceedings of the 13th ACMSIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP ’08, pages 73–82, New York, NY, USA,
2008. ACM.

[SGS95] SGS-THOMSONMicroelectronics Limited. occam 2.1 ReferenceManual,
May 1995. Retrieved: 8 December 2010. http://www.wotug.org/occam/
documentation/oc21refman.pdf.

BIBLIOGRAPHY 82

[SH92] J. P. Singh and J. L. Hennessy. An Empirical Investigation of the Effective-
ness and Limitations of Automatic Parallelization. Shared memory multi-
processing, pages 213–250, 1992.

[Shi05] Olin Shivers. e Anatomy of a Loop: a story of scope and control. SIG-
PLAN Not., 40:2–14, September 2005.

[SK10] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 1st edition, July
2010.

[ST98] David B. Skillicorn and Domenico Talia. Models and Languages for Par-
allel Computation. ACM Comput. Surv., 30:123–169, June 1998.

[Ste77] Guy Lewis Steele, Jr. Debunking the “expensive procedure call” myth or,
procedure call implementations considered harmful or, LAMBDA: e
Ultimate GOTO. In Proceedings of the 1977 annual conference, ACM ’77,
pages 153–162, New York, NY, USA, 1977. ACM.

[Sut05] H. Sutter. e free lunch is over: A fundamental turn toward concurrency
in soware. Dr. Dobb’s Journal, 30(3):202–210, 2005.

[Szy91] Boleslaw K. Szymanski. Parallel functional languages and compilers. ACM,
New York, NY, USA, 1991.

[TLP02] P. W. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and Distributed
Haskells. J. Funct. Program., 12:469–510, July 2002.

[TPO06] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: Using Data Par-
allelism to Program GPUs for General-Purpose Uses. SIGOPS Oper. Syst.
Rev., 40:325–335, October 2006.

[Wol90] Michael Joseph Wolfe. Optimizing Supercompilers for Supercomputers. MIT
Press, Cambridge, MA, USA, 1990.

[YTT+08] J. H. C. Yeung, C. C. Tsang, K. H. Tsoi, B. S. H. Kwan, C. C. C. Cheung,
A. P. C. Chan, and P. H. W. Leong. Map-Reduce as a Programming Model
for Custom Computing Machines. In Field-Programmable Custom Com-
puting Machines, 2008. FCCM’08. 16th International Symposium on, pages
149–159. IEEE, 2008.

APPENDIX A
Language Specification

Contents
A.1 Syntax . 83

A.1.1 Tokens . 83
A.1.2 Grammar . 84

A.2 Operator Precedence . 85
A.3 Special-Purpose Functions . 85
A.4 Type System . 87
A.5 Function Deĕnitions . 87
A.6 Code Blocks . 88
A.7 Lists and List Operations . 88

A.7.1 List Composition . 88
A.7.2 List Preĕxation . 88
A.7.3 Pattern Matching . 88

A.1 Syntax

F is a statically and implicitly typed functional programming languagewhich has been
developed as part of this project. e language implements single assignments and call-
by-value evaluation, and is built up from two base types, namely integers and reals. e
language can also deal with homogeneous, immutable lists with elements of type in-
teger or real. Furthermore, F supports the use of higher-order functions, meaning
that function references can be passed as arguments, stored to variables and returned
from functions. e following sections include the formal speciĕcation of the F pro-
gramming language.

A.1.1 Tokens

is section lists the tokens that get identiĕed during the lexical analysis of the compil-
ation process, and their corresponding regular expressions.

83

APPENDIX A. LANGUAGE SPECIFICATION 84

atom : [a-z][A-Za-z0-9_]* (A.1)
| '[ˆ']*' (A.2)

comment : #.* (A.3)
dot : [;.] (A.4)

empty : (A.5)
identiĕer : [A-Z][A-Za-z0-9_]* (A.6)
keyword : and|not|or (A.7)

literals : [:=()\[\]$] (A.8)
operator : [+*/\\%-] (A.9)

| ==|!=|>=|<=|>|< (A.10)
number : [0-9]+(\.[0-9]+)?([Ee][+-]?[0-9]+)? (A.11)

separator : [,]? (A.12)
string : "[ˆ"]*" (A.13)

A.1.2 Grammar

is section lists the formal, grammatical rules that apply to the language. Note that
bold words and symbols indicate keywords and literals, and that the vertical bar is used
as an or-operator in the rules (A.41), (A.42), (A.44) and (A.45).

goal : deĕnition goal (A.14)
| empty (A.15)

deĕnition : atom (param_list) : stmt_list dot (A.16)
| atom (param_list) , comparison : stmt_list dot (A.17)

stmt_list : statement stmt_list (A.18)
| statement (A.19)
| empty (A.20)

statement : identiĕer = comparison separator (A.21)
| comparison separator (A.22)

elem_list : comparison , elem_list (A.23)
| comparison (A.24)
| empty (A.25)

parameter : identiĕer (A.26)
| number (A.27)
| atom (A.28)
| [] (A.29)
| [identiĕer | identiĕer] (A.30)

param_list : parameter , param_list (A.31)
| parameter (A.32)
| empty (A.33)

APPENDIX A. LANGUAGE SPECIFICATION 85

arg_list : comparison , arg_list (A.34)
| comparison (A.35)
| empty (A.36)

function_app : identiĕer (arg_list) (A.37)
| atom (arg_list) (A.38)

comparison : comparison and comparison (A.39)
| comparison or comparison (A.40)
| expression (==|!=|>=|<=|>|<) expression (A.41)
| expression (<|<=) expression (<|<=) expression (A.42)
| expression (A.43)

expression : expression (+|-|*|\|/|%) expression (A.44)
| (-|not) expression (A.45)
| identiĕer (A.46)
| atom (A.47)
| atom $ number (A.48)
| number (A.49)
| string (A.50)
| function_app (A.51)
| (comparison) (A.52)
| [elem_list] (A.53)
| [expression | expression] (A.54)

A.2 Operator Precedence

e operator precedence rules for F are deĕned in Table A.1, and are ordered from
lowest to highest. e third column deĕnes the associativities of the operators, which
indicate in what order operators of equal precedence are applied.

A.3 Special-Purpose Functions

F provides a set of built-in functions. e following list summarises these:

head(list) Returns the ĕrst element of list. In other words, if list is
on the form [l1, l2, . . . , ln], head returns l1. If the cardinal-
ity of list is zero, then the return value is undeĕned.

tail(list) Returns the list comprising all elements of list except from
the very ĕrst element. In other words, if list is on the form
[l1, l2, . . . , ln], tail returns [l2, . . . , ln]. Ifn = 0, then the
return value is the empty list.

len(list) Returns the length of list.
Atoms on the form add$2 are treated as function references; in this case to a function of name addwhich

has two parameters.

APPENDIX A. LANGUAGE SPECIFICATION 86

Operator Description Associativity
or Boolean disjunction. Le-to-Right
and Boolean conjunction. Le-to-Right
== != Equality check. Non-Associative
>= <= > < Numerical comparison. Non-Associative
+ - Addition and subtraction of integers and

Ęoating-point numbers.
Le-to-Right

* / \ % Multiplication and division of integers (\) and
Ęoating-point numbers (/).

Le-to-Right

not Logical negation. Right-to-Le
- Arithmetic negation. Right-to-Le
[] [|] List composition and list preĕxation. Le-to-Right

Table A.1: Precedence and associativity of operators in the F language.

empty(list) Returns a non-zero integer if the length of list is greater or
equal to one, zero otherwise.

if(cond, tval, fval) Returns tval if cond is non-zero, fval otherwise. Please
note that tval and fval get evaluated eagerly. F is a call-
by-value language and does not implement lazy evaluation.

range(from, to, step) Generates a sequence of numbers between from and towith
step size given by step. E.g., range(1, 3, 0.5) generates
the following list of reals: [1.0, 1.5, 2.0, 2.5].

zeros(count) Generates a list consisting of count number of zeros. E.g.,
zeros(4) generates [0, 0, 0, 0].

