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Abstract 

 Hydrolysis of biologically inactive steroid sulfates to unconjugated steroids by steroid sulfatase 

(STS) is strongly implicated in rendering estrogenic stimulation to hormone-dependent cancers such 

as those of the breast. Considerable progress has been made in the past two decades with regard to 

the discovery, design and development of STS inhibitors. We outline historical aspects of their 

development, cumulating in the discovery of the first clinical trial candidate STX64 (BN83495) and 

other sulfamate-based inhibitors. The development of reversible STS inhibitors and the design of 

dual inhibitors of both aromatase and STS is also discussed.
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Introduction 

 Since the 1970s, postmenopausal women with hormone-dependent breast cancer (HDBC) 

receiving adjuvant endocrine therapy have been given tamoxifen. This agent works as an anti-

estrogen, or more precisely a SERM (selective estrogen receptor modulator), by principally 

antagonising the binding of estrogens to the estrogen receptor (ER) in the breast. Over three decades 

ago, another class of anti-endocrine agent was developed whose mechanism of action is to diminish 

the availability of estrogens to tumors through inhibiting the conversion of androstenedione to 

estrone by the aromatase enzyme in the final step of estrogen biosynthesis. Extensive research led to 

the successful development of three third-generation aromatase inhibitors (AIs) the non-steroidal 

letrozole and anastrozole, which inhibit aromatase selectively and reversibly, and the steroidal 

exemestane which is an irreversible inhibitor. All three AIs are well tolerated and widely used in the 

clinic for treating advanced breast cancer. Recently, several randomized comparative clinical trials 

have demonstrated the advantages of using anastrozole, letrozole, and exemestane over tamoxifen as 

first-line agents in the treatment of patients with primary tumors (Mouridsen et al., 2001; Bonneterre 

et al., 2001; Paridaens et al., 2003; Mouridsen et al., 2003; Milla-Santos et al., 2003; Nabholtz et al., 

2003a; Nabholtz et al., 2003b). These findings, therefore, widen not only the indications for these 

three AIs, but also the population of patients who may benefit from receiving these agents. 

 While it has been demonstrated that the use of AIs is an effective strategy for reducing estrogenic 

stimulation to hormone responsive tumors, the overall response rates and clinical benefit rates were 

found to vary from 21 to 33% and 49 to 59% respectively in randomized first-line studies of third 

generation AIs in metastatic disease (Smith and Dowsett, 2003). These clinical findings have 

suggested that a substantial population of ER-positive tumors are not responding to aromatase 

inhibition.  

 It became evident more than two decades ago that the steroid sulfatase (STS) pathway could also 

be an important source of estrogens.
 
Evidence to support this hypothesis includes (i) a million-fold 

higher STS activity than aromatase activity in liver and normal and malignant breast tissues (James 
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et al., 1987)
 
, (ii) the origin of E1 from E1S in breast cancer tissue is about 10 times more than that 

from androstenedione (Santner et al., 1984), and iii) STS expression is an important prognostic factor 

in human breast carcinoma (Utsumi et al., 1999; Suzuki et al., 2003). Most estrogens that originate 

from the aromatase pathway are converted to and stored in the body as sulfates. However, this 

reservoir of estrogen sulfates, though biologically inactive per se, could significantly contribute to 

the overall estrogenic stimulation of tumors when STS catalyzes the hydrolysis of substrates such as 

estrone sulfate (E1S) to estrone (E1), and dehydroepiandrosterone sulfate (DHEA-S) to DHEA. The 

formation of DHEA by such a route constitutes the production of 90% of androstenediol (Adiol) 

which is an estrogen (ca. 100-fold weaker than estradiol), despite structurally being classified as an 

androgen (Adams et al., 1981; Dauvois and Labrie, 1989; Naitoh et al., 1989; Chetrite et al., 2000). 

(For further discussion refer to Purohit et al. „Sulfatase as a pivotal player in estrogen synthesis and 

metabolism‟ in this issue). Thus, STS is an attractive and novel target for therapeutic intervention of 

hormone-dependent cancers such as that of the breast.  

 Considerable progress has been made in the past two decades with regard to the development of 

STS inhibitors. This article outlines historical aspects of this development, culminating in discovery 

of the first clinical trial candidate STX64 (BN83495) and other sulfamate-based inhibitors. 

Development of reversible STS inhibitors and the emergence of dual inhibitors of both aromatase 

and STS will also be discussed.
 

 

Estrone sulfate analogues and steroidal sulfamate-based inhibitors 

 With E1S being the natural substrate of STS, the most obvious target was to modify this steroid 

conjugate in the initial search for inhibitors, ideally by designing non-hydrolysable sulfate group 

surrogates. Early work, however, focused upon keeping the sulfate group intact, but replacing the 

estrone backbone with other templates that may interact with the active site of STS. This gave rise to 

several series of weak to modest inhibitors represented by 5-androstene-3,17-diol-3-sulfate (Evans 

et al., 1991), flavonoid daidzein 4-O-sulfate and daidzein 4,7-di-O-sulfate (Wong and Keung, 



 5 

1997), and 2-(hydroxyphenyl)indole sulfates (Birnböck and von Angerer, 1990). However, these 

agents would be of little value clinically because they are, in principle, alternative substrates for STS 

as their sulfate group(s) are expected to be hydrolysed by the enzyme. This potential metabolism of 

the inhibitor by STS will pose a particular problem especially when the compound released has 

undesirable endocrinological activities such as estrogencity.  

