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ABSTRACT 

A new method to estimate the electron diffusion length in dye-sensitized solar cells (DSCs) is 

presented. DSCs were fabricated on conducting glass substrates that were patterned by laser 

ablation of the FTO coating to form parallel contact strips separated by uncontacted strips of the 

same width. The relative collection efficiency was measured as a function of the gap between the 

contact strips, which determines the lateral distance traveled by electrons to reach the contacts. In 

order to avoid complications arising from non-linear recombination kinetics, current 

measurements were performed using small amplitude perturbations of the electron density close 

to open circuit and the maximum power point to minimize electron density gradients in the film. 

One and two dimensional solutions of the continuity equation for electron transport and back 

reaction predict that the relative collection efficiency should fall as spacing between the contact 

strips exceeds the electron diffusion length and electrons are lost by back electron transfer during 

transit to the contacts. Measurements of the relative collection efficiency were fitted to the 

predicted dependence of collection efficiency on the spacing between the contact strips to obtain 

the value of the electron diffusion length. The diffusion length is found to increase with voltage 

both at open circuit and at the maximum power point. 
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Introduction 

1
Since the original work of Grätzel and O’Regan , dye sensitized solar cells (DSC) have been 

studied intensively. The basic concepts of their operation have been reviewed in detail 

2elsewhere. Briefly, a wide bandgap porous semiconductor, typically TiO2, is sensitised with a 

dye which absorbs visible light. The photoexcited dye injects electrons into the TiO2 conduction 

band and is regenerated subsequently by electron transfer from iodide ions in the electrolyte 

permeating the porous structure. The injected electrons travel to the back contract, where they 

-
are extracted and re-enter the cell via a platinized counter electrode, to reduce the I3 ions formed 

in the regeneration step. Ionic diffusion between the electrodes completes the cycle. 

The electron diffusion length, L0, which is the average distance an electron can diffuse in the 

TiO2 before recombining with tri-iodide ions (assuming negligible recombination with oxidized 

dye species). If recombination TiO2 electrons with tri-iodide occurs via 1st order kinetics, then 

the diffusion length can be defined as; 

(1)


where τ0 is the free electron lifetime, and D0 is the free electron diffusion coefficient. For 

efficient collection of electrons in a DSC, the electron diffusion length needs to be at least 2-3 

times larger than the thickness of the TiO2 film. The electron diffusion length can be obtained by 

3
dynamic methods, such as impedance spectroscopy or the analysis of the response time of the 

4-6 photovoltage and photocurrent to small perturbations in light intensity , and by steady state 

methods, such as the comparison of the incident photon to electron conversion efficiency (IPCE) 

3




7-9 
spectra from front and rear side illumination. Several comparisons of these different 

techniques have been made, and in some cases diffusion lengths determined by steady state 

methods are shorter than those determined by dynamic methods.
10,11 

Recently, it has been 

suggested that the rate of recombination of electrons in the TiO2 with tri-iodide in the electrolyte 

is not first order in free electron concentration, meaning that the diffusion length can only be 

12 defined for a given electron concentration. A local electron density-dependent diffusion length, 

λn, is thus defined according to: 

(2)


where nb is the background electron concentration, kr is the rate of back reaction with triiodide, 

and β is the back reaction order. 

The density-dependence of the diffusion length complicates the interpretation of measurements in 

which the electron concentration is not constant, for example, front/rear side IPCE studies carried 

13 
out without background illumination. Recently, a very careful comparison has been made 

between values of the diffusion length obtained by impedance spectroscopy and by front/rear side 

IPCE measurements using bias light, showing that the methods agree if measurements are made 

14 close to open circuit to ensure that the electron concentration across the film is almost constant.

The extraction of the electron diffusion length from IPCE and impedance measurements 

involves data fitting with a rather large number of parameters. Here, we explore the concept of 

obtaining the electron diffusion length using a simpler geometrical approach that involves 
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patterning the substrates into alternating strips of equal width with and without fluorine-doped tin 

oxide (FTO). The electron collection efficiency is then measured as a function of the separation 

between the contact strips. One would expect the collection efficiency to fall when the strip 

separation exceeds the electron diffusion length. Fundamentally, this approach is similar to the 

front/rear side IPCE method, given that we adjust the distance between the point of generation 

and the point of collection of carriers. The crucial difference is that this distance is varied in a 

lateral dimension; thus avoiding the need to account for optical absorption by the electrolyte and 

platinized cathode, which complicates the analysis of front/rear side IPCE spectra. It also avoids 

the complications arising from trapping and de-trapping of electrons that influence time and 

frequency dependent perturbation measurements. More importantly this method can be applied 

to study cells in which the electron diffusion length is significantly greater than the film thickness 

so that the IPCE method cannot be used. 