Additionally, a number of mathematical functions are available to the programmer.
ese are listed below, and are essentially used in the same way as their equivalents are
used in standard C/C++.

sin(x) Computes the sine of x, measured in radians.

cos(x) Computes the cosine of x, measured in radians.

tan(x) Computes the tangent of x, measured in radians.

asin(x) Computes the principal value of the arc sine of x.

acos(x) Computes the principal value of the arc cosine of x.

atan(x) Computes the principal value of the arc tangent of x.

atan2(x, y) Computes the principal value of the arc tangent of the quo-
tient of y and x, using the signs of both arguments to de-
termine the quadrant of the return value.

sinh(x) Computes the hyperbolic sine of x.

cosh(x) Computes the hyperbolic cosine of x.

APPENDIX A. LANGUAGE SPECIFICATION 87

tanh(x) Computes the hyperbolic tangent of x.

pow(x, y) Computes x raised to the power of y.

log(x) Computes the value of the natural logarithm of x.

log2(x) Computes the value of the logarithm of x to base 2.

log10(x) Computes the value of the logarithm of x to base 10.

sqrt(x) Computes the square root
√
x. If x is negative, nan (not a

number) is returned.

exp(x) Computes the base-e exponential of x, i.e., ex.

As mentioned above, the eagerness of call-by-value languages, such as F, implies
that both the true-clause and the false-clause of applications of the if-function get
evaluated. In some situations, this behaviour is undesirable, e.g.,

if(N == 10, 55, fib(N)).

In cases where such behaviour is undesirable, one can employ patternmatching on func-
tion signatures or make use of the optional condition-clause that is available in function
deĕnitions to ensure lazy evaluation.

A.4 Type System

e F type system is static and implicit. In other words, variables and functions are
implicitly typed during compile-time. e language has two base types, integers (Z) and
reals (R). Additionally, the programmer can construct homogeneous lists from these
two base types (Z∗ and R∗).

Well-deĕned function references can be assigned to variables and passed as argu-
ments. Function types are deduced during compile-time, as described in §5.5 on page
44, and function applications are therefore fully determinable.

A.5 Function Definitions

Functions are deĕned as groups of one or more function clauses. Each function clause
can be deĕned either with, (A.17), or without, (A.16), a conditional. Additionally, func-
tion signatures can embed pattern matching on integers and real numbers, and on the
size of lists. e latter is described in §A.7.3 on page 88.

In Listing A.1, we ĕnd an example of a deĕnition of a function group, f, containing
three unique function clauses. Note the use of semicolons (on line one and two) to
separate the clauses belonging to the same function group, and the use of period (on line
three) to terminate the deĕnition altogether. is function deĕnition yields a function,
f, which will return 0 if the ĕrst and only argument, N , is 1, N2 if the argument is less
than 10, and N otherwise.

Listing A.1: Pattern Matching and Conditionals in Function Deĕnitions
1: f(1): 0; # with pattern
2: f(N), N < 10: N * N; # with conditional
3: f(N): N. # catch-all clause

APPENDIX A. LANGUAGE SPECIFICATION 88

When the programmer implements functions with pattern-matching signatures and
conditionals, the last clause of each function group must be a “catch-all” clause, mean-
ing that the clause must match all possible combinations of input arguments that are
not matched by any of the other clauses. e compiler checks whether the last clause
satisĕes this requirement. Additionally, the compiler complains if there exist multiple
clauses catching the same input.

A.6 Code Blocks

In F, code blocks are built up from one or more comma-separated statements. As can
be deduced from the grammar speciĕcation in §A.1.2 on page 84, the language has only
one occurrence of code blocks, namely in the representation of function bodies. It is
worth noting that the last statement of the function body is considered to be the return
statement of the function, i.e., F has no explicit return statements.

A.7 Lists and List Operations

F supports homogeneous lists, either with elements of type integer (Z∗) or real (R∗).
ere exist two programming primitives that allow the programmer to construct and
manipulate lists in addition to the pattern matching construct, (A.30), and the special-
purpose functions mentioned in §A.3 on page 85, namely the list composition and list
preĕxation constructs.

A.7.1 List Composition

Lists are easily constructed, as in most other functional languages, by the use of square
brackets, (A.53). Note that F only deals with homogeneous lists. Hence, the program-
mer should ensure that all elements of a list are of the same type. If a list construction
contains elements of both types, e.g., as in Listing A.2, all elements will be converted into
the dominant type , i.e., into real numbers (R).

Listing A.2: List Composition
List = [1, 2.2, 3, 4.1, 5] # 7→ [1.0, 2.2, 3.0, 4.1, 5.0]

A.7.2 List Prefixation

e programmer can prepend an element to an existent list using the preĕxation oper-
ator, (A.54), as illustrated in Listing A.3.

Listing A.3: List Preĕxation
List = [2, 3, 4], [1 | List] # 7→ [1, 2, 3, 4]

Ordinary concatenation of two lists is easily implemented by the means of recursive
preĕxation of elements from the ĕrst list into the second list – see Listing A.4.

A.7.3 Pattern Matching

F implements a primitive form of patternmatching for function signatures, (A.30), as
shown in Listing A.4. Consider the ĕrst parameter of the concat function. We see that

APPENDIX A. LANGUAGE SPECIFICATION 89

there are two candidate matches, one for each function clause. e ĕrst candidate, [] on
line two, matches all applications of concat where the ĕrst argument is the empty list.
e second candidate, on line three, matches all non-empty lists and assigns the head of
the list to H and the tail of the list to T. is is equivalent to naming the ĕrst parameter
of concat, L, and assigning head(L) to H and tail(L) to T.

Listing A.4: List Concatenation
1: # concat : Z∗ × Z∗ −→ Z∗

2: concat([], L): L;
3: concat([H|T], L): [H|concat(T, L)].
4:
5: concat([1, 2, 3], [4, 5, 6]) # 7→ [1, 2, 3, 4, 5, 6]

APPENDIX B
Algorithms and Correctness

Contents
B.1 Optimisation of Augmenting Recursion 90

B.1.1 Univariate Functions . 92
B.1.2 Exploitation of Associativity and Commutativity 92
B.1.3 Multivariate Functions 94
B.1.4 Structural Recursion . 94
B.1.5 Mutual Recursion and Multi-Statement Bodies 95

B.1 Optimisation of Augmenting Recursion

Definition A function, f , with k function clauses, f1, . . . , fk, is said to be univariate if
it has exactly one parameter. f is said to bemultivariate if it has two ormore parameters.

Definition In a univariate function, f , the parameter xi denotes the instance of the
parameter x in the function clause fi. Syntactically, xi is either a symbol or a pattern,
the latter being a constant numerical value, an empty list or a list composition which is
used in the matching of the function arguments of f (see §A.7.3 on page 88).

Definition A univariate function, f , is said to implement augmenting recursion and
have one recursive case if:

• e last statement in exactly one of f ’s function clauses, name it fk, is of the form
g (xk, f(d(xk))), where d is an invertible function, and g introduces no new base
cases, is non-recursive and has no direct or indirect references to f .

• e parameter xk is a symbol and all parameters xi, i ̸= k, are patterns.

• e last statement in all fi, i ̸= k, is of the form ai(xi), where all ai are trivial
and satisfy the same criteria as g.

e problem of deriving function inverses is, in itself, a separate research topic, as pointed out in [LS00].

