

Citation for published version:
Balke, T, De Vos, M, Padget, JA & Traskas, D 2011, Normative run-time reasoning for institutionally-situated
BDI agents. in 2011 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT) . vol. 3, 6040690, IEEE, Piscataway, U.S.A, 2011 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2011, Lyon, France,
21/08/11. https://doi.org/10.1109/wi-iat.2011.49
DOI:
10.1109/wi-iat.2011.49

Publication date:
2011

Document Version
Peer reviewed version

Link to publication

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161908366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/wi-iat.2011.49
https://doi.org/10.1109/wi-iat.2011.49
https://researchportal.bath.ac.uk/en/publications/normative-runtime-reasoning-for-institutionallysituated-bdi-agents(769cef31-f3ce-4217-a626-0454465697c4).html

Normative Run-Time Reasoning for Institutionally-Situated BDI Agents

Tina Balke Marina De Vos, Julian Padget and Dimitris Traskas
Information Systems Management Department of Computer Science
University of Bayreuth, Germany University of Bath, UK

tina.balke@uni-bayreuth.de {mdv,jap}@cs.bath.ac.uk, d.traskas@bath.ac.uk

Abstract—Institutions offer the promise of a means to govern
open systems, in particular open multi-agent systems. Research
in logics, and subsequently tools, supports the specification,
verification and enactment of institutions. Most effort to date
has focussed on the design-time properties of institutions (either
on the normative or the system level), such as whether a
particular state of affairs is reachable or not from a given set of
initial conditions. Such models are useful in forcing the designer
to state their intentions precisely, and for testing (design)
properties. However, we identify two problems in the direct
utilization of event-based design-time models in the governance
of live (running) systems: (i) over-specification of constraints
on agent autonomy and (ii) generation of design-time model
artefacts. In this paper we present a methodology to tackle
these two problems and extract the run-time model from the
design-time one. We demonstrate how to derive an event-based
run-time model of institutions that can be incorporated into
the reasoning processes of autonomous BDI agents to realize
practical norm-governed multi-agent systems.

I. INTRODUCTION

The motivation for this work derives from two issues:
the first is the general goal of run-time governance of open
distributed systems and the second is a specific case study
of such a system: future mobile phone networks (called
wireless grids), where institutions are key to governing the
interaction of participants. The problem for the designer is
how to balance the tension between institutions and agents:
the latter are (supposed to be) autonomous, while institutions
constrain autonomy. Often, in norm-governed MAS, this
problem is “solved” by regimenting agents and their actions
and thus not allowing any norm-deviation. In contrast, we
use a more social institution, where agents can query its (run
time) properties in order to examine how current situations
were achieved and to evaluate possible futures.

Traditionally when trying to analyze normative effects the
real world is formalized as two separate models: a system
model and a normative/institutional model of which only the
design-time properties are analyzed. While useful, this can
be problematic when wanting to analyze the actual interplay
between agents and institutions. Furthermore it poses the
problem of how to account for any run-time effects between
and in the two models. Thus, in contrast to the separate
design-time analysis of the two models, we are interested
in an integration and coherent analysis of both models as

well as their interaction. To reach that goal, we approach
institutional and system modelling in two phases: We start
with a design-time model: where both normative and sys
tem perspectives are expressed as a logic program under
answer set semantics (ASP) [1]. For example, we build an
institutional model of the wireless grid concept to evaluate
whether it makes sense to pursue the idea. This model hard-
codes simplifications of the environment in which the agents
interact, but it can be used for validation purposes and helps
to expose requirements issues. Secondly we build a run
time model: which is extracted from the design-time model,
by removing all but the normative information and domain
facts. While normative information is still the subject of
ASP reasoning, the exogenous events that trigger normative
change are created by a MAS simulation. The run-time
model provides the (BDI) agents in the simulation with a
kind of oracle, that can respond to queries both about the
current state and the normative consequences of actions.

The experience gained during the development and exe
cution of these two phases has lead to the main contribution
of this paper: a methodology for developing design-time and
run-time institutional models, that is, models that play a
key part in developing and running either an application
or, as in our case, a simulation, and expressing the rules of
governance for open systems. In that respect, the simulation
and its results are tangential to the present focus, which is
how to make normative models accessible to agents.