Our technique can be used to estimate the electron diffusion length anywhere along the i-V 

curve, in particular close to the maximum power point. Since the measurements are carried out at 

a steady state, RC time limitations which can be associated with current transient techniques 

close to open circuit, do not affect our measurements.
15,16 

Modeling 

The continuity equation in 2 dimensions was solved using finite element methods to derive the 

photoinduced conduction band electron concentration profiles n(x,y) in a TiO2 film (thickness 6.5 

microns) contacted by a periodic array of FTO stripes (height taken to be 100 nm) under constant 

16 -2 -1 
illumination with a photon flux at y = 0 of I0 = 10 cm s . 
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D0∇
2 c(x, y) +αI0e −αy − 

n(x, y) 
= 0 (3) 

τ 0 

Here α is the optical absorption coefficient of the dyed TiO2 film at the excitation wavelength 

(α = 340cm
-1 

at 630 nm) and τ0 is the free electron lifetime. Figure 1, in which the x and y axes 

are defined, illustrates the spatial variation of excess electron concentration for the case where the 

inter-electrode separation, s, is 30 µm and the electron diffusion length is 100 µm. Similar plots 

in which s is much shorter, similar, and much longer than the diffusion length can be found in the 

supporting information. 

-4 -1 16 
Figure 1: Solution of equation 3 where d=6.5 µm, s = 30µm, L0=100 µm and τ=1.10 s, α = 340cm , I0 = 10

-2 -1 12 -3 
cm s . n(x,y) varies from 0 (dark blue) to 4.85.10 electrons cm (dark red). Not to scale. 

Provided that the height of the FTO strips is much smaller than the film thickness and the 

electron diffusion length is larger than the film thickness, the problem reduces to the 1 

dimensional case if αd <<1 (weakly absorbed light), so that the electron injection rate is invariant 
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in the y-direction. In the 1D limit, the concentration of excess electrons in the TiO2 between the 

FTO contacts is given by 

 e
x / L0 + e 

− x / L0  
n(x) =αI0τ 0 


 
1− 

e
s / 2L0 + e 

−s / 2L0 


 

(4) 

where the origin x = 0 is taken to be at the center of the gap. If the relative collection efficiency 

ηrel is defined as the flux of electrons leaving the whole device compared to an equivalent device 

where no FTO has been removed, one can show that 

η = 
1 tanh(s / 2L0 )
+ (5) 

rel 
2 s / L0 

Figure 2 shows that the analytical and numerical solutions for ηrel are in close agreement when 

L0=100 µm is much greater that the film thickness (6.5 µm). We note that in these calculations, 

we have assumed a unity back reaction order. Therefore fits to equation 5 are only valid if the 

measurements are carried out under conditions in which there is a steady background electron 

concentration. 
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Figure 2: Modeled relative collection efficiency as a function of s/L0 calculated based on solutions to the 

continuity equation in one (solid line) and two dimensions (circles). 

Experimental 

Solar cell preparation on patterned substrates 

After cleaning the FTO glass (TEC 15 Pilkington TEC Glass™) by sequential sonication in 

detergent, water and ethanol, a compact blocking layer of TiO2 was applied by spray pyrolysis of 

a 0.2 M solution of titanium(IV)-isopropoxide at 500
o
C. Patterning of substrates was performed 

using a Nd:YVO4 diode-pumped solid state laser operating at 532 nm with an XY sample 

translation stage. The FTO layer was removed by direct induced ablation, with the laser beam 

incident through the glass substrate. In spite of the low optical absorbance of the FTO layer, 

removal by laser ablation can be achieved with good results above a certain threshold laser 

17 energy density. The compact TiO2 layer on top of the FTO was also removed in the laser 

ablated areas. The minimum stripe width was limited by the laser setup to the single laser line 

width of 33 µm. Adjacent and overlapping laser lines were used to create wider gaps. In all cases 

the widths of the FTO strips and FTO-free strips were equal, so that 50% of the substrate was 
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covered with FTO. The strip widths were measured using an Olympus® optical light microscope 

and Picsara® image analysis software. The laser scribe lines were checked to ensure that they 

were indeed electrically isolated and had a near square profile (Figure 3). 