90

APPENDIX B. ALGORITHMS AND CORRECTNESS 91

Note that it makes no sense for a function to have more than one recursive case,
as the pattern matching for these cases would overlap and result in an unpredictable
program. However, functions can have multiple recursive calls, e.g.,

h = λx. (h(x− 1) + h(x− 2)) .

eemployment ofmultiple recursive calls is not supported in F and is therefore ruled
out from the deĕnitions that are listed in this chapter.

Definition A multivariate function, f , with a set of parameters x(1,i), x(2,i), . . . , x(n,i)

for each function clause fi, 1 ≤ i ≤ k, is said to implement augmenting recursion and
have one recursive case if:

• ere is exactly one value for j which satisĕes the following:

– e parameter x(j,k) is a symbol.
– All parameters x(j,i), 1 ≤ i < k, are patterns.
– All parameters x(p,i), p ̸= j and 1 ≤ i ≤ k, are symbols.

• e last statement in exactly one of f ’s function clauses, namely fk, is of the form:

g
(
x(1,k), . . . , x(n,k), f(x(1,k), . . . , x(j−1,k), d(x(j,k)), x(j+1,k), . . . , x(n,k))

)
,

where d is an invertible function, and g introduces no new base cases, is non-
recursive and has no direct or indirect references to f .

• e last statement in all fi, i ̸= k, is of the form:

ai(x(1,i), . . . , x(n,i)),

where all ai are trivial and satisfy the same criteria as g.

Definition A function, f , is said to have m base cases if it implements augmenting re-
cursion, and if it has k function clauses and l recursive cases, where k = m + l.

Note that it is natural to assume that g is a polynomial function, or that g holds no
operations which have the potential of breaking the Ęow and well-formedness of the
program, such as, for instance, division which can raise an exception if the user tries to
divide by zero. It should also be noted that recursive functions may not terminate, e.g.,
consider a functionwith base case 0 andwhere d is deĕned to beλn. (n+2), or consider
a function with base case 0, input argument -1, and where d is deĕned to be λn. (n−1).

eorem B.1.1 Univariate and multivariate functions which implement augmenting recur-
sion and which have exactly one base case and one recursive case can be rewritten into tail-
recursive form.

Given a function, f , which implements augmenting recursion andwhich has exactly
one base case and one recursive case, we need to show that eorem B.1.1 holds. us,
we need to consider both univariate and multivariate functions, and deal with arbitrary
numbers of body statements for f . e complete proof can be extended to show the
validity of similar transformations for functions with multiple base cases and for func-
tions with multiple recursive calls in the recursive clause, as described in [LS00, BD77].

APPENDIX B. ALGORITHMS AND CORRECTNESS 92

B.1.1 Univariate Functions

Lemma B.1.2 All univariate functions which implement augmenting recursion and which
have one base case and one recursive case, have equivalent tail-recursive functions.

We will ĕrst consider single-statement functions, i.e., functions with bodies which
have no more than a single statement. e proofs extend trivially to multi-statement
functions, as shown in §B.1.5 on page 95.

Proof Assume thatwe are given a univariate function, f , which implements augmenting
recursion, and that this function has exactly one base case, f1, and one recursive case,
f2. Also, assume that f1 and f2 have only one body statement each. en, f1 is of the
form a(⊥) and f2 is of the form g(x, f(d(x))).

Introduce two auxiliary parameters, t and r, and construct a multivariate func-
tion f ′, with parameters x, t and r. Let d′ be the inverse function of d, meaning that
d′(d(x)) = d(d′(x)) = x, and deĕne f ′ as follows:

f ′(x, t, r) =

{
g(x, r), if x = t,

f ′ (d′(x), t, g(x, r)) , otherwise.
(B.1)

Rewrite f into a function, f ′′, of the form:

f ′′(x) =

{
a(⊥), if x = ⊥,

f ′ (d′(⊥), x, a(⊥)) , otherwise.
(B.2)

Since the transformation that is described in this section is not implemented in the cur-
rent version of the prototype compiler, we conĕne ourselves to give only an outline of the
proof of the equivalence relation between f and f ′′. e proof boils down to showing
that the resulting call chains for the two functions are equivalent, i.e., that:

f(x) = g(x, g(d(1)(x), g(d(2)(x), g(. . . , g(d(x−1)(x), a(⊥)) . . .)))) (B.3)
= g(d′(x)(⊥), g(d′(x−1)(⊥), g(. . . , g(d′(1)(⊥), a(⊥)) . . .)))) (B.4)
= f ′′(x), (B.5)

where d(k) and d′(k) indicate k repeated applications of d and d′, respectively.
Observe that f ′ is tail-recursive. us, by showing that f is equivalent to f ′′, through

the use of the auxiliary function f ′, we show that there exists a tail-recursive function
which is equivalent to the original function, f . is concludes the proof. □

B.1.2 Exploitation of Associativity and Commutativity

Definition A binary function, g, is associative iff the following axiom is satisĕed:

g(a, g(b, c))
def
= g(g(a, b), c). (B.6)

In our application, this extends trivially to n-ary functions, by the assumption that:

g(x1, . . . , xk, a, g(x1, . . . , xk, b, c)) = g(x1, . . . , xk, g(x1, . . . , xk, a, b), c), (B.7)

where k = n − 2 and all xi, 1 ≤ i ≤ k, are constant. Associativity is then a matter
of in which order the function g is applied to the arguments a, b and c. e arguments
x1, . . . , xk are simply disregarded.

APPENDIX B. ALGORITHMS AND CORRECTNESS 93

Definition A binary function, g, is commutative iff the following axiom is satisĕed:

g(a, b)
def
= g(b, a). (B.8)

Similar to the above case of associative functions, the principle of commutativity can be
extended to n-ary functions, by assuming constancy of parameters xi, 1 ≤ i ≤ (n−2).

Lemma B.1.3 If the operation, g, of a univariate function which implements augmenting
recursion with one base case and one recursive case, is associative and commutative, and we
have that g(x, a(⊥)) = x for all x, then the properties of g can be exploited to simplify the
tail-recursive function that we derived in §B.1.1.

Proof Assume thatwe are given a univariate function, f , which implements augmenting
recursion, and that this function has exactly one base case, f1, and one recursive case, f2.
Also, assume that f1 and f2 have only one body statement each. en, f1 is of the form
a(⊥) and f2 is of the form g(x, f(d(x))), where g is both associative and commutative.

Introduce an auxiliary parameter, r, and deĕne a newmultivariate function f ′ as follows:

f ′(x, r) =

{
r, if x = ⊥,

f ′ (d(x), g(r, x)) , otherwise.
(B.9)

Rewrite f into a function, f ′′, of the form:

f ′′(x) = f ′(x, a(⊥)) (B.10)

Now, we must prove the equivalence relation between f and f ′′, i.e., we must show that
∀x ≥ ⊥. f(x) = f ′′(x). However, the main computation is carried out by f ′. Careful
consideration about the process reveals that f ′(x, r) will apply g to r together with each
of the values, x, d(1)(x), d(2)(x), . . . , d(x−1)(x), where d(k) denotes k repeated applic-
ations of d. By the deĕnition of f ′′, the initial value of r is given by a(⊥). Hence, proving
the equivalence relation between f and f ′′ corresponds to proving f(x) = f ′′(x) by
showing that f ′(x, r) = g(f(x), r), for x ≥ ⊥ and all r.

Lemma B.1.4 For all x ≥ ⊥ and all r, f ′(x, r) = g(f(x), r).

Proof By induction on x.