 Keeping to the modification of E1S, the alternative strategy we adopted is to retain the estrone 

backbone but to replace the sulfate group (OSO3
-
) of E1S with other sulfate surrogates or mimics 

such as phosphate (Anderson et al., 1995), phosphonates [-OP(=O)(OH)Me] and thiophosphonates [-

OP(=S)(OH)Me] (Purohit et al, 1994; Duncan et al., 1993; Howarth et al., 1993; Howarth et al., 

2002), sulfonates (-OSO2R) (Howarth et al., 1997, Li et al., 1995),
 
sodium methylenesulfonate (-

CH2SO3
-
Na

+
) (Li et al., 1995), sulfonyl halides (-SO2Cl and -SO2F) (Li et al., 1993), sulfonamide (-

SO2NH2) (Li et al., 1993; Dibbelt et al., 1994), and the methylsulfonyl group (-SO2CH3)
 
(Li et al., 

1993; Dibbelt et al., 1994) for example. Most of these E1 derivatives were designed not to be 

metabolically labile or hydrolysable by the enzyme like sulfated compounds in the course of 

competing with E1S for binding to the enzyme active site. Despite the large number of compounds 

that had been explored in this category, none of these compounds was deemed to be potent enough or 

adequately attractive pharmaceutically for further development as an inhibitor of STS.  
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Fig. 1 Examples of steroidal sulfamate-based STS inhibitors: EMATE and A-ring modified 

derivatives 1a – 1e. 

 

 The breakthrough in the design of potent STS inhibitors came when the sulfate group of E1S was 

replaced by a sulfamate moiety (-OSO2NH2). Estrone 3-O-sulfamate or EMATE (Fig. 1) was found 

to be a highly potent inhibitor with an IC50 of 18 nM in a human placental microsomes preparation. 

But more exceptionally, EMATE was found to inhibit STS in a time- and concentration-dependent 

manner, indicating that the mechanism of action is of an irreversible nature. Subsequent work has 

confirmed that the pharmacophore for potent and irreversible inhibition of STS is a phenol sulfamate 

ester or an aryl sulfamate, ie. Ar-OSO2NH2. It is important that the N-atom of the sulfamate group is 

unsubstituted, as several alkylated (Howarth et al., 1994; Woo et al., 1997) and acylated (Woo et al., 

1997) derivatives of EMATE were found to be weak inhibitors of STS. In one study, only N-

acetylEMATE (1a, Fig. 1) showed irreversible STS inhibition,
 
albeit less potently and efficiently 

than EMATE (Woo et al., 1997). The hydrolyzable S-O bond of the sulfamate group is also 

important for potent inhibition of STS since the S-sulfamoyl (-SSO2NH2) and sulfamido (-

NHSO2NH2) derivatives of EMATE were significantly weaker inhibitors (Woo et al., 1996a). It is 

thought that during irreversible inhibition the sulfamoyl group is transferred to a residue in the STS 

active site. 

 EMATE was found to be orally active in vivo. In one study (Purohit et al., 1995), administration 

of EMATE at 10mg/kg inhibited rat liver STS activity almost completely (99%) when given by the 

oral or subcutaneous route and the inhibition persisted (>95%) for up to 7 days after a single dosing 

of EMATE.  However, EMATE was unexpectedly shown to be more estrogenic than ethinylestradiol 

when administered orally in rats (Elger et al., 1995), although it was revealed subsequently that 

estrogen sulfamates per se did not bind to the estrogen receptor (Elger et al., 2001). A follow-up 

study demonstrated that STS has a crucial role in regulating the estrogenicity associated with 

EMATE as its estrogenicity is abolished when STS is inhibited by the co-administration of a non-
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estrogenic STS inhibitor (Chander et al., 2004). Nonetheless, this undesirable property of EMATE 

rendered the inhibitor unattractive for use as an anti-endocrine agent for HDBC, although its 

congener, estradiol 3-O-sulfamate, entered human clinical trials in the late 90s as an orally active 

pro-drug for estradiol. 

 The issue of estrogenicity with EMATE was a setback for an otherwise highly potent STS 

inhibitor. Much subsequent efforts were principally focused on designing EMATE analogues that are 

either devoid of, or have a significantly reduction in, estrogenicity but at the same time retain high 

potency against STS. The initial strategy adopted involved the introduction of substituents such as 

allyl, n-propyl, nitro, cyano, methoxy and halogens to the 2- and/or 4-position of the A-ring of 

EMATE. From this work, compounds possessing bulkier aliphatic groups were found to be weaker 

STS inhibitors, whereas electron-withdrawing substituents, namely halogens, showed higher potency 

than EMATE against STS in vitro (Purohit et al., 1998). One compound, 2-difluoromethylestrone 3-

O-sulfamate (1b, Fig. 1), was found to have an IC50 of 100 pM against STS in a placental 

microsomes preparation, which was some 90-fold lower than that of EMATE obtained from the same 

assay (Reed et al., 2004). 
 

 A series of steroidal oxathiazine STS inhibitors was developed of which estra-1,3,5(10)-trien-17-

one-[3,2,e]-1,2,3-oxathiazine-2,2-dioxide (1c, Fig. 1) was found to inhibit the STS activity in a 

MCF-7 cells preparation with an IC50 of 9 nM (Peters et al., 2003). However, it is not entirely clear 

whether the inhibitory activity observed is due to 1c itself or its synthetic precursor 2-formyl-

EMATE (1d, Fig. 1), which is a tentative product upon the hydrolysis of 1c in situ. When 1c was 

administered intra-peritoneally daily to nude mice bearing xenografts MCF-7 tumors, a significant 

reduction in the tumor size over a 5-week period was reported, although the inhibitor concentration 

used was not disclosed. With regard to estrogenicity, 1c was reported to show greatly reduced 

activity. 

 The most successful and significant A-ring modified analogue of EMATE is considered to be 2-

methoxyestrone 3-O-sulfamate (2-MeOEMATE, 1e, Fig. 1). 2-Methoxyestradiol (Panzem


), the 
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congener of 2-methoxyestrone, which is the parent steroid of 1e, is an anti-proliferative/anti-

angiogenic microtubule disruptor that has reached clinical trial (Tevaarwerk et al., 2009).
 