II. CASE STUDY: WIRELESS GRIDS

The process and implications of modelling normative sys
tems for agent reasoning can usefully be illustrated by a case
study. The case study is situated against the background of
the next generation of mobile phones, where wireless grids
have been proposed to address the energy issues inherent in
these devices [2]. Batteries have a fixed capacity that puts
limits on the operational time for a device. The increasing
sophistication of mobile phones has had a significant impact
on power consumption, leading to shorter stand-by times,
as well as higher battery temperature unless there is active
cooling [2]. The idea of wireless grids is, that in contrast
to distributing digital content exclusively via an expensive
(in terms of power and money) connection to a structured
network, mobile phones cooperate and share content via a

mailto:{mdv,jap}@cs.bath.ac.uk

cheap(er) ad-hoc connection as well.
Energy gains aside, the scheme has the intrinsic weak

ness of distributed cooperative architectures: it relies on
cooperation to succeed. Cooperation in this context implies
that participants volunteer to share the data they obtain
via the structure network. However, a cost is involved
as sharing uses battery consumption. As a consequence,
(bounded) rational users prefer to receive resources without
any commitment of their own, which jeopardises the whole
grid. So incentives for cooperation are essential.

In this paper we show that a normative system can be
used to prototype and verify a cooperation mechanism—
the design-time model—and subsequently govern the mech
anism in a running system, using the run-time model. This
two-phase approach demonstrates that we can build a norm-
governed system that is: (i) flexible: by changing the insti
tutional model, it is possible to influence agent behaviour,
without modifying individuals—assuming a suitable goal-
driven agent—and (ii) realistic: in this scenario, as in those
foreseen for multi-agent systems, we cannot predict or
control with total certainty the behaviour of agents, but it
is hoped that institutions can provide functions similar to
those found in the physical world.

III. NORM GOVERNED SYSTEMS

For our formal model, we adopt the one proposed by
Cliffe et al [3]. Its event-driven model and mathematical
foundation with computational support makes it ideal for use
in an agent-based simulation. A normative model describes
which actions are permitted by agents given the current state
of affairs. This implies these actions have to be observed by
the normative model and be interpreted within the current
normative context. We refer to these observed events as
exogenous (Eex), and use conventional generation, inspired
by the concept of ‘counts-as’ [4], to generate normative
events from them. Thus, we can determine the effect of
Eex on the normative framework, given its current state.
The state of the framework is represented as a set of
fluents consisting of brute facts [5] and normative fluents
defining powers, permissions, obligations and violations.
Events trigger the initiation and termination of fluents, as
specified by the consequence relation. Given an Eex and
the current normative state, the new state is obtained from
the application of the transitive closure of the generation
and the consequence relations to determine the initiation
and termination of (institutional) fluents. The normative
semantics is defined over a sequence, called a trace, of Eex.

The formalization of the framework is realized as a com
putational model through Answer Set Programming (ASP)
[1], [3]. The benefits of using ASP for modelling normative
framworks are given in [3]. Cliffe et al. also put forward a
domain-specific action language, InstAL , that translates to
AnsP rolog. An InstAL program consists of two parts: the
normative specification and a domain file. The specification

consists of two logical parts: a template part describing the
institution and its components and the initiation part. The
template provides the name of the institution, the events and
fluents it uses, generic rules and a disjoint set of monomor
phic types. The actual values of each type are specified in
the domain file. Extracts from the wireless grid scenario are
given in Fig. 1 and 2. We explain the main syntax elements
of InstAL as follows: Events are defined by typeOfEvent
event nameOfEvent; with type being one of exogenous,
create, inst or violation, while fluents are defined by
fluent nameOfFluent(ParameterType, ...);. Generation
of normative events from exogenous events is specified
using the generates statement, while initiates and
terminates define the two parts of the consequence rela
tion. Conditions on the state are expressed using if. The
initially statement specifies the fluents in the initial
state. For ease of specification, InstAL also introduces non-
inertial fluents. While conventional fluents, once initiated,
remain true until terminated, non-inertial ones’ truth value
is evaluated in every state on the basis of the specified
conditions. It requires noninertial fluent nameOfNon-
InertialFluent(ParameterType, ...); for the specification
and nameOfNonInertialFluent when condition; for the truth-
condition.