Base Case Observe that f ′(⊥, r) = r, for all r, by the deĕnition of f ′. However, by
the deĕnition of f , g(f(⊥), r) = g(a(⊥), r), which is equal to r, by commut-
ativity and our initial assumption in Lemma B.1.3. So, f ′(⊥, r) = g(f(⊥), r).
is concludes the base case.

Inductive Step Suppose that for some x and all r, f ′(x, r) = g(f(x), r). Now, we
must show that f ′(d′(x), r) = g(f(d′(x)), r). Consider:

f ′(d′(x), r) = f ′(d(d′(x)), g(r, d′(x))), by the deĕnition of f ′.
= f ′(x, g(r, d′(x))), by invertibility of d.
= g(f(x), g(r, d′(x))), by the induction hypothesis.
= g(f(x), g(d′(x), r)), by commutativity of g.
= g(g(f(x), d′(x)), r), by associativity of g.
= g(f(d′(x)), r), by the deĕnition of f .

APPENDIX B. ALGORITHMS AND CORRECTNESS 94

As required, this shows that f ′(d′(x), r) = g(f(d′(x)), r) as long as we can as-
sume that f ′(x, r) = g(f(x), r). So, this concludes the inductive step.

Proof of Lemma B.1.3, contd.
Let the predicate P (n) be true if and only if f(n) = f ′′(n). en, we need to show that
P (⊥) ∧ (P (x) → P (d′(x))) is true. However, Lemma B.1.4 proves that f ′(x, r) =
g(f(x), r). So, to prove Lemma B.1.3, we only need to show that f(x) = f ′(x, a(⊥)):

f ′′(x) = f ′(x, a(⊥)), by the deĕnition of f ′′.
= g(f(x), a(⊥)), by Lemma B.1.4.
= f(x), by the initial assumption that g(x, a(⊥)) = x.

Observe that f ′ is tail-recursive. us, by showing that f is equivalent to f ′′, through
the use of the auxiliary function f ′, we show that there exists a tail-recursive function
which is equivalent to the original function, f . is concludes the proof. □

B.1.3 Multivariate Functions

Lemma B.1.5 e transformation techniques that were presented in §B.1.1 and §B.1.2 ex-
tend trivially to multivariate functions and, hence, can turn instances of augmenting recur-
sion in multivariate functions into tail-recursion.

Proof Observe that, by ĕxing xk, 1 ≤ k < n, in all applications of f(n), we can easily
construct f , such that:

f(1)(xn) = f(n)(x1, . . . , x(n−1), xn), (B.11)

for all xn. is correlates to introducing constants into f(1). e previously presented
transformation techniques require that g and a are extended in a similar manner, to take
the additional arguments, x1, . . . , x(n−1). Note that the extension of g does not affect
the associativity and commutativity of the function as long as all xi, 1 ≤ i ≤ (n − 1),
are constant – see deĕnitions of associative and commutative functions in §B.1.2. □

We have shown that both univariate and multivariate functions which implement aug-
menting recursion, with exactly one base case and one recursive case, can be converted
into equivalent tail-recursive functions. is concludes the proof of eorem B.1.1. □

B.1.4 Structural Recursion

Lemma B.1.6 Structural recursion over one-dimensional data structures, e.g., the traversal
over homogeneous lists, is an instance of augmenting recursion, and can be converted into an
equivalent tail-recursive form, given that the identiĕed function, g, is associative.

Proof Structural recursion can be regarded as an element-wise traversal over data struc-
tures. Consequently, in cases where we are dealing with one-dimensional data, struc-
tural recursion is an instance of augmenting recursion where we iteratively perform
some action on the ĕrst element of the structure, the head, together with the result that
is acquired from processing the remainder of the structure, the tail:

f(x) =

{
a([]), if x = [],

g(x, f([l2, . . . , ln])), if x = [l1, l2, . . . , ln].
(B.12)

APPENDIX B. ALGORITHMS AND CORRECTNESS 95

e empty list is clearly identiĕed as the base case,⊥ = [], and d is deĕned to return the
tail of the provided list, i.e., d([l1, l2, . . . , ln]) = [l2, . . . , ln]. is allows us to rewrite
the second case of the function, f , in (B.12) into g(x, f(d(x))).

Now, let g(x, r) be a function of the form λx. (h(x) • r), where • is associative and
h returns the ĕrst element of the supplied list, x. Note that the deĕnition of g makes the
function associative, but not necessarily commutative.

Since g is not guaranteed to be commutative, we need to take a slightly different
approach to the one that was presented in §B.1.2. More speciĕcally, we need to introduce
a few minor changes to f ′ and f ′′. As before, introduce an auxiliary parameter, r, and
deĕne a new multivariate function f ′ as follows:

f ′(x, r) =

{
g(r, a(⊥)), if x = ⊥,

f ′ (d(x), g(r, x)) , otherwise.
(B.13)

Also, rewrite the original function, f , into a function, f ′′, of the form:

f ′′(x) =

{
a(⊥), if x = ⊥,

f ′ (d(x), x) , otherwise.
(B.14)

We will not give a complete proof of this transformation, but, by using the associativity
of g, it can be shown that f and f ′′ are equivalent. As before, this essentially boils down
to showing that the resulting call chains for the two functions are equivalent:

f(x) = g(x, g(d(1)(x), g(d(2)(x), g(. . . , g(d(x−1)(x), a(⊥)) . . .)))) (B.15)
= g(g(g(. . . g(g(x, d(1)(x)), d(2)(x)), . . .), d(x−1)(x)), a(⊥)) (B.16)
= f ′′(x), (B.17)

where d(k) indicates k repeated applications of d. Notice the equivalence between (B.15)
and (B.16), which is a direct result of the fact that g(a, g(b, c)) = g(g(a, b), c). □

B.1.5 Mutual Recursion and Multi-Statement Bodies

Definition A function, h is said to have multiple body statements, or a multi-statement
body, if and only if h is of the form:

h(x) = { t1 ← s1; t2 ← s2; . . . ; tk ← sk; }, (B.18)

where ti can appear in one or more sj , i < j ≤ k.

Definition Two mutually recursive functions, e and f , are called well-behaved if and
only if they are of the form:

e(x) = f(d(x)) (B.19)

f(x) =

{
a(⊥), if x = ⊥,

g(x, e(x)), otherwise.
(B.20)

Lemma B.1.7 e transformation of augmenting recursion into tail recursion extends nat-
urally to well-behaved mutually recursive functions and functions with multiple body state-
ments.

APPENDIX B. ALGORITHMS AND CORRECTNESS 96

Proof Observe that functions, h, with multiple body statements can be written as:

h(x) = h′(s1, (λt1. s2), (λt1λt2. s3), . . . , (λt1λt2 . . . λt(k−1). sk)), (B.21)

with the function, h′, deĕned as follows:

h′(u1, u2, . . . , uk) = uk(u1, u2(u1), u3(u1, u2(u1)), . . . , u(k−1)(. . .)). (B.22)

is abstract transformation yields well-behaved mutually recursive functions. us,
for the concepts that have been presented previously to apply to functions with mul-
tiple body statements, the concepts must also extend to well-behavedmutually recursive
functions. It is routine to show that this is indeed the case, and to verify that the concepts
extend to well-behaved mutual recursion. □

APPENDIX C
Language Models

Contents
C.1 Type Model . 97
C.2 Performance Model . 100

C.1 Type Model

is section deĕnes the type model that is used in the type inference phase of the com-
pilation process in F. e type inference system tries to derive a solution satisfying
these criteria. If the type rules cannot be satisĕed, the compilation will fail since there,
by deĕnition, exist no valid type assignments for the input program.

e language is built up from the following base types:

B ::= Z | R | Z∗ | R∗ (C.1)

e set of types that are available to the programmer is recursively deĕned as follows:

T ::= 1 | B | T −→ T ′ (C.2)

e following bullet points deĕne the typing rules for the F language:

• Function Group
Each function group is a collection of n function clauses, λi, for 1 ≤ i ≤ n, such
that the following type assignment is satisĕed:

λ1 : T . . . λn : T

λ = {λ1, . . . , λn} : T
(C.3)

In other words, all the function clauses of the function group are expected to be
of the same type, T .