While the 

STS inhibitory activity of 1e in a placental microsomes preparation was found to be similar to 

EMATE (IC50 = 30 nM), it is in contrast non-estrogenic (Purohit et al., 1999). More interestingly, in 

addition to its STS inhibitory activity, 1e was found to induce apoptosis in several cancer cell lines 

and to inhibit tumor angiogenesis (Leese et al., 2005; MacCarthy-Morrogh et al., 2000, Newman et 

al., 2004, Chander et al., 2007), as well as possessing excellent bioavailability. Hence, 1e has 

potential applications for the treatment of both HDBC and also other forms of hormone-independent 

cancers. 

 Because of the relative inaccessibility to synthetic manipulations, the B- or C-ring of EMATE 

has generally not been specifically targeted for modification. In contrast, the D-ring of EMATE has 

been widely modified, not only for attenuating the estrogenicity of the parent compound but also for 

generating many different structural classes of inhibitors. 
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Fig. 2 Examples of D-ring modified steroidal and steroid-like sulfamate-based STS inhibitors. 

 

 When the carbonyl group of EMATE was removed upon reduction to a methylene group, the 

resulting derivative (2a, Fig. 2) was less estrogenic, but as potent as EMATE as an STS inhibitor 

(Purohit et al., 1999). Unexpectedly, when the carbonyl group of EMATE was replaced by an oxime, 

the resulting (E)-17-oximino derivative (2b, Fig. 2) inhibited STS to the same extent as EMATE in 

vitro (>99% inhibition at 0.1 μM in MCF-7 breast cancer cells) and in vivo but showed enhanced 

estrogenicity as 2b stimulated uterine growth in ovariectomized rats some 1.5 times stronger than 

EMATE (Hejaz et al., 1999).
 

 When hydrophobic substituents were introduced via a linker to the 17-position of EMATE, 

replacing its carbonyl group on the D-ring entirely, an increase in potency and a reduction in 

estrogenicity of the resulting derivatives was observed. Li et al. reported 17-(N-alkylcarbamoyl)- 

and 17-(N-alkanoyl)estradiol 3-O-sulfamates to be highly potent STS inhibitors with the n-heptyl 

derivatives from both series (2c and 2d, Fig. 2) showing optimal inhibitory activities (IC50 value in 

MDA-MB-231 cells = 0.4 nM) (Li et al., 1998). When the estrogenicity of these compounds was 

assessed using the estrogen-sensitive MCF-7 cell line that proliferates upon stimulation by estrogens, 

neither inhibitor exhibited estrogenic activity at a concentration of 1 μM, which was about 2000 

times higher than their IC50 values against STS. It is therefore evident that the introduction of 

hydrophobic side-chains to EMATE has a dual effect of increasing the binding of the resulting 

compounds to the enzyme active site and abolishing estrogenicity of the parent phenolic compound. 

 Li et al. further expanded and optimized the 17-(N-alkylcarbamoyl) derivatives of EMATE to 

give a series of ,-unsaturated amides of which 17-(N,N-diisopropylcarbamoyl)estra-1,3,5(10),16-

tetraene-3-O-sulfamate (KW-2581, 2e, Fig. 2) is the most widely reported and developed (Ishida et 

al., 2007a, 2007b, 2008). Structurally, this compound differs from a 17-(N-alkylcarbamoyl) 

derivative of EMATE by having a double bond between C16 and C17 of the D-ring. According to 

the synthetic route developed by Li et al. (Li et al., 1998), an 17-(N-alkylcarbamoyl)estra-
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1,3,5(10),16-tetraene-3-O-sulfamate is a precursor which upon hydrogenation of the double bond 

yields an 17-(N-alkylcarbamoyl)estrone 3-O-sulfamate. When tested in the hormone receptor-

positive human breast cancer cell line ZR-75-1, 2e inhibited STS activity with an IC50 of 13 nM 

(Ishida et al., 2007a). In another assay, 2e inhibited recombinant human STS activity with IC50s of 

2.9 nM and 4.2 when E1S and DHEA-S were used as substrate respectively. Like EMATE, the 

inhibition was found to be time- and concentration-dependent (Ishida et al., 2008). Upon oral 

administration, 2e effectively induced regression of E1S-stimulated tumor growth in a 

nitrosomethylurea-induced rat mammary tumor model (Ishida et al., 2007b). The failure to stimulate 

the growth of MCF-7 cells as well as in uteri in ovariectomized rat indicated the lack of estrogenicity 

of 2e (Ishida et al., 2007b).  

 Alongside EMATE, earlier work also showed that its congener estradiol 3-O-sulfamate 

(E2MATE) was as potent as an STS inhibitor in vitro (Reed et al., 1996). Employing a 

stereoselective addition of Grignard reagents to the C17-carbonyl group of E1 followed by 

sulfamoylation, a series of 17-derivatives of estradiol 3-O-sulfamate were obtained of which 3-

bromobenzyl (2f, Figure 2), 4-t-butylbenzyl (2g, Figure 2), 4-butylbenzyl (2h, Figure 3) and 4-

benzyloxybenzyl (2i, Figure 2) derivatives were found to provide  the most  potent STS inhibition in 

a JEG-3 cells preparation (IC50 values of 24, 28, 25 and 22 nM respectively) (Boivin et al., 2000). 

Unfortunately, 17-4-t-butylbenzyl-E2MATE (2g) was subsequently shown to be estrogenic in vivo, 

rendering this inhibitor unsuitable for further therapeutic exploitation (Ciobanu et al., 2002, 2003a). 
 

In order to overcome this setback on estrogenicity, 2-methoxy-17-benzylestradiol-3-O-sulfamate 

(2j, Figure 2) and 2-methoxy-17-4-t-butylbenzylestradiol-3-O-sulfamate (2k, Figure 2) were 

prepared (Ciobanu et al., 2003b), after recognising that substitution at the 2-position of EMATE with 

a methoxy group abolished estrogenicity but retained potency against STS (Raobaikady et al., 2003). 