Figure 3: (a) White light interferometry image of the patterned appearance. Laser scribing clears patches 

between strips of FTO. During patterning the strip widths were varied while maintaining a 50% FTO 

coverage. (b) SEM-EDS image showing the Sn signal from the FTO layer. 
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Substrates of 8 different strip/gap widths (33, 50, 80, 120, 170, 250, 500 and 1000 µm) were 

prepared. On average 5 solar cells were built with each substrate type, as well as controls with 

full FTO coverage. A 6 by 8 mm porous TiO2 layer was deposited on the substrates by screen 

printing (Dyesol DSL 18NR-T) and heated to 500
o
C for 30 minutes to remove the organic 

components. After sensitization of the TiO2 films in a 0.5 mM solution of N719 (Dyesol) in 

acetonitrile:tert-butanol overnight, the cells were sealed using a 50 µm Surlyn spacer. Electrolyte 

(0.5 M LiI, 0.06M I2, 0.6M propyl methyl imidazolium iodide, 0.1M guanidinium thiocyanide, 

0.5M tert-butyl pyridine in 3-methoxypropionitrile) was introduced via pre-drilled holes in the 

platinized counter electrode, which was prepared by thermal decomposition of a 5 mM solution 

H2PtCl6 at 390
o
C for 30 min. The film thicknesses (which range from 5.5 to 8 µm) were 

determined using a Veeco Dektak 3 profilometer. All solvents and reagents were purchased from 

Sigma Aldrich, unless otherwise stated. 

Small amplitude current measurements. 

Cells were illuminated through the front contact by a power LED (Thorlabs, 627 nm), the 

intensity of which was controlled by the use of neutral density filters (Thorlabs). Cells were 

connected to an Autolab potentiostat (AUTOLAB Pgstat 10) operating in 2 electrode mode, and 

the current-voltage (i-V) characteristics were recorded. To make comparisons between cells at 

different points along the i-V curve, we defined the applied potential, Vapp, in terms of the current 

flowing as a fraction of the short circuit current, ISC. Thus, “close to open circuit” was defined as 

the potential at which ISC/20 flows, while “close to the maximum power point” was defined as the 

potential at which ISC/1.1 flows. Once these bias voltages were determined, the light intensity 

was stepped up and down by 5% of the dc value. A 5s up/down cycle was chosen to ensure that 

steady state current values were recorded. The small current increments, dI, caused by the pulse 
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were recorded using the Autolab potentiostat in chronoamperometric mode. Figure 4 shows 

some example current voltage curves for cells built on ordinary and patterned substrates, as well 

as the applied potential “close to open circuit” (indicated by circular markers) and “close to the 

maximum power point” (diamond markers). 

Figure 4: i-V curves for and ordinary cell (full line) and cells with 30, 120 and 250 µm patterning (represented 

by the smallest to largest dashed lines, respectively). The circular markers indicate the potential applied to 

work close to open circuit, while the diamonds indicate the maximum power point. Illumination at 627nm, 
17 -2 -1 

photon flux: 10 cm s . 

Results and discussion 

Relative collection efficiency as a function of strip width at open 
circuit 

By carrying out measurements using small amplitude light perturbations close to open circuit 

or close to the maximum power point under weakly absorbed illumination, complications arising 

from the density dependence of the diffusion length when there is a non-uniform electron 

concentrations were avoided. Since αd <1, the current measurements are sensitive to variations 
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in film thickness (see supporting information). For this reason, a correction was made to allow 

for variations in film thickness between different cells. The thickness dependence of the small 

amplitude current delivered by the ordinary cells was quantified (see supporting information) and 

used to calculate ηrel for individual patterned cells based on the current expected from an ordinary 

cell of the same film thickness, δIpred. 

(6)


The relative collection efficiency of electrons generated over the areas without FTO can be 

16 -2 -1 
seen in Figure 5 under open circuit conditions under an illumination intensity of 9x10 cm s . 

There is a plateau up to finger separations of 80 µm, after which the collection drops off rapidly. 

This implies that the diffusion length is of the order of 80 µm in this case. In order to obtain a 

more accurate value for the diffusion length, the data are fit to equation 5 with the diffusion 

length as the only free parameter. Contrary to the theoretical prediction, the plateau in the 

experimental ηrel values is less than 100%, 85% in this case. Therefore the data have been 

normalised to the first data point to allow comparison to the results of equation 5. The origin of 

this discrepancy is not clear at present, although we tentatively suggest that reduced scattering of 

light as a consequence of removing the FTO layer may lower the extent to which photons are 

harvested by the cell. 

Each data point corresponds to an average of 5-7 cells (except the point corresponding to 1000 

µm, which is reflected by the larger error bars). The error of the mean was therefore calculated 

as the individual error divided by the square root of the number of samples. We take the 
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individual error as the spread in plots of δI vs d of the 8 ordinary cells (see supporting 

information). In most cases, this error was 10-15 %, except close to open circuit at the highest 

light intensity. A strong correlation of the small amplitude currents with film thickness implies 

that the light harvesting efficiency is the main variable determining the IPCE, with the collection 

and injection efficiencies appearing to be constant. The 10% scatter in the data can be attributed 

to slight variations between samples, and imperfections in the film thickness determination. 