97

APPENDIX C. LANGUAGE MODELS 98

• Function
For a functionwithmparameters,x1, . . . , xm, andn body statements, t1, . . . , tn,
the following type rule must be satisĕed:

x1 : T1 . . . xm : Tm t1 : T ′
1 . . . tn : T ′

n

λx1 . . . λxm. (t1, . . . , tn) : T1 × · · · × Tm −→ T ′
n

, (C.4)

where T1 × · · · × Tm is an alternative notation for:

T1 −→ T2 −→ · · · −→ Tm.

e latter is the normal form in λ-calculus, where each function has a single para-
meter, and a set of λ-functions is needed to represent a function with multiple
parameters.

• Scalars
All numbers are either of type integer, Z, or real, R. e initial type of the number
is determined from whether it is written in a decimal or an exponential form, or
as an integer.

• Vectors
Vectors are homogeneous, meaning that all the elementsmust be of the same type.
erefore, the following type rule must be satisĕed:

t1 : T . . . tn : T

[t1, . . . , tn] : T ∗ where T is either Z or R. (C.5)

• Operations
e following rules describe the type assignment of operands in arithmetic and
logical operations.

– Addition, Subtraction and Multiplication
ese arithmetic operations simply use the most dominant type, T , of ti,
1 ≤ i ≤ n . During compilation, some ti might be of different types, but
aer the type deduction stage, the least dominantly typed terms will obtain
the type of the term whose type has the highest rank.

t1 : T . . . tn : T

t1 • · · · • tn : T
where • is +,− or×, and T is Z or R. (C.6)

– Unary Operations
Unary operations, such as arithmetic and logical negation, do not affect the
type assignment of the operand.

– Division
ere are two kinds of division available in F, namely integer division and
real division. e latter is always of type real, regardless of the types of t1
and t2. Observe that if a symbol of type integer is used in a real division, the
type of the symbol will be converted into real.

t1 : R t2 : R
t1 ÷ t2 : R

t1 : Z t2 : Z
⌊t1 ÷ t2⌋ : Z

(C.7)

APPENDIX C. LANGUAGE MODELS 99

– Modulus
e modulus operator computes the remainder of an integer division.

t1 : Z t2 : Z
t1 rem t2 : Z

(C.8)

– Boolean Arithmetic
All boolean operations, such as numerical comparisons, and logical con-
junctions, disjunctions and negations, return values of type integer. e
logical operators expect operands of integral types. However, the operand
types are not affected for numerical comparisons.

• Function Application
Assuming that the function f is deĕned and that we have terms t1, . . . , tk of cor-
responding types, the following type rule holds:

f : T1 × · · · × Tk −→ T t1 : T1 . . . tk : Tk

f(t1, . . . , tk) : T
(C.9)

• List Prefixation and List Composition
e preĕxation of elements to a list yields a list of the same type as the original.
Note, however, that we expect consistency between the types of t1 and t2. List
composition expects consistency between the types of all ti, for 1 ≤ i ≤ n.

t1 : T t2 : T ∗

[t1 | t2] : T ∗
t1 : T . . . tn : T

[t1, . . . , tn] : T ∗ (C.10)

• Pattern Matching
When we perform pattern matching on lists, we expect the matched head and tail
entities to have consistent types. at is to say that the head and the tail always
obtain types corresponding to the input list.

[t1 | t2] : T ∗

t1 : T t2 : T ∗ (C.11)

Type prec(T) Description
Z 1 Integers
R 2 Reals
Z∗ 3 Lists of integers
R∗ 4 Lists of reals
F 5 Function literals

Table C.1: Type precedence, sorted from lowest to highest.

e function in (C.12) describes the Type.dominion-function that is implemented in
the Type-class in “semantics/types.py.”

dom(T1, T2) =

{
T1 if prec(T1) ≥ prec(T2),

T2 otherwise.
(C.12)

e dom-function extends trivially to more than two parameters. dom∗ recursively ĕnds
the most dominant type from a list of types. Note that we assume that n is strictly≥ 2.

dom∗(T1, . . . , Tn) =

{
dom(T1, T2) if n = 2,

dom(T1, dom∗(T2, . . . , Tn)) otherwise.
(C.13)

APPENDIX C. LANGUAGE MODELS 100

C.2 Performance Model

is section deĕnes the performance model that is used by F to determine whether
a loop should be parallelised or not. e implementation of the model can be found in
“analysis/complexity.py.” F applies a heuristic function, based on this perform-
ance model, to all the loops of the input program to estimate the workload of the cor-
responding loop bodies. e heuristic function traverses all the branches of the syntax
tree that are associated with the considered loop bodies, and returns a measure of the
computational cost of each loop. e resulting measures are used at run-time, together
with the size of each loop’s input data, to determine whether a candidate should be run
in parallel or not.

Note that the model that is described in this section assumes that the intermediate
code representation is in a format similar to three-address code.

Arithmetic Operations

e cost of arithmetic operations is based on the product of a constant and the number
of operands:

PJ x1 • · · · • xn K = n− 1 where • is + or -. (C.14)
PJ x1 • · · · • xn K = 2(n− 1) where • is *, \ or %. (C.15)

PJ x1 / x2 K = 3 (C.16)

Boolean operations and comparisons have cost n− 1, for n operands. List preĕxations
are more costly and have cost 4(n− 1). However, since the number of operands for the
preĕxation operation is bound to two, the cost is constant.

Note that the operands in the operations that are described above are bound to be
either numbers or variables. e costs that are normally associated with memory ac-
cesses are different from the ones that are associated with the use of immediate values.
However, F does not discriminate between the two. Since F deals with high-level
constructs and since the back-end produces C code, the compiler cannot know for sure
whether a memory access is indeed a memory access or if the underlying C compiler
converts the memory access into a register access.

List Composition

e cost of list composition is deĕned to be two times the size of the list. So for a com-
position of n elements, the associated cost would be 2n.

Assignments

e computational cost of assignments are static, and only depends on the type of the
destination. Integer and real assignments are cheaper than list assignments, as shown
below:

PJ xd = term K = 2 + PJ term K where xd is of type Z∗ or R∗. (C.17)
PJ xd = term K = 1 + PJ term K where xd is of type Z, R or F . (C.18)

APPENDIX C. LANGUAGE MODELS 101

Function Applications

All the special-purpose functions that were listed in §A.3 on page 85 have a pre-deĕned
cost associated with them. Otherwise, if the call-target is unknown, a default penalty of
10 is imposed on the function call.

Function Cost
if 3
head 1
tail 8
len 1
empty 1
sin, cos, tan, asin, acos, atan, atan2, sinh, cosh,
tanh, pow, log, log10, log2, exp, sqrt

5

range(f, t, s) 1.5(t− f)/s
zeros(n) n

Table C.2: Computational cost of special-purpose functions.

In further work, effort should be put intomaking the compiler performmoremature
estimates for applications of unknown functions, e.g., by trying to deduce the call-target
at compile-time and estimating the cost of application accordingly.