As anticipated, both agents were found to show comparable potency to their corresponding 2-

unsubstituted counterparts in the inhibition of STS activity in homogenates of transfected HEK-293 
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cells. In vivo, the 2-methoxy-17-benzyl-derivative (2j) showed no estrogenic activity in 

ovariectomized mice and efficiently blocked uterine growth induced by E1S.  

 Further expansion of 17-substituted analogues gave a series of N-derivatized 17-

piperazinomethyl derivatives of estradiol 3-O-sulfamate (Ciobanu and Poirier, 2003). The best STS 

inhibitor was 2m (Fig. 2). At a 1 nM test concentration, 2m inhibited STS activity in homogenates of 

HEK-293 cells transfected with STS by 94%. This level of activity was close to that obtained with 

17-benzyl-E2MATE (2l, Fig. 2) and 17-4-t-butylbenzyl-E2MATE (2g, Fig. 2). 

 Poirier et al. continued to explore the substitution of the D-ring of EMATE and produced two 

libraries of compounds containing at the 16-position a propylene linker coupled with a different 

combination of hydrophobic amino acid and carboxylic acids. These compounds were also designed 

for inhibiting the steroidogenic enzyme type 1 17-hydroxysteroid dehydrogenase. No detailed 

biological results were reported, but it was claimed that 17 compounds possessed inhibitory activities 

comparable to or above the 78% inhibition of STS activity observed for EMATE in a homogenate of 

human embryonic kidney (HEK)-293 cells transfected with a STS expression vector (Poirier et al., 

2002).
 

 A D-ring enlargement of EMATE gave a series of novel N-substituted piperidinedione 

derivatives, which structurally are more accurately described as steroid-like. Two compounds, the N-

(propyl) (2n, Fig. 2) and N-(1-pyridin-3-ylmethyl) (2o, Fig. 2) derivatives, showed exceptionally 

high potency, with both sharing the same IC50 value of 1 nM in a human placental microsome 

preparation (cf. EMATE, 18 nM) (Fisher et al., 2003a). The N-unsubstituted derivative (2p, Fig. 2) 

showed similar potency (IC50 = 20 nM) to EMATE, indicating that the six-membered 

piperidinedione ring is a good mimic of the D ring of EMATE. After an oral dose of 10 mg/Kg/d for 

5 days, compounds 2n and 2o were found to inhibit rat liver STS by 99% (Fisher et al., 2003b). Both 

compounds were devoid of estrogenic activity in the rat uterine weight gain assay. In a subsequent in 

vivo study, 2n was found to inhibit STS activity for a significantly longer duration than the non-

steroidal STS inhibitor STX64 (Foster et al., 2006). 
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 When the N-propyl group of 2n was replaced with a N-3,3,3-trifluoropropyl group (Woo et al., 

2008), the resulting compound 2q (Fig. 2) gave an IC50 of 180 pM against STS in JEG-3 cells which 

is 5-fold more potent than 2n obtained from the same assay, completely inhibited rat liver STS 

activity after a single oral dose of 0.5 mg/kg, and, more interestingly, exhibited a significantly longer 

duration of inhibition over 2n with a 50% recovery after 17 days (Foster et al., 2008). These 

distinctive biological properties of 2q can be attributed to the increased lipophilicity and metabolic 

stability of the molecule rendered by its trifluoropropyl group, and also the potential H-bonding 

between its fluorine atom(s) and Arg98 in the active site of human STS, as suggested by molecular 

docking studies.  

 

Sulfamate-based non-steroidal inhibitors 

 

Fig. 3. Bicyclic and tricyclic non-steroidal STS inhibitors 3a – 3e. 

 

 When EMATE was found to be estrogenic, the most logical approach for addressing the 

shortcoming of a steroidal inhibitor was to design non-steroidal mimics of EMATE. It has long been 

recognised that non-steroidal agents themselves and their metabolites are less likely to exhibit 

unwanted endocrinological activities in vivo than their steroidal counterparts. When EMATE was 

found to have memory-enhancing effect in rats (Li et al., 1995; Li et al., 1996a) recognising that STS 

may regulate part of the immune response in human (Foulkes et al., 1997) and that STS may be 
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involved in the development of androgen-dependent skin disorders such as acne (Chen et al., 2002), 

there was an overwhelming case for developing non-steroidal STS inhibitors. Clearly, drugs that are 

steroidal will not be desirable for use in the treatment of some of these non-malignant conditions.  
 

 
An initial attempt to design a non-steroidal inhibitor gave the A/B ring mimic of EMATE, 

tetrahydronaphthalene 2-O-sulfamate (3a, Fig. 3), which was found to exhibit STS inhibitory 

activity, but to a much weaker extent than EMATE (Howarth et al., 1994).
 
In pursuit of alternative 

non-steroidal mimics of EMATE, a series of bicyclic coumarin sulfamates was synthesized, of which 

4-methylcoumarin 7-O-sulfamate (3b, Fig. 3) showed an IC50 of 380 nM in an MCF-7 cells 

preparation, about 3-fold more potent than 3a, but was still much weaker than EMATE (IC50 = 65 

pM from the same assay) (Woo et al., 1996b). Further extension of the coumarin sulfamate series 

established that derivatives with hydrophobic substituents introduced at the 3- and/or 4-positions of 

the coumarin ring system were more potent STS inhibitors (Woo et al., 1998). On exploiting the 

flexibility provided by the Pechmann synthesis conditions for this scaffold, a series of tricyclic 

coumarin sulfamates was developed by reacting resorcinol with cyclic -keto esters in the first step. 

When 2-oxo-1-cycloheptane carboxylate was employed, STX64 (BN83495, Fig. 3) was obtained, 

which was found to inhibit STS with an IC50 value of 8 nM (placental microsomes), some 3-fold 

more potent than EMATE (Woo et al., 2000; Purohit et al., 2001).
 