Koops et al. have found there to be a slight decrease in the injection efficiency under applied 

potential, particularly as the potential reaches the open circuit voltage under one sun 

18 
illumination. As the Fermi level increases, it reaches a critical energy at which the injection 

efficiency begins to decrease. If this critical energy were slightly different for the different 

samples, this could explain the larger scatter in δI for the highest light intensity under open circuit 

conditions 

Figure 5: Normalized relative collection efficiency as a function of stripe width close to open circuit under 
15 -2 -1 

627nm illumination of intensity 9x10 cm s . Data normalized to the first data point: 85%. The line is a fit of 

equation 5 with L0=90µm. 

13




Relative collection efficiency as a function of strip width at the 
maximum power point 

As mentioned previously, there is a large uncertainty in ηrel under open circuit conditions at the 

highest light intensity, which induces a similar current as under one sun illumination. However, a 

good fit was obtained close to the maximum power point, which is, in fact, the most useful for 

practical reasons. Although current is being extracted at the maximum power point, the electron 

concentration in the film remains almost constant (see the solution to equation 3 in the supporting 

information). For this reason, the electron diffusion length defined by equation 2 is valid at the 

maximum power point, similarly to under open circuit conditions. 

Figure 6 shows that the normalized ηrel at the maximum power point also exhibits a plateau at 

shorter stripe widths, after which it decreases rapidly. The best fit to equation 5 yields a diffusion 

length of 82 µm. 

14




Figure 6: Relative collection efficiency as a function of stripe width determined close to the maximum power 
17 -2 -1

point under illumination (627 nm 10 cm s ) which leads to a cell short circuit current density similar to that 

at one Sun. Data normalized to the first data point: 75%. The line is a fit of equation 5 with L0=82µm. 

Diffusion length as a function of Fermi Level position 

The diffusion length estimations at open circuit and at the maximum power point have been 

compiled in Figure 7. As predicted by equation 2, if , the diffusion length, of the order of 

100µm, increases with voltage (and therefore electron concentration). These observations are in 

agreement with diffusion length studies employing a range of different techniques, including 

impedance spectroscopy, comparison of front and rear side illumination and frequency resolved 

small amplitude perturbation techniques. 
3,9,10,13,14 

We also note that the data points acquired at the maximum power point (light grey markers) lie 

slightly shifted to lower voltages than the open circuit values (dark grey markers). This is 

expected since the diffusion length at the maximum power point is defined by the overall electron 

density across the thickness of the film, which is inherently slightly higher than the electron 
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density, and hence voltage, at the contact, since charges are extracted under these conditions – 

see supporting information. 

Figure 7: Diffusion length values determined from the relative collection efficiency under 627 nm illumination 

at open circuit (black circles) and close to the maximum power point (gray circles). The fit corresponds to a 

back reaction order, β, of 0.88. 

Conclusions 

The method presented herein offers a simple and intuitive determination of the diffusion length 

in DSCs. By constructing solar cells on substrates with patterned electron collectors of different 

widths, we are able to directly assess how far charges are able to travel before recombination with 

tri-iodide occurs. We are also able to determine the diffusion length at the maximum power 

point. The diffusion length, of the order of 100 µm, is found to increase with quasi Fermi level, 

as is expected if the reaction order for the reaction of TiO2 electrons with tri-iodide is less than 

one, as is widely reported in the literature. 
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The patterned cells developed in this work could have interesting applications in other 

subfields of DSC research. By opening up a variable in a second dimension, namely parallel to 

the substrate, the method could lend itself very well to the study of devices in which the film 

thickness is empirically limited, but without a full understanding of the causes. For example, the 

optimum thickness of devices employing solid hole-transport materials are often much smaller 

than for those containing liquid electrolytes. However, diffusion length studies which use the 

film thickness as a variable introduce variations in secondary parameters, such as reduced pore-

filling, or limited hole-transport in the hole-conducting material. For example, the optimum film 

thickness for cells employing spiro-OMeTAD is approximately 2-3 µm, even though small 

amplitude measurements (with an additional internal contact to monitor the electron 

concentration under short circuit conditions) suggest that the electron diffusion length is much 

19 
larger. Furthermore, these results could be relevant to research in alternative cell design, for 

20 example in the fabrication of tandem geometries employing a mesh-like internal electrode . 

Supporting information available: 

Solutions of the 2D model (as in Figure 1) for various electrode separations. IPCE and optical 

absorption data, further details of error analysis and film thickness correction, as well as the other 

ƞrel fits used to construct the plot in Figure 7. Calculated electron profiles across the thickness of 

the film at open circuit, the maximum power point and short circuit. 
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