For- and While-Loops

Loops are not available to the programmer, but they are used by the compiler in the
intermediate code representation to store the structure of instances of recursion that
have been converted into iteration. e cost of for-loops is modelled by:

PJ for (i = f; i != t; i += s) { body } K = (δ + PJ body K)× t− f

s
, (C.19)

where δ is a pre-deĕned iteration overhead. Similarly, the cost of while-loops is mod-
elled by:

PJ while (cond) { body } K = (PJ cond K + PJ body K)× 25. (C.20)

Unknown Iteration Counts

When statically estimating the computational cost of looping constructs, i.e., in cases
where the cost of the loop has to be determined at compile-time, we are likely to run into
situations where the iteration count is unknown. In these cases, we assume an iteration
count of 25 [KY04]. e iteration counts of internally represented while-loops, i.e.,
(C.20), are always unknown.

If the input arguments are unknown, meaning non-constant, a default penalty of 64 is imposed on the
function call.

For instance, since CUDA disallows nested parallelism, loops inside the body of a CUDA kernel cannot
be parallelised and must be regarded as sequential units which get run for every instance of the CUDA kernel.

APPENDIX D
Implementation

Contents
D.1 Usage Information . 102
D.2 Source Code Hierarchy . 102
D.3 Code Excerpts . 105

D.3.1 optimisation/general.py 105
D.3.2 optimisation/interproc.py 107
D.3.3 optimisation/recursion.py 109
D.3.4 semantics/tree.py . 110
D.3.5 semantics/types.py . 117

D.1 Usage Information

ecompiler can be run by issuing the fcc command from the compiler’s root directory,
assuming that the Python interpreter is set up properly, and that the path of the python3
executable is listed in the PATH environment variable. Similarly, to compile the generated
output with external build tools, the nvcc and gcc executables must reside in one of the
directories that are listed in the PATH variable.

A set of compilation options are available to the user, and these can be listed by is-
suing the fcc command without supplying any command line arguments. e available
options are described in detail in “options.py.”

D.2 Source Code Hierarchy

is appendix presents the source code hierarchy of the implemented prototype com-
piler. A brief description of what features can be found in each of the source ĕles is
provided in the table below. e implemented solution, together with an electronic
copy of this document, can be found on the enclosed CD.

102

APPENDIX D. IMPLEMENTATION 103

analysis/complexity.py Implementation of the performance
cost model that is used in the parallel-
isation stage of the compilation process.

analysis/dependence.py Implementation of the dependence
analyses and the various analytic tools
that are used in the identiĕcation
of induction variables and recursive
structures.

backend/__init__.py Implementation of the code generation
system, and the abstract classes that are
essential for emitting output code and
invoking external build tools.

backend/c/__init__.py Implementation of the code emitter for
sequential C99 code.

backend/c/lib.py Implementation of the system which
dynamically generates library functions
for C99 output code.

backend/c/make.py Implementation of the component
which is responsible for invoking the
external GCC build system, and for
processing the results.

backend/c/static.py Listing of the strings that are used in the
generation of C99 library code.

backend/cuda/__init__.py Implementation of the code emitter for
parallel CUDA C/C++ code.

backend/cuda/lib.py Implementation of the system which
dynamically generates library functions
for CUDA C/C++ output code.

backend/cuda/make.py Implementation of the component
which is responsible for invoking the
external CUDA compiler, and for
processing the results.

backend/cuda/static.py Listing of the strings that are used in the
generation of CUDA library code.

optimisation/general.py Implementation of the commonly ap-
plied compiler transformations.

APPENDIX D. IMPLEMENTATION 104

optimisation/interproc.py Implementation of the functionality
that is used in the interprocedural op-
timisations, e.g., function inlining.

optimisation/recursion.py Implementation of the functionality
that is used in transforming recursion
into iteration.

compiler.py Implementation of the component that
links all the compilation stages to-
gether, and which deals with error
handling, etc.

fcc e program entry-point and imple-
mentation of functionality for pro-
cessing command-line arguments.

options.py Encapsulation of all the user options
that are related to the compilation and
parallelisation processes.

parser/lex.py Implementation of the lexical analyser.

parser/yacc.py Implementation of the syntactic ana-
lyser.

semantics/feedback.py Implementation of the functionality
that is used to keep track of source code
locations and to print error and warn-
ing messages.

semantics/ssa.py Implementation of the functionality
that is used to convert the abstract syn-
tax tree into three-address code, and
back again.

semantics/tree.py Representation of the abstract syntax
tree, and the symbol table that is used
by the front-end and the middle-end.

semantics/types.py Representation of the types that are
supported by the F language.

tools/dot.py Tool for translating the abstract syntax
tree into a Graphviz graph.

unittests.py Unit tests for the implemented solution.

Static single assignment form (SSA) is a reĕnement of three-address code.
http://www.graphviz.org/

APPENDIX D. IMPLEMENTATION 105

D.3 Code Excerpts

e following subsections contain code listings for a selection of the classes and func-
tions that can be found in the implementation of the F prototype compiler. e code
excerpts are sorted by the names of the source ĕles in which they exist. Omitted code
sections are denoted by gray, shaded rectangles.

D.3.1 optimisation/general.py

import optimisation.interproc as interproc
from options import Options
from semantics.ssa import is_temporary, temporary
from semantics.tree import *

class Optimiser:
'''Implements a set of optimisation techniques applicable to
abstract syntax trees in static single-assignment form.'''

input_has_changed = False

def __init__(self, techniques = None):
'''Instantiates a new Optimiser object. The 'techniques'
parameter can be used to specify what techniques to apply to
the input. If 'techniques' is equal to None, the set of
techniques is determined from the options provided by the
Options class.'''
self.has_changed = False
self.techniques = []
self.searched = []
if not Options.use_ssa:

return # only accept input in ssa form
self.techniques = techniques

def traverse(self, node, callback, reset_callback=None):
'''Traverses all statements of the abstract syntax tree and
invokes the callback function on each occurrence.'''
if node == None:

return
elif node.match(Combinator):

for statement in node.data.list:
if statement != None:

self.traverse(statement, callback, reset_callback)
callback(statement)

elif node.match(Function):
set local environment
Symbol.cache = node.data.symbol.data.symbol().environment

APPENDIX D. IMPLEMENTATION 106

self.traverse(node.data.condition, callback, reset_callback)
if node.data.condition != None:

callback(node.data.condition)
self.traverse(node.data.body, callback, reset_callback)
callback(node.data.body)
reset local environment
Symbol.cache = {}
callback(node)

elif node.match(Operation):
for operand in node.data.operands:

self.traverse(operand, callback, reset_callback)
callback(operand)

elif node.match(List):
for element in node.data.list:

self.traverse(element, callback, reset_callback)
callback(element)

elif node.match(Assignment):
self.traverse(node.data.rhs, callback, reset_callback)
callback(node.data.rhs)

elif node.match(FunctionApplication):
self.traverse(node.data.function, callback, reset_callback)
callback(node.data.function)
for argument in node.data.arguments:

self.traverse(argument, callback, reset_callback)
callback(argument)

.

.

.

.

.

.

.

.

.

def common_subexpression_elimination(self):
'''Performs common subexpression elimination during the
optimisation stage, e.g.,
t1 = X - 1, t2 = X - 1 -> t1 = X - 1, t2 = t1.'''
collected_terms = {}
def process(node):

if node.match(Assignment) and not node.is_untouchable:
ignore untouchable symbols
if node.data.lhs.match(SymbolReference):

sym = node.data.lhs.data.symbol()
if sym != None and sym.is_untouchable:

return
if node.data.rhs in collected_terms.values():

reuse of subexpression ->
reference old assignment
sym = find_key(collected_terms, node.data.rhs)
sym = Node(SymbolReference(sym))
node.substitute(Node(Assignment(node.data.lhs, sym)))
self.has_changed = True

APPENDIX D. IMPLEMENTATION 107

else:
does not exist -> keep a record of subexpressions
collected_terms[node.data.lhs.data.name] = \

node.data.rhs
def reset(node):

nonlocal collected_terms
collected_terms = {} # forget state before proceeding; after

having processed a loop body
self.traverse(self.root, process, reset)

.