This higher potency observed for 

STX64 compared with EMATE could be attributed to the higher affinity of STX64 for the enzyme 

site, since it was found that the apparent Ki value for STX64 (40 nM) is significantly lower than that 

for EMATE (670 nM) (Woo et al., 2000). In addition, it was postulated that the coumarin ring 

through conjugation renders the phenolic coumarin precursor (3c, Fig. 3) of STX64 a better leaving 

group than E1 [pKa of phenol ca. 8.5 for 3c vs ca. 10 for E1] and hence facilitates the 

“sulfamoylation potential” of STX64, which relates to the potency of the inhibitor in inactivating the 

enzyme. In vivo, a single dose (10mg/kg, p.o.) of STX64 inhibited rat liver STS activity by 93% 

(Purohit et al., 2000).
 
When administered to rats bearing a nitrosomethylurea-induced mammary 

tumor, STX64 caused regression of E1S-stimulated tumor growth in a dose-dependent manner 



 14 

(Purohit et al., 2000). Like EMATE, STX64 is an irreversible inhibitor of STS (Woo et al., 2000) and 

is active by the oral route but, in contrast, is devoid of estrogenicity (Purohit et al., 2000). STX64 had 

an oral bioavailability of 95% in rats and could be detected in plasma for up to 8 h (Ireson et al., 

2004). The pharmacokinetics observed for STX64 can be attributed in part to the sequestration of the 

inhibitor into erythrocytes through binding to human carbonic anhydrase II (hCAII) (Ireson et al., 

2004) and  the X-ray crystal structure of STX64 in complex with hCAII was solved (Lloyd et al.,, 

2005a).
 
 

 STX64 is now in formal clinical development and has been evaluated in a “first-in-class” Phase I 

clinical trial for the treatment of patients with advanced breast cancer (Stanway et al., 2006, 2007). 

The clinical data from this trial showed that a treatment protocol consisting of either a 5 mg or a 20 

mg dose of STX64 resulted in potent inhibition of STS
 
activity in peripheral blood lymphocytes and 

biopsied breast tumour tissue without showing any serious drug-related
 
adverse events.  More 

significantly, stable disease was observed in 5 out of 8 evaluable patients.  STX64 is now in Phase 

I/II trials in breast cancer and Phase II trials in endometrial and prostate cancers. In addition to 

oncological applications, STX64 has potential use in endometriosis (Purohit et al., 2008a, Fusi et al., 

2008) and in skin disorders (Purohit et al., 2008b; Reed et al., 2008). The STS inhibitor PGL2001 is 

currently in Phase I trials in endometriosis. Recent data from ongoing clinical trials employing a new 

solid dosage formulation of STX64 [BN83495] in metastatic breast cancer patients have shown 

further evidence of stable disease and an impressive clinical decrease in androstenediol levels 

(Coombes et al., 2009). 

 Upon extension of the tricyclic coumarin sulfamate series, it was shown that in vitro inhibitory 

activity is the highest with 3d (Fig. 3) (IC50 = 1 nM, placental microsomes), although this compound 

was found to be only marginally more potent than STX64 in vivo (Malini et al., 2000).
 
Despite its 

relatively weak activity in vitro (IC50 = 370 nM, placental microsomes), 3e (Fig. 3), however, was 

found to be the most potent tricyclic coumarin sulfamate in vivo, inhibiting rat liver E1-STS activity 
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by 23 and 94% when assayed 24 h after administration of the 0.1 and 1 mg/kg doses (Malini et al., 

2000), presumably explained by depot effect relating to its high log P value. 

 Either in parallel or as a consequence of the discovery of STX64, a range of structurally diverse 

aryl sulfamate-based non-steroidal compounds with varying degree of STS inhibitory activity has 

been reported by several groups. The more interesting and notable compounds are shown in Fig. 4. 

 A series of (p-O-sulfamoyl)-N-alkanoyl tyramines was reported, of which the N-tetradecanoyl 

derivative 4a was found to have an IC50 value of 55.8 nM against STS in a placental microsomes 

preparation (Li et al., 1996b). Further work demonstrated that the inhibition by this compound is 

irreversible (Selcer et al., 1997). The aryl sulfamate moiety, the amido functionality and the length of 

the alkylene linker between the p-sulfamoyloxyphenyl ring and the amido group were found to be 

crucial to the SAR (structure-activity relationship) of these compounds (Chu et al., 1997; Kolli et al., 

1999). 

 

 

Fig. 4. Examples of non-steroidal STS inhibitors.  

 

 After the finding that 17-4‟-t-butylbenzyl-E2MATE (2g, Fig. 2) inhibited STS with high 

potency, a series of 4-substituted monoaryl sulfamates was designed as non-steroidal mimics of 2g. 

One compound 4b (Fig. 4) showed optimal inhibitory activity with an IC50 of 0.4 nM in 

homogenates of HEK-293 cells transfected with STS. EMATE inhibited STS with an IC50 of 0.9 nM 

in the same assay (Ciobanu et al., 2002). 
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 A series of chromenone- and thiochromenone-based sulfamates were reported, of which 4c (Fig. 

4) showed an IC50 value of 0.34 nM in purified STS, rendering this compound about 170-fold 

superior to EMATE (IC50 = 56 nM in the same assay) (Nussbaumer et al., 2002a). This exceptionally 

high potency observed for 4c can be attributed to its aryl sulfamate moiety mimicking the A-ring of 

EMATE with the 1-adamantyl group concurrently exploiting hydrophobic interactions within the 

active site of STS. However, 4c was estrogenic because it stimulated the growth of MCF-7 breast 

cancer cells by 99% at 100 nM (Nussbaumer et al., 2003). 

 Unexpectedly, benzophenone 4,4′-bissulfamate (4d, Fig. 4) showed an IC50 value of 190 nM (cf. 

56 nM for EMATE) against recombinant human STS suggesting that this simple compound is a 

potent STS inhibitor (Nussbaumer et al., 2002b).
 
SAR studies have shown that the bis-sulfamate is 

crucial to high potency, since the monosulfamate derivative, i.e. benzophenone 4-sulfamate (4e, Fig. 