IV. MODELLING THE WIRELESS GRID SCENARIO

Having explained the main concepts of normative sys
tems, in this section we present the specification of the case
study in the form of a design-time and a run-time model.
We underline the intimate relationship of the design-time
and run-time models by marking the latter in bold within
the specification of the former in Fig. 1 and 2.

We demonstrate the applicability using a simplified sce
nario where a number of handsets are allocated a set of
chunks (parts) of a file that they need to download from the
base station and then share with other handsets. The system
enforces the narm that handsets must share in order to
receive. To avoid details that would unnecessarily complicate
the specification, we impose the simplification that each
file chunk is assigned to exactly one handset and that each
handset is assigned the same number of chunks. We are not
concerned with the process that brings this allocation about.

The Design-Time Model: The allocation of chunks
for download by each handset is given in the initial
state of the model (see Fig. 2, lines 123–126) where the
downloadChunk fluents indicate which handsets are tasked
with downloading which chunks from the base-station. The
handsets are also given the necessary permissions (lines
118–122). In the download phase, each handset downloads
its assigned chunks from the base-station. The full specifica
tion of this phase is given in Figure 1. Each handset can only
obtain one chunk at a time from the base station, and each
channel can only be used to download a single chunk. This
is modelled using the non-inertial fluents busyBReceiving

1 institution grid;

3 type Handset;

4 type Chunk;

5 type Time;

6 type Channel;

9 exogenous event clock;
10 exogenous event download(Handset,Chunk,Channel);
11 exogenous event send(Handset,Chunk);

14 create event creategrid;

17 inst event intDownload(Handset,Chunk,Channel);

18 inst event intSend(Handset);

19 inst event intReceive(Handset,Chunk);

20 inst event transition;

23 violation event misuse(Handset);

26 fluent downloadChunk(Handset,Chunk);

27 fluent hasChunk(Handset,Chunk);

28 fluent areceive(Handset,Time);

29 fluent asend(Handset,Time);

30 fluent creceive(Handset,Time);

31 fluent csend(Handset,Time);

32 fluent transmit(Channel,Time);

33 fluent previous(Time,Time);

36 noninertial fluent busyHSending(Handset);

37 noninertial fluent busyHReceiving(Handset);

38 noninertial fluent busyBReceiving(Handset);

39 noninertial fluent busyChannel(Channel);

40

47 download(A,X,C) generates intDownload(A,X,C)

48 if not busyChannel(C), not busyBReceiving(A), not busyHSending(A);

50 download(A,X,C) generates transition;

51 clock generates transition;

53 intDownload(A,X,C) initiates hasChunk(A,X);

54 intDownload(A,X,C) initiates creceive(A,4), transmit(C,4);

56 transition initiates transmit(C,T2) if transmit(C,T1), previous(T1,T2);

57 transition initiates creceive(A,T2) if creceive(A,T1), previous(T1,T2);

58 transition initiates pow(intDownload(A,X,C)) if creceive(A,1);

59 transition terminates csend(A,Time);

60 transition terminates creceive(A,Time);

61 transition terminates transmit(C,Time);

63 intDownload(A,X,C) terminates pow(intDownload(A,X1,C1));

64 intDownload(A,X,C) terminates pow(intDownload(B,X1,C));

65 intDownload(A,X,C) terminates downloadChunk(A,X);

66 intDownload(A,X,C) terminates perm(download(A,X,C1));

68 busyChannel(C) when transmit(C,T2);

69 busyBReceiving(A) when creceive(A,T2);

Figure 1. Model Declaration and Generation and consequence relations
for downloading

and busyChannel which are implied on the basis of the
handset downloading and the base-station transmitting (lines
68–69). The first InstAL rule (lines 47–48) indicates that a
request to download a chunk is granted whenever there is an
available channel and the handset is not currently receiving
from the base-station and is not busy sending another chunk.
When a chunk is downloaded, the handset and the channel
are busy for a fixed amount of time–4 time steps (line 54).
From the first instant of the handset interacting with the
base-station, it is deemed to have downloaded the chunk, so
parts can be shared (line 53). As soon as a channel and a
handset are engaged, the framework (i) removes the power
from the handset and from the channel to engage in any
other interactions (lines 63–64), (ii) stops the handset from
needing the chunk (line 65) and (iii) cancels the permission
to download the chunk again (line 66).