.

.

.

.

.

.

.

.

D.3.2 optimisation/interproc.py

from semantics.tree import *
from semantics.ssa import temporary
from analysis.dependence import symbol_references

.

.

.

.

.

.

.

.

.

def inline_functions(functions):
'''Performs procedure inlining for small leaf functions. This can
help the compiler to identify the nature of operations on induction
variables in recursive functions. E.g., consider the function
dec(N): N - 1, and the recursive function: f(N): N * f(dec(N)).'''
global active_function_group
active_function_group = functions
candidates, has_changed = {}, False

collect candidates for function inlining, i.e., all trivial
leaf functions
all_patterns = []
for k in functions:

if is_trivial_leaf_function(functions[k]):
symbol = functions[k][0].data.signature()
if not symbol.is_untouchable:

candidates[symbol] = functions[k][0]
patterns = trivial_signatures(functions[k])
for pattern in patterns:

all_patterns.append(pattern)

substitute all applications of candidate functions
for k in functions:

for function in functions[k]:

APPENDIX D. IMPLEMENTATION 108

Symbol.cache = function.data.signature().environment
collect all relevant applications in given function body
function_applications = collect(

lambda n:
n.__class__ == FunctionApplication and
not n.function.data.symbol().is_untouchable and (
n.function.data.symbol() in candidates or
n.function.data.symbol() in

[c.data.signature() for c in all_patterns]),
function.data.body)

for application in function_applications:
inline function
if application.function.data.symbol() in candidates:

candidate = candidates[application.function.data.symbol()]
else:

match against all available patterns
candidate = None
for c in [c for c in all_patterns

if c.data.signature() ==
application.function.data.symbol()]:

matching = True
for i in range(len(application.arguments)):

arg = application.arguments[i]
param = c.data.parameters[i]
if arg.match(SymbolReference) or \

param.match(SymbolReference):
matching = False
break

if arg != param:
matching = False
break

if matching:
candidate = c
break

if candidate == None:
continue

substitution = copy(candidate)
syms = [] # keep track of argument symbols that have been

substituted in to the inlined code block
for i in range(len(application.arguments)):

if application.arguments[i].match(SymbolReference):
syms.append(application.arguments[i].data.symbol())

new_syms = []
replace locally used symbols to avoid duplication if
multiple instances of the same function are inlined in
the same code block
collected_syms = {}
for sym in set(collect(lambda n:

n.__class__ == Node and n.match(SymbolReference),
substitution)):

APPENDIX D. IMPLEMENTATION 109

if sym.data.name[0].isupper() and \
sym not in collected_syms:

new_sym = temporary()
new_sym.typify(sym.type())
collected_syms[sym] = new_sym

for sym in collected_syms:
new_sym = collected_syms[sym]
substitution = replace(substitution, sym, new_sym)
new_syms.append(new_sym.data.symbol())

substitute in the passed arguments for the parameters
for i in range(len(application.arguments)):

if candidate.data.parameters[i].match(SymbolReference):
psym = candidate.data.parameters[i]
if psym in collected_syms:

psym = collected_syms[psym]
asgn = Node(Assignment(psym,

application.arguments[i]))
substitution.data.body.data.list.insert(0, asgn)

substitution = substitution.data.body
perform the substitution
if len(substitution) == 1:

application.substitute(substitution[0])
else:

application.substitute(substitution)
has_changed = True
collect new symbols and add to environment
for sym in set(collect(

lambda n: n.__class__ == SymbolReference,
substitution)):

if sym.name not in function.data.signature().environment \
and sym.name.find('') == -1:

function.data.signature().environment[sym.name] = \
sym.symbol()

add all new temporaries to the environment
for sym in set(new_syms):

function.data.signature().environment[sym.name] = sym
break # only do one at the time (allow for parent node to

update before proceeding)
return (functions, has_changed)

.

.

.

.

.

.

.

.

.

D.3.3 optimisation/recursion.py

from semantics.tree import *
from semantics.ssa import temporary
from analysis.dependence import *

APPENDIX D. IMPLEMENTATION 110

from optimisation.general import Optimiser

def find_induction_variable(function):
'''Deduces the induction variable in a function group. Returns
'None' if none is found.'''
p = function[-1].data.parameters
results = []
for i in range(len(p)):

if p[i].match(SymbolReference) or p[i].match(Operation):
for j in range(len(function)-1):

if function[j].data.parameters[i].match(Number):
if (p[i], i) not in results:

results.append((p[i], i, None))
elif function[j].data.parameters[i].match(List):

if (p[i][1], i) not in results:
results.append((p[i][1], i, p[i][0]))

if len(results) == 1:
return results[0] # we can only deal with cases where we

have a single induction variable
else:

return (None, -1, None)

.

.

.

.

.

.

.

.

.

D.3.4 semantics/tree.py

class Node:
'''Object for holding instances of subclasses of DataNode. This
simplifies substitution and manipulation of nodes in the abstract
syntax tree during the generation and optimisation stages of the
compilation.'''

has_changed = False
'''Used to indicate changes to the inferred type system.'''

@staticmethod
def amend(old_type, new_type):

'''Flags the type system as changed if the two specified
types differ. The 'Node.has_changed' flag is used to determine
whether we have reached a stable typing state for the input
program or not.'''
if old_type != new_type: Node.has_changed = True

@staticmethod
def compare(a, b, selector):

'''Compares two objects based on the result of the selector
function.'''

APPENDIX D. IMPLEMENTATION 111

if a.__class__ == b.__class__:
o1, o2 = selector(a), selector(b)
if o1.__class__ == o2.__class__:

if o1 < o2: return -1
elif o1 == o2: return 0
else: return +1

objects of different classes cannot be equal
return -1

def __init__(self, data):
'''Initialises a new Node object. Nodes work as slots for
subclasses of the DataNode class. This allows us to easily
substitute nodes in the optimisation stage of the compilation
process without keeping track of parent nodes.'''
self.data = copy(data)
self.data.parent = self
self.is_untouchable = False
if hasattr(self.data, '__iter__'):

for element in self.data:
element.parent = self.data

self.parent = None
self.update()

def __lt__(self, other):
'''self < other <=> self.__lt__(other)'''
return Node.compare(self, other, lambda o: o.data) < 0

def __eq__(self, other):
'''self == other <=> self.__eq__(other)'''
return Node.compare(self, other, lambda o: o.data) == 0

def __repr__(self):
'''Returns a string representation of the Node object.'''
return repr(self.data)

def __iter__(self):
'''Returns an iterator for the Node object. Used to iterate
over statement lists, list objects, etc.'''
if self.data != None and len(self.data) > 0:

for element in self.data: yield element

def __hash__(self):
'''Obtains a hash key for the current object.'''
return hash(self.__repr__())

.

.

.

.

.

.

.

.

.