4) is about 25 times less active. These results were independently confirmed by another group in a 

separate report (Hejaz et al., 2004). 

 To the best of our knowledge, none of the aforementioned sulfamoylated non-steroidal inhibitors 

has undergone pre-clinical development. STX64 remains the most developed and studied sulfamate-

based non-steroidal inhibitor to date. 

  

Reversible inhibitors 
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Fig. 5. Examples of reversible STS inhibitors. 

 

 Despite the great success achieved in the development of targeted irreversible STS inhibitors, 

several groups were inspired to design and discover reversible inhibitors of STS. 

 Although a significant number of reversible inhibitors were reported prior to or after the 

discovery of EMATE as part of the discovery programme or as a result of SAR studies, the first 

focused attempt in designing compounds for reversible inhibition was reported by Poirier et al. 

Derivatives of estradiol bearing a 17-4′-t-butylbenzyl (5a, Fig. 5), 17-3′-bromobenzyl (5b, Fig. 5), 

17-4′-benzyloxybenzyl (5c, Fig. 5) or 17-N-octylpropanamide (5d, Fig. 5) substituent were among 

the most potent reversible inhibitors reported to date, with IC50 values (JEG-3 cells) between 22 and 

80 nM (Poirier et al., 1998; Boivin et al., 1999, 2000). Compound 5a was about 7-fold weaker than 

EMATE against STS activity in a transfected HEK-293 preparation (Boivin et al., 2000). Some of 

these phenolic compounds were sulfamoylated subsequently and the sulfamates were found to be 

significantly more potent as STS inhibitors (see previous section), confirming that the key 

pharmacophore for highly potent STS inhibition is an aryl sulfamate.  
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 Several sulfamates of C19 (androstene) or C21 (pregnene) derivatives were prepared in an 

attempt to overcome the undesirable estrogenicity of some 17-substituted derivatives of EMATE. 

17-t-Butylbenzyl-5-androsten-17-ol (5e, Fig. 5) is the best reversible inhibitor with an IC50 of 46 

nM in a homogenate preparation of HEK-293 cells and shows no estrogenic or androgenic properties 

in vitro (Ciobanu et al., 2003a). 

 Moving away from steroidal structures, a series of thiosemicarbazone derivatives of 

madurahydroxylactone was studied and reported to possess inhibitory activity against STS. The best 

agent, the cyclohexylthiosemicarbazone derivative (5f, Fig. 5) inhibited STS noncompetitively with a 

Ki value of 0.35 μM and an IC50 value of 460 nM in a placental microsome preparation (Jutten et al., 

2002). In addition, a series of nortropinyl-arylsulfonylurea derivatives were prepared, of which 5g 

(Fig. 5) inhibited STS in a purified enzyme assay with an IC50 value of 0.084 μM (cf. EMATE 0.056 

μM) (Nussbaumer et al., 2003b). Separately, researchers at Bayer identified from their compound 

library aryl piperazines 5h and 5i (Fig. 5), which inhibited STS in a STS protein preparation with 

IC50 values of 48 and 78 nM, respectively (Lee et al., 2003). On reporting that chromenone- and 

thiochromenone-based sulfamates are potent inhibitors of STS, further SAR work was carried out in 

an attempt to replace the sulfamate group of these compounds with other surrogates. Two 

compounds 2-(1-adamantyl)-4-chromenone-6-carboxylic acid 5j and 2-(1-adamantyl)-4-

(thio)chromenone-6-carboxylic acid 5k (Fig. 5) were found to be potent STS inhibitors. In a cell-free 

system using purified human STS, both inhibitors showed similar Ki values (0.50 μM for 5j and 0.53 

μM for 5k) although 5k was superior to 5j (IC50 = 0.18 μM vs 9.4 μM) in a cellular assay system 

using CHO cells overexpressing STS. Both 5j and 5k were chemically stable and showed no 

estrogenic potential (Horvath et al., 2004). 

 The idea of designing surrogates of E1S as STS inhibitors was revisited by Taylor et al. Several 

E1S and estradiol sulfate analogues, in which the sulfate group was replaced with an ,-

difluoromethylenesulfonate group (eg., 5l, Fig. 5) or an ,-difluoromethylenetetrazole (eg. 5m, Fig. 

5) group, were examined as inhibitors of STS. They were designed to be non-hydrolysable by the 
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enzyme, but to mimic the sulfate group of E1S. The difluoromethylene moiety was introduced to 

replace the labile oxygen in steroid sulfates and was shown to play a significant influence in 

inhibitory activity since compounds bearing this moiety are 4.5–10.5 times more potent than their 

non-fluorinated analogues as competitive inhibitors in a human placental STS preparation purified to 

apparent homogeneity. Compound 5m exhibits an affinity for STS approaching that of the natural 

STS substrate, estrone sulfate (Lapierre et al., 2004). 

 Taylor et al. further applied the above design strategy to EMATE and synthesized the analogue 

5n (Fig. 5), which bears an ,-difluorosulfonamide moiety at the 3-position on the A-ring of 

estrone (Liu et al., 2005). The replacement of the bridging O-atom of the sulfamate group in EMATE 

with an ,-difluoromethylene moiety was designed to render the resulting analogue non-

hydrolyzable, but yet to still mimic EMATE. Compound 5n was found to be a reversible inhibitor 

with a greater affinity for STS than its non-fluorinated analogue, ie. estra-1,3,5-(10)-triene-17-one-3-

methanesulfonamide. The ability of 5n to inhibit STS was found to be pH dependent which may be 

attributed to a combination of the fluorines interacting with specific residues in the enzyme active 

site and differences in ionization state of the sulfonamide moiety and enzymatic residues.  