In the design-time case, we need a mechanism to mark
the passage of time. For this purpose, each exogenous
event generates a transition event (lines 50–51), while the
clock event indicates that there was no interaction with
the institution. The transition event counts down the
interaction time between the channel and handset (line 56–
57). When the the interaction finishes, transition restores
the power for a handset to download via the channel and for
the handset to download more chunks (line 58). The event
also terminates any unnecessary busy fluents (lines 59–61).

In the sharing phase each handset sends chunks to or

77 send(A,X) generates intSend(A) if hasChunk(A,X),

78 not busyHSending(A), not busyHReceiving(A), not busyBReceiving(A);

80 send(A,X) generates intReceive(B,X)

81 if not hasChunk(B,X), not busyHSending(B), not busyHReceiving(B),

82 hasChunk(A,X), not busyHSending(A), not busyHReceiving(A),

83 not busyBReceiving(A);

85 send(A,X) generates transition;

86 clock generates transition;

88 viol(intReceive(A,X)) generates misuse(A);

89 misuse(A) terminates pow(intReceive(A,X));

91 intReceive(A,X) initiates hasChunk(A,X);

92 intSend(B) initiates perm(intReceive(B,X));

93 intReceive(A,X) initiates areceive(A,2);

94 intSend(B) initiates asend(B,2);

103 intReceive(A,X) terminates perm(intReceive(A,X));

104 intReceive(A,X) terminates pow(intReceive(A,X));

105 intSend(A) terminates pow(intSend(A));

106 intReceive(A,X) terminates perm(intReceive(A,Y));

108 busyHReceiving(A) when areceive(A,T2);

109 busyHSending(A) when asend(A,T2);

110

115 initially pow(transition), perm(transition),
116 perm(clock),
117 pow(intDownload(A,B,C)),
118 perm(intDownload(A,B,C)),
119 perm(download(alice,x1,C)),
120 perm(download(alice,x3,C)),
121 perm(download(bob,x2,C)),
122 perm(download(bob,x4,C)),
123 downloadChunk(alice,x1),
124 downloadChunk(alice,x3),
125 downloadChunk(bob,x2),
126 downloadChunk(bob,x4);

132 initially pow(transition), perm(transition),
133 perm(clock),
134 pow(intReceive(Handset,Chunk)),
135 pow(intSend(Handset)),
136 perm(send(Handset,Chunk)),
137 perm(intReceive(Handset,Chunk)),
138 perm(intSend(Handset));

Figure 2. Generation and consequence relations for sharing and the initial
state of the model, post negotiation

receives chunks from another handset, with the goal that at
the end of the process, each handset has a complete set of the
chunks. The full specification is given in Figure 2. The idea
behind the model is similar to the downloading phase, but
with two critical differences. First, the sending of a chunk by
one handset automatically triggers the reception of the chunk
by the partners (line 80), thus the design-time model assumes
no network failures, etc. Furthermore, we incorporate a very
basic mechanism to encourage handsets to share their chunks
with others rather than just downloading them: when a
chunk is received by sharing, the receiving handset loses
permission to receive another chunk until it has sent a
chunk (lines 106 and 92 respectively). Continuous receiving
without sending (detection of unpermitted intReceiving)
results in a violation event named misuse (line 88). The
simple penalty applied here is that the violating handset per
manently loses the power to intReceiving (line 89), which
means the handset is expelled from the group. The traces
generated by the design-time model verify that when agents
follow the norms, the entire community benefits—except if
norms are breached at the end of the trace, as the penalty has
no effect. While this might not cause problems if participants
never meet again, penalties can always be applied at the next
encounter. This information gives us sufficient confidence
to implement the protocol in our energy-saving simulation,
where handsets might engage in several sharing contracts
over a period of time and historical information can be used
against them and propagated through the network.

The Run-Time Model: For a given normative system,
both the design-time and run-time model should have the

same normative intentions, making the design-time model
a sensible starting point for the development of the run
time one. A first step is to remove rules and conditions
that deal with simulating a running system. The run-time
model only needs to monitor normative behaviour. Thus,
it only monitors the external events resulting from agents’
actions. As a consequence, we no longer need to model
system data, such as whether a channel is being used at
a given moment or that a particular handset is incapable,
from a technical perspective, of sending or receiving chunks.
Removing the rules involving the respective events and
corresponding fluents from the remaining rules, we almost
achieve the specification printed in bold.