APPENDIX D. IMPLEMENTATION 112

def type(self):
'''Deduces the type of the Node object.'''
return self.data.type()

def typify(self, type):
'''Puts new constraints on the type of the Node object.'''
self.data.typify(type)

def substitute(self, new):
'''Substitutes the data associated with this node with the data
associated with another node. The substitution is a matter of
redirecting the 'data' slot to a new object.'''
new_data = copy(new.data)
self.data = new_data
self.data.parent = self
self.update()
return self

def __getitem__(self, index):
'''x.__getitem__(y) <==> x[y]'''
return self.data.__getitem__(index)

def __setitem__(self, index, value):
'''x.__setitem__(i, y) <==> x[i]=y'''
return self.data.__setitem__(index, value)

def __len__(self):
'''x.__len__() <==> len(x)'''
return len(self.data)

def update(self):
'''Calls the 'update' slot of the DataNode. Used to simplify/
optimise branches based on their structure.'''
if hasattr(self.data, 'update'):

self.data.update()
if self.parent and hasattr(self.parent, 'update'):

self.parent.update()

def match(self, cls):
'''Shorthand method to check the class of the associated
DataNode object.'''
return self.data.__class__ == cls

def error(self, format, *args):
'''Prints an error message based on the source code location
associated with the node.'''
self.data.error(format, *args)

def warning(self, level, format, *args):
'''Prints a warning message based on the source code location

APPENDIX D. IMPLEMENTATION 113

associated with the node.'''
self.data.warning(level, format, *args)

.

.

.

.

.

.

.

.

.

class NodeList:
'''An extension of the 'list' class to allow for tracking of the
parent list for all elements of the list. This is mainly used in
the process of simplifying instances of the Operation and Combinator
classes where changes to the list itself might be desirable after a
simplification or modification to one of its elements..'''

def __init__(self, parent, *elements):
'''Instantiates a new NodeList object from 'elements'. 'parent'
refers to the owner node.'''
self.parent = parent
if len(elements) == 1 and type(elements) is tuple:

elements = elements[0]
self.elements = []
for element in elements:

new_element = copy(element)
new_element.parent = self.parent
self.elements.append(new_element)

def __lt__(self, other):
'''self < other <=> self.__lt__(other)'''
return Node.compare(self, other, lambda o: o.elements) < 0

def __eq__(self, other):
'''self == other <=> self.__eq__(other)'''
return Node.compare(self, other, lambda o: o.elements) == 0

def __getitem__(self, index):
'''x.__getitem__(y) <==> x[y]'''
return self.elements[index]

def __getslice__(self, i, j):
'''x.__getslice__(i, j) <==> x[i:j]'''
return self.elements[i:j]

def __len__(self):
'''x.__len__() <==> len(x)'''
return len(self.elements)

def __repr__(self):
'''Returns a string representation of the list.'''
return '␣'.join([str(e) for e in self.elements])

APPENDIX D. IMPLEMENTATION 114

def __iter__(self):
'''Returns an iterator for the list.'''
for element in self.elements:

yield element

def sort(self):
'''Performs an inline sort on the elements in the list.'''
self.elements.sort()

def append(self, element):
'''Appends 'element' to the end of the list.'''
new_element = copy(element)
new_element.parent = self.parent
self.elements.append(new_element)

def insert(self, index, element):
'''Inserts 'element' into the list before the element at
'index'.'''
new_element = copy(element)
new_element.parent = self.parent
self.elements.insert(index, new_element)

def remove(self, element):
'''Removes 'element' from the list.'''
self.elements.remove(element)

.

.

.

.

.

.

.

.

.

class DataNode:
'''Allows for the creation of data objects which are used to store
all the unique node information (i.e., non-shared attributes) in the
abstract syntax tree. The 'data' slot in the Node class can hold any
object which derives from of DataNode.'''

def __init__(self):
'''Instantiates a new DataNode - all derived subclasses should
invoke this constructor.'''
self.parent = None
self.location = Location()
self.cached_type = Type.Int

def update_type(self, type):
'''Used to check whether a newly derived type implies changes
to the deduced type system. If so, the type system gets flagged
as changed and the cached type for this particular DataNode
instance gets updated.'''

APPENDIX D. IMPLEMENTATION 115

Node.amend(self.cached_type, type)
self.cached_type = type
return self.cached_type

def type(self):
'''Deduces the type of this particular DataNode instance. This
method should be overridden by all classes deriving from
DataNode.'''
return Type.Void

def __lt__(self, other):
'''self < other <=> self.__lt__(other)'''
return -1

def __getitem__(self, index):
'''Used as a means to exploit indexed elements of a node if the
node is of an n-ary nature or if it employs a list structure.
This method should be overridden by subclasses that need to
implement this feature, e.g., Combinator and Operation.'''
return self

def __len__(self):
'''Returns the number of elements available. This is closely
related to '__getitem__'. If the node is not indexable, simply
return zero.'''
return 0

def typify(self, type):
'''Puts new constraints on the deduced type of the DataNode
object.'''
pass

def substitute(self, new):
'''Substitutes the data associated with this node with the
data associated with another node. The substitution is a matter
of redirecting the 'data' slot in this object's parent to a
new object.'''
self.parent.substitute(new)

def __str__(self):
'''Returns a string representation of the DataNode object.'''
return self.__repr__()

def error(self, format, *args):
'''Prints an error message based on the source code location
associated with the node.'''
self.location.error(format, *args)

def warning(self, level, format, *args):
'''Prints a warning message based on the source code location

APPENDIX D. IMPLEMENTATION 116

associated with the node.'''
self.location.warning(level, format, *args)

.

.

.

.

.

.

.

.

.

class Number(DataNode):
'''Leaf node holding an immediate value, either of type integer
or real.'''

def __init__(self, value):
'''Instantiates a new Number node - should be instantiated
using Node(Number(#)).'''
DataNode.__init__(self)
self.value = value
self.cached_type = Type.Int

def type(self):
'''Deduces the type of this particular DataNode instance.'''
if type(self.value) is int:

return self.update_type(Type.Int)
else:

return self.update_type(Type.Real)

def typify(self, type):
'''Puts new constraints on the deduced type of the DataNode
object.'''
if type == Type.Real:

self.value = float(self.value)
else:

self.value = int(self.value)

def __lt__(self, other):
'''self < other <=> self.__lt__(other)'''
return Node.compare(self, other, lambda o: o.value) < 0

def __eq__(self, other):
'''self == other <=> self.__eq__(other)'''
return Node.compare(self, other, lambda o: o.value) == 0

def __repr__(self):
'''Returns a string representation of the Number object.'''
return str(self.value)

def __add__(self, other):
'''x.__add__(y) <=> x + y'''
return Number(self.value + other.value)

APPENDIX D. IMPLEMENTATION 117

def __sub__(self, other):
'''x.__sub__(y) <=> x - y'''
return Number(self.value - other.value)

def __mul__(self, other):
'''x.__mul__(y) <=> x * y'''
return Number(self.value * other.value)

def __div__(self, other):
'''x.__div__(y) <=> x / y (floating-point number division)'''
return Number(float(self.value) / float(other.value))

def __or__(self, other):
'''x.__or__(y) <=> x | y (integer division)'''
return Number(int(self.value) / int(other.value))

def __mod__(self, other):
'''x.__mod__(y) <=> x % y (modulo)'''
return Number(int(self.value) % int(other.value))

def __invert__(self):
'''x.__invert__() <=> ~x (logical negation)'''
return Number(int(self.value == 0))

.

.

.

.

.

.

.

.

.

D.3.5 semantics/types.py

from options import Options

class Type:
'''Representation of a type in the FCC language.'''

.

.

.

.

.

.

.

.

.

Type.Void = Type(priority=0, name='O')
Type.Int = Type(priority=1, name='Z')
Type.Real = Type(priority=2, name='R', is_real=True)
Type.IntList = Type(priority=3, name='Z*', is_list=True)
Type.RealList = Type(priority=4, name='R*', is_list=True, is_real=True)
Type.VoidFunc = Type(priority=5, parameters=(Type.Void,),

result=Type.Void)