 More recently, Taylor et al. prepared several steroidal (5o and 5p, Fig. 5) and non-steroidal (5q 

and 5r, Fig. 5) boronic acids and evaluated their STS inhibitory activities using purified STS (Ahmed 

et al., 2006). Boronic acid 5o (E1) was a good competitive and reversible STS inhibitor with a Ki of 

2.8 μM at pH 7.0 and 6.8 μM at pH 8.8. The Ki of the benzyl derivative 5p is 250 nM. Like its 

congener 17-benzylestradiol, 5p was a potent reversible and non-competitive inhibitor. The 

coumarin- (5q) and chromenone- (5r) based boronic acids are modest STS inhibitors, showing IC50 

values of 86 μM and 171 μM respectively. In contrast, replacing the boronic acid moiety of 5r with a 

OH group yielded a good reversible, mixed-type inhibitor with a Ki of 4.6 μM. These findings 

suggest that the boronic acid moiety may serve as a mimic of the sulfate group and render STS 

inhibitory activity if it is attached to a scaffold that closely resembles the natural substrate E1S. 
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 It is clear that various attempts have been made to discover and design reversible inhibitors of 

STS. However, a clear breakthrough remains elusive and no further work has been reported recently 

in this area. Moreover, to the best of our knowledge that such compounds have not yet progressed to 

in vivo evaluation. Until a potent and pharmaceutically attractive reversible inhibitor is discovered, 

the inhibition of STS will be most effectively achieved by irreversible aryl sulfamate-based 

inhibitors. 

 

Dual inhibitors 

 With the clear success of AIs in the clinic and the emergence of STS inhibitors as a potential 

effective endocrine therapy for HDBC, it has been reasoned that estrogen deprivation may be more 

comprehensively achieved by concurrent dual inhibition of both enzymes.  

 The concept of designing single agents that act against multiple biological targets is of increasing 

interest and prominence. In recent years, an increasing volume of work has been published 

exemplifying the successful use of this strategy (Morphy and Rankovic, 2005; Espinoza-Fonseca, 

2006; Baraldi et al., 2007; Chen et al., 2007; Apsel et al., 2008; Meunier, 2008; Marques et al., 2008; 

Wei et al., 2008; Gangjee et al., 2008; Gemma et al., 2009; Gediya and Njar, 2009). We have 

pioneered this approach to augment our strategy directed at the first-in-class clinical target of STS 

inhibition and have successfully developed three series of single agent dual aromatase and sulfatase 

inhibitors (DASIs). The design of these DASIs shares a common principle of engendering the 

irreversible STS inhibitory pharmacophore (ie. an aryl sulfamate, ArOSO2NH2) into a clinical or 

experimental AI with minimal structural change incurred to the original scaffold in order to retain 

and maximize aromatase inhibition. 

 



 21 

 

 

Fig. 6. DASIs derived from AIs 6a (YM511), 6f (letrozole) and 6l (anastrozole); and from STS 

inhibitor 6n.   X = OSO2NH2. 

 

 The first series of DASIs was exemplified by sulfamate derivatives of the non-steroidal AI 4-((4-

bromobenzyl)-[1,2,4]-triazol-4-yl-amino)benzonitrile 6a (Fig. 6). The best DASIs in vitro (JEG-3 

cells) are 6b (IC50AROM = 0.82 nM, IC50STS = 39 nM), and 6c, (IC50AROM = 0.77 nM, IC50STS = 590 

nM). Both 6b and 6c inhibit aromatase and STS potently in PMSG pretreated adult female Wistar 

rats 3 h after a single oral 10 mg/kg dose. Almost complete dual inhibition is observed for 6b but the 

levels are reduced to 85% (aromatase) and 72% (STS) after 24 h (Woo et al., 2003, 2007). In 

common with other sulfamoylated compounds, 6b was found to complex with hCAII, suggesting its 

in vivo activity observed is likely influenced by sequestration of the inhibitor into hCAII in 

erythrocytes and X-ray structures of DASI-hCAII complexes have been solved (Lloyd et al., 2005b). 

 The methylene linker of 6b and its congeners have recently been replaced by systems such as 

alkylene, thioether, ether, sulfone and sulfonamide in an SAR study. The best DASI is 6d (Fig. 6), 

whose IC50s against aromatase and STS are 0.45 nM and 1200 nM respectively. In vivo, 6d inhibits 

PMSG-induced plasma estradiol levels by 92% and liver STS activity by 98% 3 h after a single oral 

dose of 10 mg/kg (Bubert et al., 2008).  
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 In a very recent study, several bicyclic derivatives of 6b and its congeners were prepared. The 

bicyclic ring systems investigated included tetrahydronaphthalene, naphthalene, indole, benzoxazole, 

and benzofuran motifs. It was found that compounds containing a sulfamoylated naphthalene ring 

showed the best inhibitory profile against either aromatase or STS. The most promising DASI is 6e 

(Fig. 6), whose IC50s against aromatase and STS are 0.25 nM and 205 nM respectively. On 

evaluation of oral activity in vivo, 6e inhibited aromatase by 93% and STS by 93% 3 h after a single 

dose of 10 mg/kg (Wood et al., 2010). 

 A second series of DASIs are sulfamate derivatives of letrozole 6f (Fig. 6) and bis-sulfamate 6g 

was the first example synthesised which exhibited IC50 values of 3044 nM against aromatase and 

>10 μM against STS in JEG-3 cells (Wood et al., 2005). However, despite its apparent weak dual 

inhibition in vitro, at a single oral dose of 10 mg/kg, 6g inhibited aromatase and rat liver STS by 60% 

and 88%, respectively, 24 h after administration. On recognition that retention of more structural 

features of letrozole in letrozole-based DASIs may improve aromatase inhibition, the racemic 

compound 6h was synthesized, which inhibited aromatase and STS with IC50 values of 3 nM and 

2600 nM in JEG-3 cells respectively. Its phenolic racemic precursor 6i was separated by chiral 

HPLC, and the absolute configuration of each enantiomer was determined using vibrational and 

electronic circular dichroism in tandem with calculations of the predicted spectra (Wood et al., 2008; 

Abbate et al., 2009). On sulfamoylation of the two phenolic enantiomers, which did not initiate any 

racemisation, the resulting enantiopure R-(+)-sulfamate 6j (Fig. 6) showed IC50 values of 3.2 nM 

(aromatase) and 4633 nM (STS), whereas the S-(-)-sulfamate 6k (Fig. 6) showed IC50 values of 14.3 

nM (aromatase) and 553 nM (STS) (Wood et al., 2008). As anticipated from previous observations 

(Furet et al., 1993), one enantiomer showed more potent aromatase inhibition than its antipode. For 

the first time, it was demonstrated that the enantiomers of a chiral sulfamate-containing compound 

inhibited STS to a different extent.  