In the design-time model, we penalized misbehavior by
taking away the power of a handset to receive chunks. While
this may be a reasonable simplification in a design-time
model for verification purposes, it cannot be enforced in
a running system unless one expects agents to penalize
themselves. Instead, the system notes the violation and
agents may use this information in future interactions. Thus,
we remove the violation event misuse (line 23), its generate
rule (line 88) and any rules that terminate the power of
agents. In the run-time model, the assignment of chunks
to agents (i.e. the initial configuration of the agent/chunk
combinations indicated by the initially identifier in the
InstAL specification) is determined at run-time by agents,
which meet, decide to cooperate and negotiate which agent
is to download and share which chunk.

V. BDI AGENTS AND INSTITUTIONS

For the implementation of the run-time reasoning we
use the Jason platform [6], a Java-based interpreter for an
extended version of AgentSpeak. We link it to the institu
tional model and answer set solver using system calls. For
maintaining the normative state in our running system we
introduce a special type of agent or entity: the Governor [7].
When created it is given the template part of the normative
specification. When agents agree to collaborate they create
a contract comprising their agent IDs, the chunks involved,
the channels they will use and their allocation of which
chunks to download from the base station. This information
is expressed as a custom domain file and initial institutional
state. Each contract is represented as a new instantiation of
the institution. Whenever an action takes place that affects
a contract, the Governor is informed of the agent IDs and
the action and computes the next normative state for that
contract using the current state (for the initially part)
and the associated domain file. Having the information for
the initial contract, as well as tracking the normative state of
each contract by analyzing the respective exogenous events,
the Governor can act as an institutional query processor for
the agents. Contracting agents can query the current state
and establish consequences of potential actions. This is done
whenever the current step of the agent’s reasoning cycle

requires perceptions and as a result, an update of the agent’s
belief base takes place; i.e. the agent stores the percepts in
its belief base and can use them for reasoning from that
point onward. Based on its internal reasoning, an agent will
perform actions in the MAS. These actions are registered
in the environment and result in exogenous events, about
which the Governor is informed.

VI. DISCUSSION

In this paper we demonstrate how institutions can be in
corporated into a multi-agent simulation, and consequently,
in live MAS. To achieve this, the design-time model, used
for verifying design-time properties of the system, can be
reduced to a run-time model containing just the normative
information and the relevant domain fluents.

To use the run-time model in a live system, it needs
to be encapsulated in a monitor object—which we call
a Governor—whose sole purpose is to manage normative
states and to answer queries from norm-aware agents.

In our simulation, one Governor object manages several
instantiations of the same normative framework. We observe
that often, more than one normative framework is active
within an application. Furthermore, some of these may inter
act with one another. In [3], the authors present the concept
of multi-institutions where events in one institution cause
events in another or change another institution’s state. Ex
tension of the Governor to accommodate multi-institutional
reasoning is an important part of future work, along with the
issue of using conventional distributed systems techniques,
such as replication, as a means to avoid the Governor
becoming a bottleneck/single point of failure.

REFERENCES

[1] M. Gelfond and V. Lifschitz, “Classical negation in logic pro
grams and disjunctive databases,” New Generation Computing,
vol. 9, no. 3-4, pp. 365–386, 1991.

[2] F. H. P. Fitzek and M. D. Katz, “Cellular controlled peer to
peer communications: Overview and potentials,” in Cognitive
Wireless Networks. Springer, 2007, pp. 31–59.

[3] O. Cliffe, M. De Vos, and J. Padget, “Specifying and reasoning
about multiple institutions,” in COIN II, ser. LNAI, vol. 4386.
Springer Berlin / Heidelberg, 2007, pp. 67–85.

[4] A. J. Jones and M. Sergot,	 “A Formal Characterisation of
Institutionalised Power,” ACM Computing Surveys, vol. 28,
no. 4, p. 121, 1996.

[5] John R. Searle,	 The Construction of Social Reality. Allen
Lane, The Penguin Press, 1995.

[6] R. H. Bordini, M. Wooldridge, and J. F. Hübner, Programming
Multi-Agent Systems in AgentSpeak using Jason, ser. Wiley
Series in Agent Technology. John Wiley & Sons, 2007.

[7] P.	 Noriega, Agent mediated auctions: The Fishmarket
Metaphor, PhD Thesis, Universitat Autònoma de Barcelona,
1997.