 A third series of DASI is sulfamate derivatives of anastrozole 6l (Fig. 6) (Jackson et al., 2007). 

One of the lead compounds is 6m (Fig. 6), which inhibited aromatase (IC50 = 3.5 nM) in vitro to a 
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similar magnitude to that of anastrozole (IC50 = 1.5 nM), although it only showed a moderate 

inhibitory activity against STS (IC50 >10 μM). However, in vivo, 6m surprisingly exhibited potent 

dual inhibition. 

 More recently, a different approach was adopted to design DASIs, that involves the incorporation 

of a reversible aromatase inhibitory pharmacophore, which is principally a heme-ligating nitrogen-

containing heterocycle, into a known sulfamate-based STS inhibitor 6n (Figure 6) (Woo et al., 2010). 

Several compounds were found to be good aromatase or STS inhibitors and DASI 6o (IC50: 

aromatase, 2.0 nM; STS, 35 nM) and its chlorinated congener 6p (IC50: aromatase, 0.5 nM; STS, 5.5 

nM) were examples that showed exceptional dual potency in JEG-3 cells. Both biphenyl derivatives 

share a para-sulfamate-containing ring B and a ring A, which contains a triazol-1-ylmethyl meta to 

the biphenyl bridge and para to a nitrile. At 1 mg/kg po, 6o and 6p reduced plasma estradiol levels 

strongly and inhibited liver STS activity potently in vivo. Compound 6p was found to be non-

estrogenic in a uterine weight gain assay. It inhibits hCAII potently (IC50 = 86 nM) and a complex of 

6p with hCAII was resolved by X-ray crystallography (Woo et al., 2010). Interestingly, in a separate 

development the biphenyl motif was successfully exploited for designing a new class of highly 

potent non-steroidal AIs (Jackson et al., 2008). A particularly potent example is 6q (Fig. 6), the IC50 

value of which against aromatase in JEG-3 cells was found to be 0.22 nM.
 
  

 The search for dual inhibitors inhibiting STS and another target has not been confined just to 

DASIs. One compound, SR16157, was reported to be a novel dual-acting inhibitor of STS and the 

estrogen receptor. SR16157 inhibits the hydrolysis of estrone sulfate to estrone, and is cleaved by 

STS to SR16137 which is a tissue-selective estrogen receptor modulator, with potent antiestrogen 

effects in breast and uterus but protective estrogen-like agonist effects on bone and cardiovascular 

systems (Sambucetti et al., 2009). 

 

Summary 
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 A great deal of effort has been put into the discovery of STS inhibitors in the past two decades, 

after recognising that the hydrolysis of steroid sulfates such as E1S to their unconjugated steroids by 

STS may be an importance source of estrogens. Initially, attempts were focused upon preparing 

sulfated derivatives and sulfate surrogates of E1S, but these approaches did not yield any promising 

agents. The breakthrough came with the discovery of estrone 3-O-sulfamate (EMATE), an orally 

active and irreversible inhibitor of STS. Despite its highly potent in vitro and in vivo inhibitory 

activities against STS, the undesirable estrogenic property of EMATE prevented its further 

development as an anti-endocrine agent for the treatment of HDBC, although its estradiol congener 

entered clinical trials directed at hormone replacement therapy. Various attempts were made to 

design analogues of EMATE that were less estrogenic or devoid of estrogenicity, with a few 

successful examples being discovered. At the same time, a major effort was placed on designing non-

steroidal STS inhibitors that contain an aryl sulfamate moiety, the key pharmacophore for potent 

irreversible inhibition of STS. Many structurally diverse compounds have been reported, although 

the most successful and well-studied non-steroidal STS inhibitor is STX64 which successfully 

underwent a Phase I trial in patients with advanced breast cancer and is currently in further such 

trials as well as undergoing Phase II trials for other hormone-dependent cancers.  

 In pursuit of an alternative mechanism for inhibiting STS, several groups pursued the design of 

steroidal and non-steroidal reversible inhibitors. However, the compounds reported to date did not 

show a level of inhibitory activity that could potentially rival that of aryl sulfamate-based irreversible 

inhibitors.  

 The future of delivering such endocrine therapy might not involve the inhibition of just one 

target, but of multiple ones. It has been reasoned that dual inhibition of aromatase and STS will 

render a more comprehensive and effective estrogen deprivation for the treatment of HDBC. While 

using a combination of an AI and for example the STS inhibitor STX64 as individual agents is a 

logical choice of treatment regime, the design of dual aromatase and sulfatase inhibitors (DASIs) as a 

single agent is an attractive strategy which may possess certain pharmaceutical advantages. To this 
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end, four different series of non-steroidal DASIs have been pursued, three of which have the aryl 

sulfamate pharmacophore incorporated into known AIs, while a fourth series comprises derivatives 

of a known STS inhibitor incorporating a heme-ligating heterocyclic ring. Potent in vitro and in vivo 

biological activities were observed and some of the lead compounds warranted further investigation 

for their potential as a therapeutic agent for the treatment of hormone-dependent cancers.  

 Significant progress has been made in the past two decades in discovering and synthesizing STS 

inhibitors for clinical development. The aryl sulfamate pharmacophore has been at the heart of these 

developments. With proof-of-concept trials now in progress, it may take another decade before the 

full therapeutic potential of STS inhibition can be fully evaluated and appreciated. 
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